Sequential Pattern Mining

Frequent patterns for sequences

From itemsets to sequences

- Frequent itemsets and association rules focus on transactions and the items that appear there
- Databases of transactions usually have a temporal information
- Sequential patter exploit it
- Example data:
- Market basket transactions
- Web server logs
- Tweets
- Workflow production logs

Frequent patterns

Events or combinations of events that appear frequently in the data
 E.g. items bought by customers of a supermarket

Frequent patterns

Frequent itemsets w.r.t. minimum threshold
E.g. with Min_freq $=5$

Frequent patterns

Complex domains
Frequent sequences (a.k.a. Sequential patterns) Input: sequences of events (or of groups)

-

(-)

Frequent patterns

Complex domains

Objective: identify sequences that occur frequently

- Sequential pattern: $\{\infty\rangle\} \Rightarrow$)

Sequence Data

Sequence Database:

Object	Timestamp	Events
A	10	$2,3,5$
A	20	6,1
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$7,8,1,2$
B	28	1,6
C	14	$1,8,7$

Timeline

Terminology

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

- A sequence is an ordered list of elements (transactions)

$$
s=\left\langle e_{1} e_{2} e_{3} \ldots\right\rangle
$$

- Each element is attributed to a specific time or location
- Each element contains a collection of events (items)

$$
e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Formal Definition of a Sequence

- Example

$$
S=<\{A, B\},\{B, E, F\},\{A\},\{E, F, H\}>
$$

- Length of $\mathrm{s}:|\mathrm{s}|=4$ elements
- s is a 9 -sequence
- Times associated to elements:
- $\{\mathrm{A}, \mathrm{B}\} \rightarrow$ time $=0$
- $\{B, E, F\} \rightarrow$ time $=120$
- $\{\mathrm{A}\} \rightarrow$ time $=130$
- $\{\mathrm{E}, \mathrm{F}, \mathrm{H}\} \rightarrow$ time $=200$

Sequences without explicit time info

- Default: time of element = position in the sequence
- Example

$$
S=<\{A, C\}, \quad\{E\}, \quad\{A, F\}, \quad\{E, G, H\}>
$$

- Default times associated to elements:
- $\{\mathrm{A}, \mathrm{C}\} \rightarrow$ time $=0$
- $\{E\} \rightarrow$ time $=1$
- $\{\mathrm{A}, \mathrm{F}\} \rightarrow$ time $=2$
- $\{\mathrm{E}, \mathrm{G}, \mathrm{H}\} \rightarrow$ time $=3$

Examples of Sequence

- Web sequence:
$<$ \{Homepage\} \{Electronics\} \{Digital Cameras\} \{Canon Digital Camera\} \{Shopping Cart\} \{Order Confirmation\} \{Return to Shopping\} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)
$<$ \{clogged resin \& outlet valve closure\} \{loss of feedwater\} \{condenser polisher outlet valve shut\} \{booster pumps trip\} \{main waterpump trips \& main turbine trips \& reactor pressure increases\}>

Complex elements

- Sequence of books checked out at a library:
<\{Fellowship of the Ring\} \{The Two Towers\} \{Return of the King\}>

Singleton elements

Formal Definition of a Subsequence

- A sequence $<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $<b_{1} b_{2} \ldots b_{m}>(m \geq n)$ if there exist integers $i_{1}<i_{2}<\ldots<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 1}, \ldots, a_{n} \subseteq b_{\text {in }}$

Data sequence
$<\{2,4\}\{3,5,6\}\{8\}>$
$<\{1,2\}\{3,4\}>$
$<\{2,4\}\{2,4\}\{2,5\}>$

Subsequence
$<\{2\}\{3,5\}>$
$<\{1\}\{2\}>$
$<\{2\}\{4\}>$

Contain?
Yes
No
Yes

Formal Definition of Sequential Pattern

- The support of a subsequence w
- is the fraction of data sequences that contain w
subsequence w:
 \{D\}

Input sequences:

	(AA) C \}
\{D\}	
	[A.C\}
\{D\}	\{B,C $\}$
0	1
A	uential pattern

- is a frequent subsequence
- i.e., a subsequence whose support is \geq minsup

Formal Definition of Sequential Pattern

- Remark: a subsequence (i.e. a candidate pattern) might be mapped into a sequence in several different ways
- Each mapping is an instance of the subsequence
- In mining sequential patterns we need to find only one instance

