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What Is a Spatial Database System?

� Geometric, geographic or spatial data: space-related 

data

� Example: Geographic space (2-D abstraction of earth surface), 

VLSI design, model of human brain, 3-D space representing the 

arrangement of chains of protein molecule.

� Spatial database system vs. image database systems

� Image database system: handling digital raster image (e.g., 

satellite sensing, computer tomography

� Spatial database system: handling objects in space that have 

identity and well-defined extents, locations, and relationships.



Modeling Single Objects: Point, Line 
and Region

� Point: location only but not extent

� Line (or a curve usually 

represented by a polyline, a 

sequence of line segment):

� moving through space, or 

connections in space (roads, 

rivers, cables, etc.)

� Region:

� Something having extent in 2D-

space (country, lake, park). It 

may have a hole or consist of 

several disjoint pieces.



Modeling Spatially Related Collections of 
Objects

� A partition: a set of region objects that are required to be disjoint 

(e.g., a thematic map). There exist often pairs of objects with a 

common boundary (adjacency relationship).

� A network: a graph embedded into the plane, consisting of a set of 

point objects, forming its nodes, and a set of line objects describing 

the geometry of the edges, e.g., highways. rivers, power supply 

lines.

� Other interested spatially related collection of objects: nested

partitions, or a digital terrain (elevation) model.



Spatial Data Warehousing

� Spatial data warehouse:  Integrated, subject-oriented,  time-variant, 

and nonvolatile spatial data repository

� Spatial data integration: a big issue

� Structure-specific formats (raster- vs. vector-based, OO vs. relational 

models, different storage and indexing, etc.)

� Vendor-specific formats (ESRI, MapInfo, Integraph, IDRISI, etc.)

� Geo-specific formats (geographic vs. equal area projection, etc.)

� Spatial data cube: multidimensional spatial database

� Both dimensions and measures may contain spatial components



Dimensions and Measures in 
Spatial Data Warehouse

� Dimensions
� non-spatial

� e.g. “25-30 degrees”

generalizes to“hot” (both 

are strings)

� spatial-to-nonspatial

� e.g. Seattle generalizes 

to description “Pacific 

Northwest” (as a string)

� spatial-to-spatial

� e.g. Seattle generalizes 

to Pacific Northwest (as 

a spatial region)

� Measures

� numerical (e.g. monthly revenue of a 

region)

� distributive (e.g. count, sum)

� algebraic (e.g. average)

� holistic (e.g. median, rank)

� spatial

� collection of spatial pointers 

(e.g. pointers to all regions 

with temperature of 25-30 

degrees in July)



Spatial-to-Spatial Generalization

� Generalize detailed 

geographic points into 

clustered regions, such as 

businesses, residential, 

industrial, or agricultural 

areas, according to land 

usage

� Requires the merging of a 

set of geographic areas by 

spatial operations

Dissolve

Merge

Clip

Intersect

Union



Example: British Columbia 
Weather Pattern Analysis

� Input

� A map with about 3,000 weather probes scattered in B.C.

� Daily data for temperature, precipitation, wind velocity, etc.

� Data warehouse using star schema

� Output

� A map that reveals patterns: merged (similar) regions

� Goals

� Interactive analysis (drill-down, slice, dice, pivot, roll-up)

� Fast response time

� Minimizing storage space used

� Challenge

� A merged region may contain hundreds of  “primitive” regions 
(polygons)



Star Schema of the BC Weather 
Warehouse

� Spatial data warehouse

� Dimensions

� region_name

� time

� temperature

� precipitation

� Measurements

� region_map

� area

� count

Fact tableDimension table



Dynamic Merging of Spatial 
Objects

� Materializing (precomputing) all?—too 

much storage space

� On-line merge?—slow, expensive

� Precompute rough approximations?—

accuracy trade off

� A better way: object-based, selective 

(partial) materialization



Spatial Association Analysis

� Spatial association rule: A ⇒ B [s%, c%]

� A and B are sets of spatial or non-spatial predicates

� Topological relations: intersects, overlaps, disjoint, 

etc.

� Spatial orientations: left_of, west_of, under, etc.

