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PART 1.  DATA: 
 

I. Introduction 
 

The studied dataset was collected by a mobile phone carrier for billing and operational purposes. It 

contains the date, time and coordinates of the phone tower, and a record of each phone call and text 

message sent or received by each of approximately 6.2 million costumers. The dataset summarizes one 

month of activity. To guarantee anonymity, each user is identified by the data source with a security key 

(hash code) and any potential personal identifiers were previously removed from the dataset.  

 

In our dataset, there are over 10,000 mobile phone towers, the Voronoi diagram around each tower 

offering a reasonable estimate of the tower’s service area. The Voronoi diagram areas are obtained by 

Delaunay triangulation (1), finding that the distribution of the tower areas follows a power-law with two 

different scaling regions (Fig. S8A).  

 

The cell phone dataset records the communication pattern of the user base, providing the time and 

the tower location for each call. Yet, given that the interevent time between consecutive calls is irregular, 

the sampling is often too sparse (Fig. S1A). To identify the hourly location we developed the following 

procedure: we discretized time, breaking each day into 24 hour long time intervals (Fig. S1B). If the 

user calls during a specific hour period, we set user’s position to the tower indicated by the dataset. If 

there are multiple locations recorded in the same hour long period, we choose one of the recorded 

locations with a probability that in proportional to the frequency of the towers observed in that time 

period. For example, if there are two calls from two towers between 1 and 2pm, we will randomly 

choose one for the user’s location. If, however, there are two calls from tower one and one call from 

tower two, then with 0.67 chance we choose tower one. Given the sparseness of the calls, this leaves us 

with an incomplete location record. Therefore, we developed a methodology to identify the user’s likely 

location building on the results of Ref. (2) on human mobility patterns (see Section 2.III and Fig. S1, C 

and D). 

 

Further information can be obtained from the authors upon request. 
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Fig. S1. Predicting the movement of mobile phone users. (A) Temporal patterns of communication. The 

numbers listed are the towers’ IDs to which the user’s phone connected during a call. (B) A cartoon 

showing users’ recorded locations and simulated locations. (C) A user’s trajectory. (D) The user’s 

simulated trajectory based on the method described in Section 2.III. Each Voronoi cell approximates a 

tower’s service area. 
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PART 2.  METHOD: 

 

I. Introduction 

 

To identify the user locations with an hourly frequency we follow a two step procedure. First, we 

determine each user’s travel characteristics following the results of Ref. (2). Second, we reconstruct the 

position of the user at times when there are no calls such that the fundamental characteristics of each 

user are preserved. We will then validate our methods by comparing different statistics for the empirical 

and simulated data, finding a good agreement between these two datasets. 

 

II. Determining the user characteristics 

 

To characterize the mobility pattern of the user base we calculate for each user five parameters 

based on the original data collected by the mobile carrier. 

 

1. Center of mass position (xcm, ycm) 

Using the recorded locations of a user, we determine its trajectory’s center of mass position (xcm, ycm) 

as: 

=1 =1
,  cm i cm i

n n

i i
yx x n y n= =/ /∑ ∑                                                            (S1) 

where (xi, yi) are the x and y coordinates of the tower routing the ith call (or text message) made by the 

user in question, n is the number of calls (or text message) recorded. 

 

2. Radius of gyration rg 

The radius of gyration of a user measures the range of distances covered regularly by a user: 

2 2
g

=1
=

1 (( ) ( ) )i cm i cm

n

i
r x x y y

n
− + −∑                                                       (S2) 

 

3. Most frequent position 

We define a user’s most frequent position as the location of the mobile phone tower routing most of 

its calls (or text message). 

 



 

5 

4. Principal axis θ 

To compare the trajectories of different users we calculate the individual reference frame for each 

user. We do this by finding the set of axes in which the inertia tensor defined by the collection of points 

visited by each user takes a diagonal form.  