$\mathrm{I}_{1}=1, \mathrm{I}_{2}=2, \mathrm{I}_{3}=5$

$\{B, E\}$

$\mathrm{I}_{1}=1, \mathrm{I}_{2}=4, \mathrm{I}_{3}=5$

Exercises

- find instances/occurrence of the following patterns

$$
\begin{aligned}
& <\{\mathrm{C}\}\{\mathrm{H}\}\{\mathrm{C}\}> \\
& <\{\mathrm{A}\}\{\mathrm{F}\}> \\
& <\{\mathrm{A}\}\{\mathrm{A}\}\{\mathrm{D}\}> \\
& <\{\mathrm{A}\}\{\mathrm{A}, \mathrm{~B}\}\{\mathrm{F}\}>
\end{aligned}
$$

- in the input sequence below

$$
<\underset{\mathrm{t}=0}{\{\mathrm{~A}, \mathrm{C}\}} \underset{\mathrm{t}=1}{\{\mathrm{C}, \mathrm{D}\}} \quad \underset{\mathrm{t}=2}{\{\mathrm{~F}, \mathrm{H}\}} \underset{\mathrm{t}=3}{\{\mathrm{~A}, \mathrm{~B}\}} \underset{\mathrm{t}=4}{\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}} \underset{\mathrm{t}=5}{\{\mathrm{E}\}} \underset{\mathrm{t}=6}{\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}} \underset{\mathrm{t}=7}{\{\mathrm{~F}\}}>
$$

Exercises

- find instances/occurrence of the following patterns

$$
\begin{aligned}
& <\{\mathrm{C}\}\{\mathrm{H}\}\{\mathrm{C}\}> \\
& <\{\mathrm{A}\}\{\mathrm{B}\}> \\
& <\{\mathrm{C}\}\{\mathrm{C}\}\{\mathrm{E}\}> \\
& <\{\mathrm{A}\}\{\mathrm{E}\}>
\end{aligned}
$$

- in the input sequence below

Sequential Pattern Mining: Definition

- Given:
- a database of sequences
- a user-specified minimum support threshold, minsup
- Task:
- Find all subsequences with support \geq minsup

Sequential Pattern Mining: Challenge

- Trivial approach: generate all possible ksubsequences, for $\mathrm{k}=1,2,3, \ldots$ and compute support
- Combinatorial explosion!
- With frequent itemsets mining we had:
- N . of k -subsets $=\binom{n}{k}$
$n=n$. of distinct items in the data
- With sequential patterns:
- N . of k -subsequences $=n^{k}$
- The same item can be repeated:
- $<\{A\}\{A\}\{B\}\{A\} \ldots>$

Sequential Pattern Mining: Challenge

- Even if we generate them from input sequences
- E.g.: Given a n-sequence: < \quad a b $\}$ \{c d e\} $\{f\}\{g h i\}$
- Examples of subsequences:

$$
<\{a\}\{c d\}\{f\}\{g\}>,<\{c d e\}>,<\{b\}\{g\}>, \text { etc. }
$$

- Number of k-subsequences can be extracted from it

$$
\begin{aligned}
& <\{a \mathrm{~b}\}\{\mathrm{c} d \mathrm{e}\}\{\mathrm{f}\}\{\mathrm{gh} \mathrm{~h}\}>\mathrm{n}=9 \\
& k=4 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Answer : } \\
& \binom{n}{k}=\binom{9}{4}=126
\end{aligned}
$$

Sequential Pattern Mining: Example

Object	Timestam \mathbf{p}	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

$$
\text { Minsup }=50 \%
$$

Examples of Frequent Subsequences:

$$
\begin{array}{ll}
<\{1,2\}> & \mathrm{s}=60 \% \\
<\{2,3\}> & \mathrm{s}=60 \% \\
<\{2,4\}> & \mathrm{s}=80 \% \\
<\{3\}\{5\}> & \mathrm{s}=80 \% \\
<\{1\}\{2\}> & \mathrm{s}=80 \% \\
<\{2\}\{2\}> & \mathrm{s}=60 \% \\
<\{1\}\{2,3\}> & \mathrm{s}=60 \% \\
<\{2\}\{2,3\}> & \mathrm{s}=60 \% \\
<\{1,2\}\{2,3\}> & \mathrm{s}=60 \%
\end{array}
$$

