Problema:

Data una sequenza di elementi in ordine qualsiasi, ordinarla.

- Questo è un problema fondamentale, che si presenta in moltissimi contesti, ed in diverse forme.
- Nel nostro caso formuliamo il problema in termini di ordinamento di vettori:

Dato un vettore A di n elementi, ordinarlo in modo crescente

▶ Per semplicità faremo sempre riferimento a vettori di interi.

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 467

La programmazione nel linguaggio C

Algoritmi di ordinamento

Ordinamento per inserzione (insertion sort)

- ► Esempio: Ordinamento di una mano di ramino
 - si inizia con la mano sinistra vuota e le carte coperte sul tavolo
 - si prende dalla tavola una carta alla volta e la si inserisce nella corretta posizione nella mano sinistra
 - **•** • •
 - si termina quando si sono finite tutte le carte sul tavolo.
- Stesso procedimento per ordinare un vettore:
 - ▶ inizialmente il vettore rappresenta il mazzo sul tavolo
 - ▶ si usa un ciclo per analizzare uno alla volta gli elementi del vettore
 - ► Alla generica iterazione la situazione è la seguente mano sinistra | carte ancora da scoprire

↑ nuova carta

- per inserire la nuova carta al posto giusto nella mano sinistra dobbiamo
 - scorrere gli elementi che lo precedono per decidere la posizione che gli compete
 - > spostare di un posto verso destra gli elementi maggiori per fargli spazio.

Esempio

In verde le carte ancora da esaminare, in rosso quelle già esaminate (mano sinistra). La nuova carta da esaminare è sottolineata.

```
      5
      2
      4
      6
      1
      3

      5
      2
      4
      6
      1
      3

      2
      5
      4
      6
      1
      3

      2
      4
      5
      6
      1
      3

      2
      4
      5
      6
      1
      3

      1
      2
      4
      5
      6
      3

      1
      2
      3
      4
      5
      6
```

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 469

La programmazione nel linguaggio C

Algoritmi di ordinamento

▶ Una volta individuata la posizione k in cui inserire la nuova carta dobbiamo farle spazio, ovvero spostare verso destra di una posizione tutte le carte rosse da k in poi.

Esempio:

► A questo punto possiamo piazzare la carta in modo ordinato

1 2 3 4 5 6

▶ Definiamo allora una procedura che sposta tutti gli elementi di un vettore verso destra di una posizione tra due indici dati from e to

```
void shiftR(int v[], int from, int to)
{
int i;
for (i=to-1; i>=from; i--)
   v[i+1] = v[i];
}
```

- L'elemento in posizione to viene perso
- Bisogna procedere da destra verso sinistra (perché?)
- ▶ se to è minore o uguale a from non succede nulla

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 471

La programmazione nel linguaggio C

Algoritmi di ordinamento

Possiamo allora definire la procedura di di ordinamento per inserzione come segue

Ordinamento per selezione del minimo (selection sort)

- Esempio: Ordinamento di un mazzo di carte
 - ▶ si seleziona la carta più piccola e si mette da parte
 - delle rimanenti si seleziona la più piccola e si mette da parte
 - **•** •
 - si termina quando rimane una sola carta
- Ordinamento di un vettore:
 - per selezionare l'elemento più piccolo tra quelli rimanenti si utilizza un ciclo
 - mettere da parte significa scambiare con l'elemento che si trova nella posizione che compete a quello selezionato

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 473

La programmazione nel linguaggio C

Algoritmi di ordinamento

▶ in verde la parte che rimane da analizzare in blu l'elemento minimo selezionato in marrone lo scambio effettuato in rosso la parte ordinata

Implementazione

```
int minPos(int v[], int from, int to);
/* calcola la posizione del minimo elemento di
    v nella porzione [from,to] */

void swap(int *p, int *q);
/* scambia le variabili puntate da p e q */

/** PROCEDURA DI ORDINAMENTO PER SELEZIONE **/

void sort(int v[], int dim)
{
    int i, min;
    for(i=0; i<dim-1; i++)
        {
        min = minPos(v, i, dim-1);
        swap(v+i, v+min);
    }
}</pre>
```

Scrivere per esercizio le procedure swap e minpos

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 475

La programmazione nel linguaggio C

Algoritmi di ordinamento

```
int minPos(int v[], int from, int to) {
/* calcola la posizione del minimo elemento di
  v nella porzione [from,to]
   int i, pos;
   pos = from;
   for (i=from+1; i<=to; i++)
        if (v[i] < v[pos])
            pos = i;
   return pos;
}
void swap(int *p, int *q) {
/* scambia le variabili puntate da p e q */
   int temp = *p;
   *p = *q;
   *q = temp;
}
```

Ordinamento a bolle (bubble sort)

- ▶ Si fanno salire gli elementi più piccoli ("più leggeri") verso l'inizio del vettore ("verso l'alto"), scambiandoli con quelli adiacenti.
- ▶ L'ordinamento è suddiviso in n-1 fasi:

```
► fase 0: 0° elemento (il più piccolo) in posizione 0
```

- ▶ fase 1: 1° elemento in posizione 1
- **.** . . .
- ▶ fase n-2: (n-2)° elemento in posizione n-2, e quindi (n-1)° elemento in posizione n-1
- ► Nella fase i: cominciamo a confrontare dal basso e portiamo l'elemento più piccolo (più leggero) in posizione i