The moment of inertia tensor is given by 

= xx xy

yx yy

I   I
I

I   I
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                            (S3) 
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( )( )xy yx i cm i cm

n

i
I I x x y y= = − − −∑                           (S4) 

We define the x axis of user’s intrinsic reference frame as the eigenvector associated with the 

smaller eigenvalue of the inertia tensor, looking for a reference frame that satisfies: 0x'y' y'x'I I= = .  

This can be achieved by performing the rotation: 

cos( ) sin( )x' x yθ θ= + , sin( ) cos( )y' x yθ θ= − +                        (S5) 

such that  0x'y' y'x'I I= = .    

=1
(( ) cos( ) ( )sin( ))( ( )sin( ) ( ) cos( )) 0i cm i cm i cm i cm

n

i
x x y y x x y yθ θ θ θ− + − − − + − =∑                            (S6) 

                   2 2sin( ) cos( ) (cos ( ) sin ( )) sin( ) cos( ) 0xx xy yyI I Iθ θ θ θ θ θ− − − + =                                       (S7) 

This leads us to three possible solutions: 

(A). If  cos( ) 0θ ≠  and  0xyI ≠  then 

2 2( ) 4
tan( )

2
xx yy xx yy xy

xy

I I I I I
I

θ
− ± − +

=                          (S8) 

We select one of the roots to make sure x'x' y'y'I I< .  

(B). 0xyI ≠   and cos( ) 0θ = , then from (S7) we must have sin( ) 0θ = , hence there is no valid 

solution in this case. 

(C). 0xyI = , we derive from (S7) θ=0 or θ=π/2. We select 0 or π/2 according to in which of these 

angles the momentum of inertia is minimum. 

Finally, we make a conditional rotation with π to make sure the most frequent position has a 

positive value on the horizontal axis. 
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5. σx, σy      

Finally, we define σx and σy as a way to characterize the vertical and horizontal spread of user’s 

location in its intrinsic reference frame.  

2

=1
σ /x

n

i
i

x' n= ∑ , 2

=1
σ /y

n

i
i

y' n= ∑                         (S9) 

Here ( , )i ix' y'  are the coordinates of positions in user’s intrinsic reference frame. We will use these 

quantities later to help create a universal pool of possible positions to simulate a user’s motion. 

 

III. Simulating mobility patterns 

 

1. Initial condition 

We start our simulation with each user located at its most frequent position. 

 

2. Deciding when users move 

We incorporated the fact that the probability that a user “jumps” to a new location depends on the 

time of the day by estimating the probability that a user changes position directly from the data. We 

achieve this using a detailed dataset in which the position of each user is recorded every hour. Some 

services provided by the mobile phone carrier, like pollen and traffic forecasts, rely on the approximate 

knowledge of the customer’s location at all times of the day. For customers that signed up for location 

dependent services, the date, time and the closest tower coordinates are recorded on a regular basis, 

independent of their phone usage. We were provided with 6 days of such records for 1,000 anonymized 

users, among which we selected the group of 206 users whose coordinates were recorded at every hour 

during 6 day period, resulting in 23,231 recorded positions. For each pair of consecutive hours, we 

define NT(t) as the total number of users for which we have location records in both hours. We then 

define ND(t) as the number of records in which a displacement is recorded. Hence, the empirically 

observed displacement probability is given by PD(t)=ND(t)/NT(t) (Fig. S2), which is properly normalized 

for each hour by NT(t)=ND(t)+NND(t), where NND(t) is the number of consecutive records where no 

displacement was recorded. 
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Fig. S2. The moving probability of a user, given by PD(t)=ND(t)/NT(t). 