Generalized Sequential Pattern (GSP)

- Follows the same structure of Apriori
- Start from short patterns and find longer ones at each iteration
- Based on "Apriori principle" or "anti-monotonicity of support"
- If one sequence S1 is contained in sequence S2, then the support of S2 cannot be larger than that of S1:

$$
S_{1} \subseteq S_{2} \Rightarrow \sup \left(S_{1}\right) \geq \sup \left(S_{2}\right)
$$

- Intuitive proof
- Any input sequence that contains S2 will also contain S1

Generalized Sequential Pattern (GSP)

- Follows the same structure of Apriori
- Start from short patterns and find longer ones at each iteration
- Step 1:
- Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found:

- Candidate Generation:
- Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
- Prune candidate k-sequences that contain infrequent ($k-1$)-subsequences
- Support Counting:
- Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
- Eliminate candidate k-sequences whose actual support is less than minsup

Extracting Sequential Patterns

- Given n events: $i_{1}, i_{2}, i_{3}, \ldots, i_{n}$
- Candidate 1 -subsequences:

$$
\left.\left.\left\langle\left\{i_{1}\right\}>,<\left\{i_{2}\right\}\right\rangle,<\left\{i_{1}\right\}\right\rangle, \ldots,<\left\langle i_{n}\right\}\right\rangle
$$

- Candidate 2-subsequences:

$$
\left\langle\left\{i_{1}, i_{2}\right\}>,\left\langle\left\{i_{1}, i_{3}\right\}>, \ldots,<\left\{i_{1}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}\right\}\left\{i_{2}\right\}>, \ldots,<\left\{i_{n-1}\right\}\left\{i_{n}\right\}\right\rangle\right.
$$

- Candidate 3-subsequences:

$$
\begin{gathered}
<\left\{i_{1}, i_{2}, i_{3}\right\}>,<\left\{i_{1}, i_{2}, i_{4}\right\}
\end{gathered}>, \ldots,<\left\{i_{1}, i_{2}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}, i_{2}\right\}\left\{i_{2}^{2}\right\}>, \ldots,
$$

- Remark: events within a element are ordered YES: $<\left\{i_{1}, i_{2}, i_{3}\right\}>N O:<\left\{i_{3}, i_{1}, i_{2}\right\}>$

Candidate Generation

- Base case (k=2):
- Merging two frequent 1 -sequences $<\left\{i_{1}\right\}>$ and $<\left\{i_{2}\right\}>$ will produce two candidate 2-sequences: <\{i, $\}\left\{i_{2}\right\}>$ and $<\left\{i_{1} i_{2}\right\}>$
- Special case: i_{1} can be merged with itself: $\left\langle\left\{i_{1}\right\}\left\{i_{1}\right\}>\right.$
- General case ($\mathrm{k}>2$):
- A frequent $(k-1)$-sequence w_{1} is merged with another frequent (k-1)-sequence w_{2} to produce a candidate k-sequence if the subsequence obtained by removing the first event in \mathbf{w}_{1} is the same as the one obtained by removing the last event in \mathbf{w}_{2}
- The resulting candidate after merging is given by the sequence w_{1} extended with the last event of w_{2}.
- If last two events in w_{2} belong to the same element $=>$ last event in w_{2} becomes part of the last element in $w_{1}: \quad<\{d\}\{a\}\{b\}>+<\{a\}\{b, c\}>=<\{d\}\{a\}\{b, c\}>$
- Otherwise, the last event in w_{2} becomes a separate element appended to the end of w_{1} : $<\{\mathrm{a}, \mathrm{d}\}\{\mathrm{b}\}>+<\{\mathrm{d}\}\{\mathrm{b}\}\{\mathrm{c}\}>=<\{\mathrm{a}, \mathrm{d}\}\{\mathrm{b}\}\{\mathrm{c}\}>$
- Special case: check if w_{1} can be merged with itself
- Works when it contains only one event type: $<\{a\}\{a\}>+<a\}\{a\}>=<\{a\}\{a\}\{a\}>$