� Distance information: close_to, within_distance, etc.

� s% is the support and c% is the confidence of the rule

� Examples

is_a(x, large_town) ^ intersect(x,  highway) →

adjacent_to(x, water)  [7%, 85%]



Progressive Refinement Mining 
of Spatial Association Rules

� Hierarchy of spatial relationship:

� g_close_to: near_by, touch, intersect, contain, etc.

� First search for rough relationship and then refine it

� Two-step mining of spatial association:

� Step 1: Rough spatial computation (as a filter) 

� Using MBR or R-tree for rough estimation

� Step2: Detailed spatial algorithm (as refinement)

� Apply only to those objects which have passed the rough spatial

association test (no less than min_support)



Mining Spatial Co-location

� Spatial autocorrelation: Spatial data tends to be highly 

self-correlated, e.g., neighborhood, temperature

� Items in a traditional data are independent of each 

other, whereas properties of locations in a map are 

often “auto-correlated”

� First law of geography: 

“Everything is related to everything, but nearby things 

are more related than distant things.



Spatial Autocorrelation: Example



Mining Spatial Co-location

� Co-location rule is similar to association rule but explore 

more relying spatial auto-correlation

� No transactions � replaced by spatial proximity of objects

{item1, item2, … }     �

� Objective: extract frequent associations between near objects

� Spatial co-location mining idea can be applied to 

clustering, classification, outlier analysis and other 

potential mining tasks

item1

item3

item2

item1

item4

item1



Mining Spatial Co-location

� Example



� Methods in classification

� Decision-tree classification, Naïve-Bayesian classifier + boosting, neural 

network, logistic regression, etc.

� Association-based multi-dimensional classification

� E.g.: classifying house value based on proximity to lakes & highways

� Assuming learning samples are independent of each other

� Spatial auto-correlation violates this assumption!

� Popular spatial classification methods

� Spatial auto-regression (SAR)

� Markov random field (MRF)

Spatial Classification



Spatial Auto-Regression 

� Linear Regression 

Y=Xβ + ε

� Spatial autoregressive regression (SAR) 

Y = ρWY + Xβ + ε

� W: neighborhood matrix.

� ρ models strength of spatial dependencies

� ε error vector

The estimates of ρ and β can be derived using maximum 

likelihood theory or Bayesian statistics



Spatial Cluster Analysis

� Mining clusters—k-means, k-medoids, 
hierarchical, density-based, etc.

� Analysis of distinct features of the 
clusters



� Function

� Detect changes and trends along a spatial dimension

� Study the trend of non-spatial or spatial data changing with 

space

� Application examples

� Observe the trend of changes of the climate or vegetation with 

increasing distance from an ocean

� Crime rate or unemployment rate change with regard to city geo-

distribution

Spatial Trend Analysis
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Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection
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Why Mining Moving Object Data?

� Satellite, sensor, RFID, and wireless technologies have 

been improved rapidly

� Prevalence of mobile devices, e.g., cell phones, smart 

phones and PDAs

� GPS embedded in cars

� Telemetry attached on animals

� Tremendous amounts of trajectory data of moving objects

� Sampling rate could be every minute, or even every 

second

� Data has been fast accumulated



Why Mining Moving Object Data?

� Large diffusion of mobile devices, mobile services 
and location-based services



Why Mining Moving Object Data?

� Such devices leave digital traces that can be collected to obtrain
trajectories describing the mobility behavior of its owner

� Trajectory: a sequence of the location and timestamp of a moving
object



What is a trajectory

� Trajectories are usually given as spatio-temporal (ST) 

sequences:  <(x1,y1,t1), ..., (xn,yn,tn)>

X

Y

Time

X

Y

≡≡≡≡

(x1,y1,t1)�

(x2,y2,t2)�

(x3,y3,t3)�

(x4,y4,t4)�

(x5,y5,t5)�

(x1,y1,t1)�

(x2,y2,t2)�

(x3,y3,t3)�

(x4,y4,t4)�

(x5,y5,t5)�
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Moving Object Data

� Several domains:

Hurricanes Turtles

Vessels Vehicles



Complexity of the Moving Object Data

� Uncertainty

� Sampling rate could be inconstant: From every few 
seconds transmitting a signal to every few days 

transmitting one

� Data can be sparse: A recorded location every 3 days

� Noise

� Erroneous points (e.g., a point in the ocean) 

� Background

� Cars follow underlying road network

� Animals movements relate to mountains, lakes, ...