 

3. Generating motion 

To simulate epidemic spreading we need to assign hourly positions to each individual. Because of 

the limited amount of information available in our dataset, we interpolated the original data for those 

hours in which location data was not available. Hence, in our epidemic simulation, the sequence of 

positions describing the motion of a user combines real data and positions simulated according to the 

algorithm we describe next. For those hours where there is call data available for a given user, we assign 

the user to the location of the tower routing the call. When more than one call was recorded in a given 

hour, routed by different towers, we randomly choose one of the recorded positions, as we decided to 

keep a consistent record in which only one location is assigned to a user in each time period. 

 

For the hours when there is no location data available for a given user, we generate its location 

according to the following algorithm. 

 

(1) Decide if the user moves 

For each user, we decide if it will move or not in a given hour according to the moving probability 

described above (Fig. S2). 

 

(2) Extract a position seed  

Next we extract a position seed for a user. This is done from the pool file generated directly from 

the empirical data according to the following procedure:  
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Following the results of Ref. (2) we calculated x/σx and y/σy in user’s intrinsic reference frame for 5 

million empirical locations. We then stored these values in a file. Pool file was generated before the 

simulation. 

For those hours in which there is no localization information, our simulation begins by randomly 

choosing a seed from the pool file. 

 

(3) Scaling and rotating user’s trajectory 

After randomly selecting (a, b) from the (x/σx, y/σy) pool file we rescale these values as: 

,x yx' a y' bσ σ= =                           (S10) 

We then rotate and re-center these coordinates to move them from the user’s intrinsic reference 

frame to the country’s coordinates   

= cos( ) sin( ) + , =sin( ) cos( ) +cm cmx x' y' x y x' y' yθ θ θ θ− +                                        (S11) 

    

(4) Check if new position is in the country 

After re-centering and rotating the coordinates we look whether the newly chosen (x, y) position 

falls within the country’s territory. In the case it dose not, we discard it and extract a new position seed.  

  

(5) Find the nearest tower 

After generating a new set of (x, y) position for the user we identify the nearest cell phone tower. If 

the tower is different from the tower recorded in the user’s previous location we assign this to the user 

as its new position. If it is the same tower we go back to (2) and re-start the process. 

 

IV.  Validation 

 

In this section we test our methodology by comparing the statistical properties of the simulated 

trajectories and those observed for the empirical data. In general, we find that our simulation does not 

introduce considerable biases in the statistical properties of the observed trajectories. 

 

1.   Global variables  

We begin our analysis by looking at the (x, y) position distribution. As it is expected, we find that 

there are no significant differences between the real and simulated distributions (Fig. S3, A and B). Next 

we show the distribution for the scaled variables (x/σx, y/σy) (Fig. S3, C and D), which again are 
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consistent between the real and simulated data, albeit we note that the simulated data appears to be 

slightly more isotropic than the empirical one. We continue our validation by looking at the cross-

section of the (x/σx, y/σy) distribution where y/σy=0. Again, we find good agreement between the 

empirical and real data, albeit we also observe a small tendency for the simulated data to define a 

slightly more symmetrical distribution than that defined by the real data (Fig. S3E). Finally, we look at 

the rg distribution for the real and simulated data, finding a good agreement between both distributions 

despite a tiny discrepancy at large gyration radius where the empirical distribution tends to be slightly 

more populated (Fig. S3F). We do not believe that these small deviations will affect our results on the 

spread of mobile viruses. 

 

2.  Local variables  

To study the changes introduced by the simulation in the parameters characterizing the user 

trajectories, we first look at the rg of the simulated user trajectories as a function of the rg measured 

directly from the calling data (Fig. S4A). As expected, the simulation introduces noise into the 

trajectories which results in a moderate scatter between these variables. Still, both rg appear to be 

consistent along the full range. Next we study the principal angle θ of real and simulated trajectories 

(Fig. S4B) finding in general that the θ angles are either the same or differ by a difference of one or two 