Candidate Generation Examples

- Merging the sequences $w_{1}=<\{1\}\{23\}\{4\}>$ and $w_{2}=<\{23\}\{45\}>$ will produce the candidate sequence $<\{1\}\{23\}\{45\}>$ because the last two events in $w_{2}(4$ and 5$)$ belong to the same element
- Merging the sequences
$w_{1}=<\{1\}\{23\}\{4\}>$ and $w_{2}=<\{23\}\{4\}\{5\}>$
will produce the candidate sequence < \{1\} \{2 3\} \{4\} \{5\}> because the last two events in $w_{2}(4$ and 5$)$ do not belong to the same element
- We do not have to merge the sequences $\mathrm{w}_{1}=<\{1\}\{26\}\{4\}>$ and $\mathrm{w}_{2}=<\{1\}\{2\}\{45\}>$ to produce the candidate $<\{1\}\{26\}\{45\}>$
- Notice that if the latter is a viable candidate, it will be obtained by merging w_{1} with < $\{26\}\{45\}>$

Candidate Pruning

- Based on Apriori principle:
- If a k -sequence W contains a ($\mathrm{k}-1$)-subsequence that is not frequent, then W is not frequent and can be pruned
- Method:
- Enumerate all (k-1)-subsequence:
- $\{a, b\}\{c\}\{d\} \rightarrow\{b\}\{c\}\{d\},\{a\}\{c\}\{d\},\{a, b\}\{d\},\{a, b\}\{c\}$
- Each subsequence generated by cancelling 1 event in W
- \quad Number of ($k-1$)-subsequences $=k$
- Remark: candidates are generated by merging two "mother" (k-1)subsequences that we know to be frequent
- Correspond to remove the first event or the last one
- Number of significant ($\mathrm{k}-1$)-subsequences to test $=\mathrm{k}-2$
- Special cases: at step $k=2$ the pruning has no utility, since the only ($k-1$)subsequences are the "mother" ones

GSP Example

Frequent

 3 -sequences$$
\begin{aligned}
& <\{1\}\{2\}\{3\}> \\
& <\{1\}\{25\}> \\
& <\{1\}\{5\}\{3\}> \\
& <\{2\}\{3\}\{4\}> \\
& <\{25\}\{3> \\
& <\{3\}\{4\}\{5\}> \\
& <\{5\}\{34\}>
\end{aligned}
$$

$$
\begin{aligned}
& \text { Candidate } \\
& \text { Generation } \\
& <\{1\}\{2\}\{3\}\{4\}> \\
& <\{1\}\{25\}\{3\}> \\
& <\{1\}\{5\}\{34\}> \\
& <\{2\}\{3\}\{4\}\{5\}> \\
& <\{25\}\{34\}> \\
& \text { Candidate } \\
& \text { Pruning } \\
& <\{1\}\{25\}\{3\}>
\end{aligned}
$$

GSP Exercise

- Given the following dataset of sequences

ID	Sequence				
1	a b	\rightarrow	a	\rightarrow	b
2	b	\rightarrow	a	\rightarrow	c d
3	a	\rightarrow	b		
4	a	\rightarrow	a	\rightarrow	b d

- Generate sequential patterns if min_sup = 35\%

GSP Exercise - solution

Sequential pattern					Support
a					100 \%
b					100 \%
d					50 \%
a	\rightarrow	a			50 \%
a	\rightarrow	b			75 \%
a	\rightarrow	d			50 \%
b	\rightarrow	a			50 \%
a	\rightarrow	a	\rightarrow	b	50 \%

Timing Constraints

Motivation by examples:

- Sequential Pattern \{milk\} \rightarrow \{cookies\}
- It might suggest that cookies are bought to better enjoy milk
- Yet, we might obtain it even if all customers by milk and after 6 months buy cookies, in which case our interpretation is wrong
- $\{$ cheese $A\} \rightarrow$ \{cheese B $\}$
- Does it mean that buying and eating cheese A induces the customer to try also cheese B (e.g. by the same brand)?
- Maybe, yet if they are bought within 20 minutes it is like that they were to be bought together (and the customer forgot it)
- $\{$ buy PC\} \rightarrow \{buy printer\} \rightarrow \{ask for repair\}
- Is it a good or bad sign?
- It depends on how much time the whole process took:
- Short time => issues, Long time => OK, normal life cycle