� Movement interactions

� Affected by nearby moving objects
29
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Research Impacts

� Moving object and trajectory data mining has many 

important, real-world applications driven by the real need

� Ecological analysis (e.g., animal scientists)

� Weather forecast

� Traffic control

� Location-based services

� Homeland security (e.g., border monitoring)

� Law enforcement (e.g., video surveillance)

� …
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Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection
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Moving Clusters

� A moving cluster is a set of objects that move close to 

each other for a long time interval

� Note: Moving clusters and flock patterns (see later) are 

essentially the same

� Formal Definition [Kalnis et al., SSTD’05]:

� A moving cluster is a sequence of (snapshot) clusters 

c1, c2, …, ck such that for each timestamp i (1 ≤ i < k), 

|ci ∩ ci+1| / |ci U ci+1| ≥ θ (0 < θ ≤ 1)
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Retrieval of Moving Clusters 
(Kalnis et al. SSTD’05)

� Basic algorithm (MC1)

1. Perform DBSCAN for each time slice

2. For each pair of a cluster c and a moving cluster g, 

check if g can be extended by c

� If yes, g is used at the next iteration

� If no, g is returned as a result

� Improvements

� MC2: Avoid redundant checks (Improve Step 2)

� MC3: Reduce the number of executions of DBSCAN 

(Improve Step 1)
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Relative Motion Patterns 
(Laube et al. 04, Gudmundsson et al. 07)

� Flock: At least m entities are within a circular region of radius r and 

they move in the same direction

� Leadership: At least m entities are within a circular region of radius r, 

they move in the same direction, and at least one of the entities 

was already heading in this direction for at least s time steps

� Convergence: At least m entities will pass through the same 

circular region of radius r (assuming they keep their direction)

� Encounter: At least m entities will be simultaneously inside the 

same circular region of radius r (assuming they keep their speed and 

direction)
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Relative Motion Patterns 
(Laube et al. 04, Gudmundsson et al. 07)

� Flock (m > 1, r > 0): At least m entities are within a circular region of 

radius r and they move in the same direction

An example of a flock pattern for p1, p2, and p3 at 8th time step; also a 

leadership pattern with p2 as the leader
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Relative Motion Patterns 
(Laube et al. 04, Gudmundsson et al. 07)

� Leadership (m > 1, r > 0, s > 0) At least m entities are within a 

circular region of radius r, they move in the same direction, and at 

least one of the entities was already heading in this direction for 

at least s time steps

36

An example of leadership pattern with p2 as the leader
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Relative Motion Patterns 
(Laube et al. 04, Gudmundsson et al. 07)

A convergence pattern if m = 4 for p2, p3, p4, and p5

� Convergence (m > 1, r > 0) At least m entities will pass through the 

same circular region of radius r (assuming they keep their direction)

� Encounter (m > 1, r > 0). Variant: at least m entities will be 

simultaneously inside the same circular region of radius r

(assuming they keep their speed and direction)
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Complexity of Moving Relationship 
Pattern Mining

� Algorithms: Exact and approximate algorithms are 

developed

� Flock: Use the higher-order Voronoi diagram

� Leadership: Check the leader condition additionally

� …

(Length t is multiplicative factor in all time bounds)
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An Extension of Flock Patterns 
(Gudmundsson et al. GIS’06, Benkert et al. SAC’07)

� A new definition considers multiple time steps, whereas 

the previous definition only one time step

� Flock: A flock in a time interval I, where the duration of I

is at least k, consists of at least m entities such that for 

every point in time within I, there is a disk of radius r that 

contains all the m entities

� e.g.,

A flock through 3 time steps
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Computing Flock Patterns