π. Hence the simulation does not appear to introduce a considerable bias in the direction of a user’s main 

axis of motion. We continue our validation procedure by studying variations in the anisotropy of 

trajectories introduced by our simulation. We do this by looking at the ratio between σy and σx for real 

and simulated trajectories (Fig. S4C), finding that the simulation does introduce some scatter with a 

small bias to reduce the anisotropy of the most anisotropic trajectories. Finally, we explore the distance 

between the empirical and simulated center of mass defined by users’ trajectories, finding that while in 

some cases these two quantities differ by as much as the rg of the user in question, in most cases this 

distance is about 10% of user’s rg (Fig. S4D). 
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Fig. S3. Comparison of the global parameters for the real and simulated trajectories. (A) Distribution of 

(x/σx, y/σy) for 10 million recorded locations. (B) Simulated distribution of (x/σx, y/σy) for 10 million 

recorded locations. (C) Same as (A), but for the distribution of (x, y). (D) Same as (B), but for the 

distribution of (x, y). (E) The distribution of P(x/σx, 0). (F) Comparison of the real rg distribution and 

simulated rg distribution. 
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Fig. S4. Comparison of the user specific parameters for 50,000 randomly selected users. (A) Real rg 

versus simulated rg. (B) Real principal angle versus simulated principal angle for users with rg >0. (C) 

Real σy/σx versus simulated σy/σx for users with rg >0 and σx>0. (D) The distance between user’s real and 

simulated center of mass positions divided by rg as a function of user’s real rg for rg>1km users. 
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PART 3.  VIRUS SPREADING 

 

I. SI Model 

 

To simulate the infection within a Voronoi lattice associated with the individual towers we use a 

compartment model of infection, in which the population is divided into disjoint classes or 

compartments whose size changes in time. Usually the number of compartments depends on the 

possible states of an infection. Here we assume that the mobile phones can be in only two possible states: 

either infected (I), when they are transmitting the infection or susceptible (S), when they are prone to the 

infection. In our simulations we are interested in the initial spreading process in the absence of recovery 

or antiviral software, so we do not consider the possibility that the phones could recover from the 

infection, a reasonable assumption due to the limited capacity of some handsets for installing antiviral 

software (3), combined with the users’ current lack of concern about the threat of mobile phone viruses 

(4, 5). 

 

In a standard SI model an infected mobile phone can infect a susceptible phone at a rate μ as 

captured by 

S + I 2I
μ

→                                   (S12) 

Thus the number of infected users (I) evolves in time as 

/dI SI N
dt

β=                                                                       (S13) 

We define the effective infection rate as β=μ<k>, given by μ=1/τ, the virus’s infection rate, or the 

inverse of τ (the time that the virus takes to infect a susceptible handset) multiplied by <k>, which is the 

average number of contacts each user has. As described in the following sections, we use empirical 

values of <k> that depend on the particular infection process.  

 

Although nowadays many mobile phone viruses require user confirmation to install (5), in our 

simulations we assume that the virus does not need a user confirmation, corresponding to the worst 

possible spreading scenario. If the virus does need user’s confirmation, we need to randomly remove a 

fraction of users that will not install the virus (will not be infected), which is equivalent with reducing 

the handset’s market share (number of susceptible handsets). 
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II. Simulation of the Bluetooth virus infection process  

 

The empirical dataset offers the user location only with the resolution of the mobile tower’s 

reception area, i.e. we do not know where a user can be found within a given tower’s reception Voronoi 

cell. Therefore, we perform the simulation in two parts, in order to combine the spreading of a virus 

within each tower area with the users’ diffusion between the towers.  