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 477

La programmazione nel linguaggio C Algoritmi di ordinamento 3 5 2 4 6 1 5 2 4 6 1 3 5 2 4 1 6 3 5 2 1 4 6 3 3 5 1 2 4 6 1 5 2 4 6 3 5 2 4 6 3 1 5 2 4 3 1 6 1 5 2 3 4 6 5 2 3 4 6 1 1 2 5 3 4 6 2 5 3 4 1 6 **5** 4 1 2 3 3 5 2 3 5

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 479

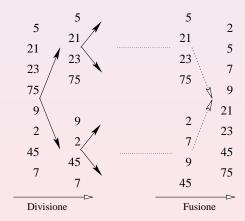
La programmazione nel linguaggio C

Algoritmi di ordinamento

Ordinamenti ricorsivi Selection Sort ricorsivo

- ▶ Il metodo del selection sort può essere facilmente realizzato in modo ricorsivo
- si definisce una procedura che ordina (ricorsivamente) la porzione di array individuata da due indici from e to
- ▶ il minimo elemento della porzione viene messo in posizione from per poi ordinare ricorsivamente la porzione tra from+1 e to
- ▶ Il caso base corrisponde all'ordinamento di una porzione fatta da un solo elemento (è già ordinata)

```
void SelectionSort(int v[], int from, int to){
  if (from < to) {
    int min = minPos(v,from,to);
    swap(v+from, v+min);
    SelectionSort(v, from+1, to);
  }


void sort(int v[], int dim) {
    SelectionSort(v,0,dim-1);
}</pre>
```

Merge sort

Si divide il vettore da ordinare in due parti:

- si ordina ricorsivamente la prima parte
- ▶ si ordina ricorsivamente la seconda parte
- ▶ si combinano (operazione di fusione, merge) le due parti ordinate

Esempio:

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 481

La programmazione nel linguaggio C

Algoritmi di ordinamento

Esprimiamo il procedimento in uno pseudo-linguaggio

```
ordina per fusione gli elementi di A da from a to

IF from < to (c'è più di un elemento tra from e to)
```

THEN

```
{
m mid} = ({
m from} + {
m to}) / 2 ordina per fusione gli elementi di A da from a mid ordina per fusione gli elementi di A da mid +1 a to fondi gli elementi di A da from a mid con gli elementi di A da mid +1 a to restituendo il risultato nel sottovettore di A da from a to
```

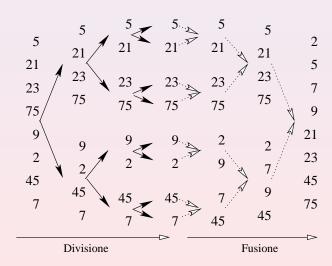
Implementiamo l'algoritmo in C, definendo una procedura ricorsiva

```
void mergeRicorsivo(int A[], int from, int to)
```

che ordina la porzione dell'array A individuata dagli indici from e to.

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 483


La programmazione nel linguaggio C

Algoritmi di ordinamento

La procedura mergeSort che ordina un array di interi è semplicemente

```
void sort(int v[], int dim)
{
mergeRicorsivo(v, 0, dim-1);
}
```

Esempio:

Vediamo l'operazione di fusione, definendo la procedura

```
void merge(int A[], int from, int mid, int to)
che fonde le due porzioni dell'array A con indici compresi tra from e mid e
tra mid+1 e to.
```

► La procedura utilizza un array di supporto B: per semplicità, supponiamo di avere una costante LUNG che definisce la lunghezza degli array che stiamo trattando.

Dott. R. Gori, Prof. A. Corradini, Dott. A. Rama

INFORMATICA 242AA a.a. 2010/11 - pag. 485

La programmazione nel linguaggio C

Algoritmi di ordinamento

```
void merge(int A[], int from, int mid, int to)
                                     /* vettore di appoggio */
 int B[LUNG];
 int primo, secondo, appoggio, da_copiare;
 primo = from;
 secondo = mid + 1;
 appoggio = from;
 while (primo <= mid && secondo <= to) { /* copia in modo ordinato
   B[appoggio] = A[primo];
                                    /* della seconda porzione in B */
                                   /* fino ad esaurire una delle due */
    primo++;
   else {
    B[appoggio] = A[secondo];
    secondo++;
   appoggio++;
```

```
if (secondo > to)
                                /* e' finita prima la seconda porzione */
 /* copia da A in B tutti gli elementi della
    prima porzione fino a mid */
    for (da_copiare = primo; da_copiare <= mid; da_copiare++) {</pre>
       B[appoggio] = A[da_copiare];
       appoggio++;
    }
  else
                                 /* e' finita prima la prima porzione */
    for (da_copiare = secondo; da_copiare <= to; da_copiare++) {</pre>
    /* copia da A in B tutti gli elementi della
    /* seconda porzione fino a to */
       B[appoggio] = A[da_copiare];
       appoggio++;
    }
/* ricopia tutti gli elementi da from a to da B ad A */
  for (da_copiare = from; da_copiare <= to; da_copiare++)</pre>
    A[da_copiare] = B[da_copiare];
}
```