� Approximate flocks

� Convert overlapping segments of length k to points in a 

2k-dimensional space

� Find 2k-d pipes that contain at least m points

� Longest duration flocks

� For every entity v, compute 

a cylindrical region and

the intervals from the 

intersection of the cylinder

� Pick the longest one



Convoy: An Extension of Flock Pattern
(Jeung et al. ICDE’08 & VLDB’08)
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� Flock pattern has rigid definition with a circle
� Convoy use density-based clustering at each timestamp



Efficient Discovery of Convoys

� Base-line algorithm:

� Calculate density-based clusters for each timestamp

� Overlap clusters for every k consecutive timestamps

� Speedup algorithm using trajectory simplification

� Trajectory simplification

42



A Filter-and-Refine Framework for 
Convoy Mining

� Filter-and-refine framework

� Filter: partition time into λ-size time slot; a trajectory is 
transformed into a set of segments; density-based 

clustering on segments.

� Refine: Look into every λ-size time slot, refine the 

clusters based on points.  

43
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An Extension of Leadership Patterns
(Andersson et al. GeoInformatica 07)

� Leadership: if there is an entity that is a leader of at least 

m entities for at least k time units

� An entity ej is said to be a leader at time [tx, ty] for time-

points tx, ty, if and only if ej does not follow anyone at 

time [tx, ty], and ej is followed by sufficiently many 

entities at time [tx, ty]

ei follows ej

||di – dj|| ≤ β

ei

ej
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Reporting Leadership Patterns

� Algorithm: Build and use the follow-arrays

e.g., Store nonnegative integers specifying for how many 

past consecutive unit-time-intervals ej is following ei (ej ≠ ei)



Swarms: A Relaxed but Real, 
Relative Movement Pattern

� Flock and convoy all require k 

consecutive time stamps (still very 
rigid definition)

� Moving objects may not be close to 

each other for consecutive time 

stamps (need to relax time 

constraint)

46



Discovery of Swarm Patterns

� A system that mines moving object patterns:  Z. Li, et al., 

“MoveMine: Mining Moving Object Databases", 
SIGMOD’10 (system demo)

� Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: Mining 

Relaxed Temporal Moving Object Clusters”, in submission

← Convoy discovers 

only restricted 

patterns 

Swarm

discovers more 

patterns →
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Trajectory Pattern Mining 
(Giannotti et al. KDD 07)

� A trajectory pattern should describe the movements of 

objects both in space and in time
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Trajectory (T-) Patterns: Definition

� A Trajectory Pattern (T-pattern) is a couple (s,α):

� s = <(x0,y0),..., (xk,yk)> is a sequence of k+1 locations

� α = <α1,..., αk> are the transition times (annotations)

also written as:

(x0,y0) → (x1,y1) → …… → (xk,yk)

� A T-pattern Tp occurs in a trajectory if the trajectory 

contains a subsequence S such that:

� Each (xi,yi) in Tp matches a point (xi’,yi’) in S, and 

the transition times in Tp are similar to those in S

α1 α2 αk



T-Pattern: approximate occurrence

� Two points match if one falls within a spatial 

neighborhood N() of the other

� Two transition times match if their temporal 

difference is ≤ τ

� Example:
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Characteristics of Trajectory-Patterns

� Routes between two consecutive regions are not relevant

� Absolute times are not relevant

A B

These two movements are not discriminated

1 hour

1 hour

A B

These two movements are not discriminated

1 hour at 5 p.m.

1 hour at 9 a.m.



Finding regions
A usage-based heuristic

1. Impose a regular grid over space

2. Find dense cells (i.e., touched by many trajs.)�

3. Coalesce cells into rectangles of bounded size
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Sample Trajectory-Patterns

Data Source: Trucks in Athens – 273 trajectories)

A�B�B and
A�B’ � B’’
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Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection
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Spatiotemporal Periodic Pattern 
(Mamoulis et al. KDD 04)

� In many applications, objects follow the same routes 

(approximately) over regular time intervals

� e.g., Bob wakes up at the same time and then follows, 

more or less, the same route to his work everyday

Day 1:

Day 2:

Day 3:
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Period and Periodic Pattern