 

Part 1: We run the SI model (S12) for a period of an hour to identify the number of infected users 

within each tower area. The Bluetooth infection process involves establishing a Bluetooth connection 

between the infected and susceptible handsets, transferring the virus file via Bluetooth and installing 

itself on the susceptible handset to start next generation of attack. We use a technically reasonable time 

of τ=0.5 minute as the time to complete this process. The effective infection rate in (S13) depends on 

the user’s average number of contacts <k>. A user’s <k> is defined by Bluetooth communication area A 

and the population density inside a tower’s service area: 

tower

NAk A
A

ρ< >= =                                                                  (S14) 

We define the Bluetooth communication area as A=πr2, where we choose r=10m, representing the 

typical reception range of a Bluetooth device. The population density inside a tower’s service area is 

ρ=N/Atower, where Atower is the tower’s service area, approximated by the area of the Voronoi cell 

surrounding the respective tower and N is the number of users within that area. Because the population 

density in each tower’s service area varies widely (Fig. S8, C and D), the average number of contacts 

per user also varies widely from tower to tower, making the effective infection rate larger in areas with 

higher population density. 

 

Each simulation starts with one randomly chosen infected user at time t=0, where we set time t=0 

as midnight in the first day of observation and the simulation’s unitary time step is defined by the time τ 

that the Bluetooth virus takes to infect a susceptible phone, i.e. 0.5 minute. Hence, the infection rate μ=1 

at each simulation time step. At each step, we calculate how many susceptible users are infected in each 

tower’s service area. For each user, <k>I/N represents the probability that an infected user is within the 

Bluetooth range (if <k> is larger than 1, we set<k>=1, because an infected handset can only establish 

connection with one handset at each time step), thus the number of susceptible users infected in a time 

step is:   
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/ , 1
/ , 1

S k I N k
SI N k

μ
μ
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                                                         (S15) 

 

Part 2: We use the mobility patterns discussed in Section 2.III to identify the location of the users at 

each consecutive hour. Note that the number of users in each Voronoi cell changes from hour to hour, 

consistent with the user mobility patterns. For example, while the business district has many users 

during business hours, it decreases significantly during the night. 

 

By iterating the procedures described in parts 1 and 2, we can capture the spreading of the virus 

across the entire mobile population.  

 

III. Simulation of the MMS virus infection process 

 

Contrarily to Bluetooth viruses, which spread by spatial proximity, a handset infected by an MMS 

virus typically sends a copy of itself to each contact (mobile phone number) found in the handset’s 

phone book, i.e. the virus spreads along the links of the underlying social network, and spatial proximity 

is not required. To simulate the spreading of an MMS virus, we approximate a user’s phone book with 

the list of numbers the user communicated with during one month of observation. We assign the virus to 

a randomly chosen handset, and it will send MMS to all its identified contacts. Newly infected users 

proceed to infect their contacts, so the virus spreads by an iterative process. The MMS service is not an 

instantaneous service, and there is some time delay on receiving a MMS. This delay depends on the 

mobile phone company’s servers and the size of the multimedia files. In our simulation we choose τ=2 

minutes as the time required for a MMS virus to be received by another handset and to install itself. We 

choose each simulation time step as 2 minutes, and set μ=1 and <k>=1. That is, once infected a mobile 

phone can infect sequentially all its Kmax contacts. This scenario is more conservative than infecting all 

Kmax contacts in each time step. Here we also include a plot of the degree distribution with the mean 

degree as 6.08 and variance as 36.68 (Fig. S5). 
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Fig. S5. Degree distribution of the MMS network (Observational period 1 month). 

 

IV. Simulation of the hybrid virus infection process 

 

For hybrid viruses we consider the combined communication via Bluetooth and MMS, and study 

the scenario in which a malware can transmit via both protocols. At each time step, if a handset is 

susceptible, it can be infected by receiving an MMS virus from an infected contact or by another user 

within the Bluetooth range, and after it is infected, it will search the susceptible targets nearby and send 

MMS with the virus to the users in its phonebook. 

 

V. Estimating mc and m (the real market share) 

  

In the manuscript we estimated mc based on the number of phone numbers each user called during 

the previous month, finding it to be approximately mc=0.095, i.e. roughly 10% of the market. This, 

naturally, represents only an approximation. For example, if we increase the observational period from a 

few days to three months, mc decreases to mc=0.051 (see Fig. S6). The question is, what the real value 

of mc, and how does it compare to the market share of the largest OS? 
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Fig. S6. mc vs observational period.  