Timing Constraints

- Define 3 types of constraint on the instances to consider
- E.g. ask that the pattern instances last no more than 30 days

\rightarrow Each element of the pattern instance must be at most x_{g} time after the previous one
\rightarrow Each element of the pattern instance must be at least n_{g} time after the previous one
$\mathbf{m}_{\mathbf{s}}:$ maximum span \rightarrow The overall duration of the pattern instance must be at most m_{s}
$x_{g}=2, n_{g}=0, m_{s}=4 \quad \rightarrow \quad$ consecutive elements at most distance 2 \& overall duration at most 4 time units

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{6\}\{5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1\}\{4\}>$	No
$<\{1\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{2\}\{3\}\{5\}>$	Yes
$<\{1,2\}\{3\}\{2,3\}\{3,4\}\{2,4\}\{4,5\}>$	$<\{1,2\}\{5\}>$	No

Mining Sequential Patterns with Timing Constraints

- Approach 1:
- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns
- Dangerous: might generate billions of sequential patterns to obtain only a few time-constrained ones
- Approach 2:
- Modify GSP to directly prune candidates that violate timing constraints
- Question:
- Does Apriori principle still hold?

Apriori principle with time constraints

- Case 1: max-span
- Intuitive check
- Does any input sequence that contains S2 will also contain S1 ?

- When S1 has less elements, S1 span can (only) decrease
- If S2 span is OK, then also S1 span is OK

Apriori principle with time constraints

- Case 2: min-gap
- Intuitive check
- Does any input sequence that contains S2 will also contain S1 ?

- When S1 has less elements, gaps for S1 can (only) increase
- If S2 gaps are OK, they are OK also for S1

Apriori principle with time constraints

- Case 3: max-gap
- Intuitive check
- Does any input sequence that contains S2 will also contain S1?

- When S1 has less elements, gaps for S1 can (only) increase
- Happens when S1 has lost an internal element w.r.t. S2
- Even if S2 gaps are OK, S1 gaps might grow too large w.r.t. max-gap

Apriori Principle for Sequence Data

Object	Timestam \mathbf{p}	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Suppose:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{g}}=1 \text { (max-gap) } \\
& \mathrm{n}_{\mathrm{g}}=0(\text { min-gap }) \\
& \mathrm{m}_{\mathrm{s}}=5 \text { (maximum span) } \\
& \text { minsup }=60 \% \\
& <\{2\}\{5\}>\text { support }=40 \% \\
& \text { but } \\
& <\{2\}\{3\}\{5\}>\text { support }=60 \%
\end{aligned}
$$

Problem exists because of max-gap constraint
No such problem if max-gap is infinite

Contiguous Subsequences

- s is a contiguous subsequence of

$$
\left.w=\left\langle e_{1}\right\rangle\left\langle e_{2}\right\rangle \ldots<e_{k}\right\rangle
$$

if any of the following conditions hold:

1. s is obtained from w by deleting an item from either e_{1} or e_{k}
2. s is obtained from w by deleting an item from any element e_{i} that contains more than 2 items

Key point: avoids internal "jumps"
3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)

Not interesting
for our usage

- Examples: $\mathrm{s}=<\{1\}\{2\}>$
- is a contiguous subsequence of

$$
<\{1\}\{23\}>,<\{12\}\{2\}\{3\}>, \text { and }<\{34\}\{12\}\{23\}\{4\}>
$$

$-\quad$ is not a contiguous subsequence of

$$
<\{1\}\{3\}\{2\}>\text { and }<\{2\}\{1\}\{3\}\{2\}>
$$

Modified Candidate Pruning Step

- Without maxgap constraint:
- A candidate k-sequence is pruned if at least one of its ($k-1$)-subsequences is infrequent
- With maxgap constraint:
- A candidate k-sequence is pruned if at least one of its contiguous ($k-1$)-subsequences is infrequent
- Remark: the "pruning power" is now reduced
- Less subsequences to test for "killing" the candidate
- Question: what is the "pruning power" when all elements are singletons?

Other kinds of patterns for sequences

- In some domains, we may have only one very long time series
- Example:
- monitoring network traffic events for attacks
- monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
- Now we have to count "instances", but which ones?
- This problem is also known as frequent episode mining

```
Pattern: <E1> <E3>
```


General Support Counting Schemes

Object's Timeline