� Let S be a sequence of n spatial locations, {l0, l1, …, ln-1}, 

representing the movement of an object over a long 

history

� Let T << n be an integer called period, and T is given

� A periodic pattern P is defined by a sequence r0r1…rT-1 of 

length T that appears in S by more than min_sup times

� For every ri in P, ri = * or lj*T+i is inside ri



Periodic Patterns of Moving objects

� Periodic behavior is the intrinsic behavior for most moving objects

� Yearly migration of birds

� Fly to south for winter, fly back to north for summer

� People’s daily routines

� Go to office at 9:00am, back home around 6:00pm

� Detecting periodic behavior is useful for:

� Summarizing over long historical movement

� People’s behavior could be summarized as some daily 
behavior and weekly behavior

� Predicting future movement

� E.g., predict the location at the future time (next day, next 
week, or next year)

� Help detect abnormal events

� A bird does not follow its usual migration path ⇒ a signal of 

environment change

57



Challenges of Periodic Pattern Mining

58

interleaved periodsinterleaved periods

multiple periodsmultiple periods different locationsdifferent locations



A Motivating Example: Trajectories of Bees

Bee and Flower:

8 hours stays in the nest

16 hours fly nearby 

59



FFT Transformation Does Not Work

60

(x,y) => x-yi (x,y) => y-xi

FFT should have strongest power at 42.7 (T = 24, NFFT/T = 1024/24 = 42.7)
Failed!

Transform (x,y) into complex plane (two ways to transform)



Observation/Reference Spot: The Nest

61

not in 

the nest

in the nest

Period is more obvious in this binary 

sequence!



Algorithm General Framework

� Detecting periods: Use observation spots to find multiple 

interleaved periods

� Observation spots are detected using density-based 
method

� Periods are detected for each obs. spot using Fourier 

Transform and auto-correlation

� Summarizing periodic behaviors: via clustering

� Give the statistical explanation of the behavior

� E.g., “David has 80% probability to be at the office.”

62



Example: Finding Observation Spots

63

Density Observation spots
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Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection



Clustering: Distance-Based vs. Shape-Based

� Distance-based clustering: Find a group of objects moving together 

� For whole time span

� high-dimensional clustering

� probabilistic clustering

� For partial continuous time span

� density-based clustering

� moving cluster, flock, convoy (borderline case between 

clustering and patterns)

� For partial discrete time span

� swarm (borderline case between clustering and patterns) 

� Shape-based clustering: Find similar shape trajectories

� Variants of shape: translation, rotation, scaling, and transformation

� Sub-trajectory clustering 

65



High-Dimensional Clustering & Distance Measures

� Treat each timestamp as one dimension

� Many high-dimensional clustering methods can be applied 

to cluster moving objects

� Most popular high-dimensional distance measure

� Euclidean distance

� Dynamic Time Warping

� Longest Common Subsequence

� Edit Distance with Real Penalty

� Edit Distance on Real Sequence

66



High-Dimensional Distance Measures

Distance Measure Local 

Time 

Shifting

Noise Metric Complexity

Euclidean ⇒ O(n)

DTW (Yi et al., ICDE’98) ⇒ O(n2)

LCSS (Vlachos et al., KDD’03) ⇒ ⇒ O(n2)

ERP (Chen et al., VLDB’04) ⇒ ⇒ O(n2)

EDR (Chen et al., SIGMOD’05) ⇒ ⇒
(consider 

gap)

O(n2)

67
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Probabilistic Trajectory Clustering 
(Gaffney et al., KDD’00; Chudova et al., KDD’03)

� Basic assumption: Data produced in the following generative manner

� An individual is drawn randomly from the population of interest

� The individual has been assigned to a cluster k with probability wk,                      

these are the prior weights on the K clusters 

� Given that an individual belongs to a cluster k, there is a density function 

fk(yj | θk) which generates an observed data item yj for the individual j

� The probability density function of observed trajectories is a mixture density

� fk(yj | xj, θk) is the density component

� wk is the weight, and θk is the set of parameters for the k-th component

� θk and wk can be estimated from the trajectory data using the Expectation-

Maximization (EM) algorithm

∑ =
=

K

k
kw

1
,1

P(yj | xj,θ) = fk(yj | xj,θk)wk

k

K

∑
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Tracks Atlantic named Tropical Cyclones 1970-2003.