 

The real value of mc is determined by the number of phone numbers stored in a user’s contact list or 

phone book—which can be much larger or smaller than the numbers the user calls in a one month 

period. Several factors act to decrease mc. For example, here we considered only the degree based on 

calls within the same phone carrier, which has about ¼ market share in the particular country. 

Considering the full user base could further decrease mc. Other effects may increase mc, however, such 

as the viruses’ limited ability to search the phonebook, which would decrease the average degree <k>, as 

it may not successfully find all relevant numbers. Here, without considering the complex components 

described above, we calculate the mc by assuming the observational period as 1 year, comparable to a 

mobile phone’s average life time.  

 

Another important question is related to the need to estimate if the market share of any operating 

system is close to mc. In this section, we discuss different factors that contribute to the fragmentation of 

the smart phone market and show how these relate to the percolation threshold determined by the 

structure of the mobile phone network. 

  

We have identified five factors driving the fragmentation of the smart phone market.  
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(i): The fraction of all mobile phones that are smart phones. It is estimated that 5% of all mobile 

phones are smart phones (3), giving us an upper bound to the total market share that a smart phone 

Operating System (OS) can reach. 

 

(ii): Smart phones use a variety of different OS. Currently the Symbian S60 platform is the most 

common OS variant in operation (6), its market share being larger than 40% among smart phones, 

which translates into a market share of approximately 2% of all mobile phones. 

  

(iii): There are several versions of each OS. The most common OS, the Symbian, has many 

different versions (OS6.0 to OS9.3) and Cabir (7), a virus infecting smart phones with Symbian S60 

platform can infect phones running two versions of this OS (OS6.0 and OS7.0, less than 7% of Symbian 

OS) (8). Another virus called Commwarrior was able to infect only phones running Symbian S60 2.x 

version. New versions of an OS are likely to be protected against the vulnerability exploited by these 

viruses. Hence, different OS versions can further fragment the market share of phones susceptible to a 

given virus.  

 

(iv): Viruses that spread through Bluetooth, can only infect phones that have enabled the Bluetooth 

discovery option. This makes phones that are not open for Bluetooth connection discovery unavailable 

for the spread of these viruses. In principle it is possible to design viruses that can spread to 

undiscoverable devices, yet current viruses do not posses this feature.  

 

(v): All known mobile phone viruses require user installation. While viruses can autonomously 

copy themselves from one device to another, to finish the infection process, users need to install them. 

There are several ways in which virus designers trick users to install them, however, many of which 

having been used in the past.  

 

V. Comparison between hybrid virus and Bluetooth/MMS virus  

 

 We also made additional simulation to compare the spatial spreading pattern of a hybrid virus to 

the spreading pattern defined by Bluetooth and MMS viruses (Fig. S7) confirming that the spatial 

spreading pattern defined by hybrid viruses represents a combination of the spreading patterns defined 

by Bluetooth and MMS viruses.  
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Fig. S7. Spatial spreading pattern defined by Bluetooth, MMS and hybrid viruses. 
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PART 4.  Calculations 

 

I. The latency time preceding a Bluetooth virus outbreak  

 

We define the latency time for a Bluetooth virus as the time when the fraction of the infected users 

is larger than 1%. The latency time depends on the population density (Fig. S8, C and D) where the 

virus is initially located. The average latency time (samples from 988 towers’ service areas) decreases 

with the population density (Fig. S8B), indicating that Bluetooth virus spreads faster if it starts in a place 

with large concentration of users. The latency time can be more than two weeks if the Bluetooth virus is 

released in a very low population density area and it is relative stable when the population density is 

larger than 1000 persons/km2 (Fig. S8B). In our simulation for Bluetooth and hybrid virus’s spread, to 

prevent the long latency time caused by virus starting at a low population neighborhood, we randomly 

select users from tower areas with population density larger than 200 persons/km2 as the virus sources, 

which is reasonable in the real case (it is unlikely that a new virus will be released in a remote area).         