TRACKS

Mean Regression

Trajectory

Clustering Results For Hurricanes 
(Camargo et al. 06)
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Density-Based Trajectory Clustering 
(M. Nanni & D. Pedreschi, JIIS’06)

� Define the distance between whole trajectories

� A trajectory is represented as a sequence of location 
and timestamp

� The distance between trajectories is the average 

distance between objects for every timestamp

� Use the OPTICS algorithm for trajectories

� e.g.,

X
Y

Time

Four clusters

Reachability Plot
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Temporal Focusing: TF-OPTICS
(M. Nanni & D. Pedreschi, JIIS’06)

� In a real environment, not all time intervals have the same importance

� e.g., in rush hours, many people move from home to work or vice versa

� TF-OPTICS aims at searching the most meaningful time intervals, which 

allows us to isolate the clusters of higher quality

� Method:  

� Define the quality of a clustering

� Take account of both high-density clusters and low-density noise

� Can be computed directly from the reachability plot

� Find the time interval that maximizes the quality

1. Choose an initial random time interval

2. Calculate the quality of neighborhood intervals generated by increasing 

or decreasing the starting or ending times

3. Repeat Step 2 as long as the quality increases



Temporal Focusing: TF-OPTICS
(M. Nanni & D. Pedreschi, JIIS’06)
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Trajectory Clustering: A Partition-and-
Group Framework (Lee et al., SIGMOD’07)

� Existing algorithms group trajectories as a whole ⇒ They might not be 

able to find similar portions of trajectories

� e.g., common behavior cannot be discovered since TR1~TR5 move 

to totally different directions

� Partition-and-group: discovers common sub-trajectories

� Usage: Discover regions of special interest

� Hurricane Landfall Forecasts: Discovery of common behaviors of 

hurricanes near the coastline or at sea (i.e., before landing)

� Effects of Roads and Traffic on Animal Movements: Discover 

common behaviors of animals near the road

A common sub-trajectory
TR2

TR3
TR5

TR1

TR4
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Partition-and-Group: Overall Procedure

� Two phases: partitioning and grouping

TR5

TR1

TR2

TR3

TR4

A set of trajectories

A set of line segments

A cluster

(1) Partition

(2) Group

A representative trajectory

Note: A representative trajectory is a common sub-trajectory
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Grouping Phase (1/2)

� Find the clusters of trajectory partitions using density-

based clustering (i.e., DBSCAN)

� A density-connect component forms a cluster, e.g., 

{ L1, L2, L3, L4, L5, L6 }

L1
L3

L5
L2

L4

L6

L6  L5 L3 L1 L2 L4

MinLns = 3
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Grouping Phase (2/2)

� Describe the overall movement of the trajectory partitions 

that belong to the cluster

A red line: a representative trajectory, 

A blue line: an average direction vector, 

Pink lines: line segments in a density-connected set



77

Example: Trajectory Clustering Results

570 Hurricanes (1950~2004)

Seven clusters discovered from 

the hurricane data set

Red line: a representative trajectory

Two clusters discovered 

from a deer data set
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Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection



Location Prediction for Moving Objects

� Predicting future location

� Based on its own history of one moving object

� Linear (not practical) vs. non-linear motion (more 

practical)

� Vector based (predict near time, e.g., next minute) 

vs. pattern based (predict distant time, e.g., next 

month/year)

� Based on all moving objects’ trajectories

� based on frequent patterns
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Recursive Motion Function 
(Tao et al., SIGMOD’04)

� Non-linear model, near time prediction, vector-based method

� Linear model is not practical in prediction, so better to use non-linear 

model

80

� Recursive motion function

Ci is a constant matrix expressing several 

complex movement types, including 

polynomials, ellipse, sinusoids, etc. 