 

II. Theoretical calculation of the giant cluster size 

 

From Ref. (9), 0
0

( ) k
k k

k

F x p q x
∞

=

=∑ , 
1

1( )
k

k kk

kk

kp q x
F x

kp

−

= ∑
∑

                       (S16) 

Where pk is the probability that a randomly chosen vertex has degree k, and qk is the probability that 

a vertex is occupied given that it has degree k, in our case qk=m. 

From Ref. (9), the giant component size: 0 0(1) ( )S F F u= −                                                       (S17)        

with 1 11 (1) ( )u F F u= − +                                                                           (S18) 
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Fig. S8. The distribution of towers’ service areas and Bluetooth virus’s latency time. (A) The 

distribution of towers’ service areas. (B) The average latency time (when I/N>1%) as a function of 

population density where the virus is initially located. (C) The distribution of population density in each 

tower’s service area. (D) Cumulated population density distribution.  

 

III.  Statistical analysis 

 

The purpose of this section is to support our findings with rigorous goodness-of-fit analysis. Three 

figures in the original paper involved fitting process: Fig. 2D, E, and F. For each set of data we present 

parametric models that give the best fit of the data with 95% confidence interval. Using standard curve 

fitting analysis, we evaluate goodness-of-fit statistics for parametric models calculating the sum of 

squares due to error (SSE), the R-square and the root mean squared error (RMSE). In each case we 

report the best fit, given by the minimum SSE. The parameters selected for each fit and the goodness-of-

fit statistics are shown in Tables S1, S2 and S3. 
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Note, however, that the error bars provided by the statistical methods are unreasonably small as 

they represent only fitting errors, and not the potential systematic errors in the data. Therefore in the 

manuscript we report the exponents only up to two digits. 

  

Fit evaluation for Fig. 2D 

 

BT Model a b SSE R-square RMSE 

T0.15 10 10log ( ) log ( )T a m b= +  -0.5953± 0.0364 2.304± 0.039 0.001217 0.9944 0.01233 

T0.65 10 10log ( ) log ( )T a m b= +  -0.633± 0.0452 2.581± 0.048 0.0008072 0.9924 0.01004 

Table S1. Fitting parameters for Fig. 2D. 

 

Fit evaluation for Fig. 2F 

 

L Model a b SSE R-square RMSE 

Lave 10 10log ( ) log ( *)L a m m b= − + -0.1887± 0.017 1.13± 0.022 6.973e-005 0.984 0.002641 
Lmax 10 10log ( ) log ( *)L a m m b= − + -0.1951± 0.0205 1.457± 0.025 6.939e-005 0.9782 0.002634 
Table S2. Fitting parameters for Fig. 2F. 

 

Fit evaluation for Fig. 2E 

 

MMS Model a b SSE R-square RMSE 

T0.05 ( 0.0945)bT a m= −  45.66± 4.92 -0.1956± 0.0159 5908 0.9499 14.03 
T0.15 ( 0.1280)bT a m= −  44.46± 1.93 -0.1699± 0.0059 623.5 0.9933 4.719 
T0.30 ( 0.1777)bT a m= −  46.26± 3.29 -0.1424± 0.0109 1337 0.9641 7.313 
Table S3. Fitting parameters for Fig. 2E. 

 

The statistical analysis indicates a systematic dependence of the exponent controlling the 

divergence of T(q,m) near the critical point on the value of q. Taken on face value, this suggests that the 

longest minimal path length alone does not control the divergence near the critical point. However, this 

conclusion would be premature based on the current data—one would probably require a detailed 

analysis, focusing on model systems, to reach a definitive conclusion.  
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