� Use basic motion matrices to model 

unknown motion matrices



Prediction Using Frequent Trajectory 
Patterns (Monreale et al., KDD’09)

� Use frequent T-patterns of other moving objects

� If many moving objects follow a pattern, it is likely that a moving 

object will also follow this pattern

� Method

� Mine T-Patterns

� Construct T-Pattern Tree

� Predict using T-pattern tree

81

T-Patterns
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Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection
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Trajectory Classification

� Task: Predict the class labels of moving objects based on 

their trajectories and other features

� Two approaches

� Machine learning techniques

� Studied mostly in pattern recognition, bioengineering, 

and video surveillance

� The hidden Markov model (HMM)

� Trajectory-based classification (TraClass): Trajectory 

classification using hierarchical region-based and 

trajectory-based clustering
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Vehicle Trajectory Classification 
(Fraile and Maybank 98)

� The measurement sequence is divided into overlapping 

segments

� In each segment, the trajectory of the car is approximated 

by a smooth function and then assigned to one of four 

categories: ahead, left, right, or stop

� The list of segments is reduced to a string of symbols 

drawn from the set {a, l, r, s} 

� The string of symbols is classified using the hidden 

Markov model (HMM)
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Motion Trajectory Classification 
(Bashir et al. 07)

� Motion trajectories

� Tracking results from video trackers, sign language data 

measurements gathered from wired glove interfaces, and so on

� Application scenarios

� Sport video (e.g., soccer video) analysis

� Player movements ⇒ A strategy

� Sign and gesture recognition

� Hand movements ⇒ A particular word

� The HMM-Based Algorithm

1. Trajectories are segmented at points of change in curvature

2. Sub-trajectories are represented by their Principal Component 

Analysis (PCA) coefficients

3. The PCA coefficients are represented using a GMM for each class

4. An HMM is built for each class, where the state of the HMM is a 

sub-trajectory and is modeled by a mixture of Gaussians
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TraClass: Trajectory Classification 
Based on Clustering

� Motivation

� Discriminative features are likely to appear at parts of 

trajectories, not at whole trajectories

� Discriminative features appear not only as common 

movement patterns, but also as regions

� Solution

� Extract features in a top-down fashion, first by region-

based clustering and then by trajectory-based 

clustering
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Intuition and Working Example

� Parts of trajectories near the container port and near the 

refinery enable us to distinguish between container ships 

and tankers even if they share common long paths

� Those in the fishery enable us to recognize fishing boats 

even if they have no common path there
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Class-Conscious Trajectory Partitioning

1. Trajectories are partitioned based on their shapes as in 

the partition-and-group framework

2. Trajectory partitions are further partitioned by the class 
labels

� The real interest here is to guarantee that trajectory 

partitions do not span the class boundaries

Additional partitioning points

Non-discriminative              Discriminative

Class A

Class B
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Region-Based Clustering

� Objective: Discover regions that have trajectories mostly 

of one class regardless of their movement patterns
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Trajectory-Based Clustering

� Objective: Discover sub-trajectories that indicate common 

movement patterns of each class

� Algorithm: Extend the partition-and-group framework for 

classification purposes so that the class labels are 

incorporated into trajectory clustering

� If an ε-neighborhood contains trajectory partitions 

mostly of the same class, it is used for clustering; 

otherwise, it is discarded immediately
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Overall Procedure of TraClass

1. Partition trajectories

2. Perform region-based clustering

3. Perform trajectory-based clustering

4. Select discriminative trajectory-based clusters

5. Convert each trajectory into a feature vector

� Each feature is either a region-based cluster or a 

trajectory-based cluster

� The i-th entry of a feature vector is the frequency that 

the i-th feature occurs in the trajectory

6. Feed feature vectors to the SVM
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Data (Three Classes)

Features:

10 Region-Based Clusters

37 Trajectory-Based Clusters

Accuracy = 83.3%

Example: Extracted Features



93

Mining Moving Object Data

� Introduction

� Movement Pattern Mining

� Periodic Pattern Mining

� Clustering

� Prediction

� Classification

� Outlier Detection
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Trajectory Outlier Detection

� Task: Detect the trajectory outliers that are grossly different 

from or inconsistent with the remaining set of trajectories

� Methods and philosophy:

1. Whole trajectory outlier detection

� A unsupervised method

� A supervised method based on classification

2. Integration with multi-dimensional information

3. Partial trajectory outlier detection

� A Partition-and-Detect framework
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Outlier Detection: A Distance-Based 
Approach (Knorr et al. VLDBJ00)

� Define the distance between two whole trajectories

� A whole trajectory is represented by

� The distance between two whole trajectories is defined as

� Apply a distance-based approach to detection of trajectory outliers

� An object O in a dataset T is a DB(p, D)-outlier if at least fraction p

of the objects in T lies greater than distance D from O
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Sample Trajectory Outliers

� Detect outliers from person trajectories in a room

The entire data set The outliers only
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Use of Neural Networks (Owens and Hunter 00)

� A whole trajectory is encoded to a feature vector: F = [ x, 

y, s(x), s(y), s(dx), s(dy), s(|d2x|), s(|d2y|) ]

� s() indicates a time smoothed average of the quantity

� dx = xt – xt–1

� d2x = xt – 2xt–1 + xt–2

� A self-organizing feature map (SOFM) is trained using the 

feature vectors of training trajectories, and a new 

trajectory is classified into novel (i.e., suspicious) or not 

novel

� Supervised learning
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An Application: Video Surveillance

� Training dataset: 206 normal trajectories

� Test dataset: 23 unusual and 16 normal trajectories

� Classification accuracy: 92%

An example of a normal 

trajectory

An unusual trajectory; 

The unusual points are 

shown in black
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Anomaly Detection (Li et al. ISI’06, SSTD’07)

� Automated alerts of 
abnormal moving 
objects

� Current US Navy 
model: manual 
inspection

� Started in the 1980s

� 160,000 ships
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Conditional Anomalies and Motif 
Representations

� Raw analysis of collected data 

does not fully convey “anomaly”
information

� More effective analysis relies on 

higher semantic features

� Examples:

� A speed boat moving quickly 
in open water

� A fishing boat moving slowly 

into the docks

� A yacht circling slowly around 
landmark during night hours

� Motif representation

a sequence of motifs

with motif attributes
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Motif-Oriented Feature Space

� Each motif expression has attributes (e.g., speed, location, size, time)

� Attributes express how a motif was expressed

� A right-turn at 30mph near landmark Y at 5:30pm

� A straight-line at 120mph (!!!) in location X at 2:01am

� Motif-Oriented Feature Space 

� Naïve feature space

1. Map each distinct motif-expression to a feature

2. Trajectories become feature vectors in the new space 

� Let there be A attributes attached to every motif, each trajectory is 

a set of motif-attribute tuples

{(mi, v1, v2, …, vA), …, (mj, v1, v2, …, vA)}

� Example:

� Object 1: {(right-turn, 53mph, 3:43pm)} → (1, 0)

� Object 2: {(right-turn, 50mph, 3:47pm)} → (0, 1)
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Motif Feature Extraction

� Intuition: Should have features that describe general 

high-level concepts

� “Early Morning” instead of 2:03am, 2:04am, …

� “Near Location X” instead of “50m west of Location X”

� Solution: Hierarchical micro-clustering 

� For each motif attribute, cluster values to form higher 

level concepts

� Hierarchy allows flexibility in describing objects

� e.g., “afternoon” vs. “early afternoon” and “late 

afternoon”
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Trajectory Outlier Detection: A Partition-

and-Detect Framework (Lee et al. 08)

� Existing algorithms compare trajectories as a whole �

They might not be able to detect outlying portions of 

trajectories

� e.g., TR3 is not detected as an outlier since its overall 

behavior is similar to those of neighboring trajectories

� The partition-and-detect framework is proposed to 

detect outlying sub-trajectories

TR5

TR1

TR4TR3

TR2

An outlying sub-trajectory
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Experiments: Sample Detection Results

13 outliers detected from the hurricane 

data

Three outliers found from the Elk Data
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Summary: Moving Object Mining

� Pattern Mining

� Trajectory patterns, flock and leadership patterns, periodic 

patterns, 

� Clustering

� Probabilistic method, density-based method, partition-and-group 

framework

� Prediction

� linear/non-linear model, vector-based method, pattern-based 

method

� Classification

� Machine learning-based method, HMM-based method, TraClass

using collaborative clustering

� Outlier Detection

� Unsupervised method, supervised method, partition-and-detect 

framework
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