Sequential Pattern Mining

Lecture Notes for Chapter 7 – Introduction to Data Mining Tan, Steinbach, Kumar

From itemsets to sequences

- Frequent itemsets and association rules focus on transactions and the items that appear there
- Databases of transactions usually have a temporal information
 - Sequential patter exploit it
- Example data:
 - Market basket transactions
 - Web server logs
 - Tweets
 - Workflow production logs

Sequence Data

Sequential Pattern Mining

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

© Tan, Steinbach, Kumar

Sequential Pattern Mining

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$S = < e_1 e_2 e_3 \dots >$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

Each element is attributed to a specific time or location

- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

© Tan,Steinbach, Kumar

Examples of Sequence

Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

 < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>

Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

• A sequence $\langle a_1 a_2 \dots a_n \rangle$ is contained in another sequence $\langle b_1 b_2 \dots b_m \rangle$ (m \geq n) if there exist integers $i_1 \langle i_2 \rangle \dots \langle i_n \rangle$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, *minsup*
- Task:
 - − Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:
- <{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.
- How many k-subsequences can be extracted from a given n-sequence?

© Tan, Steinbach, Kumar

Sequential Pattern Mining

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >	s=60%
< {2,3} >	s=60%
< {2,4}>	s=80%
< {3} {5}>	s=80%
< {1} {2} >	s=80%
< {2} {2} >	s=60%
< {1} {2,3} >	s=60%
< {2} {2,3} >	s=60%
< {1,2} {2,3} >	s=60%

 find instances/occurrence of the following patterns

> $\{C\}\{H\}\{C\}>$ $\{A\}\{F\}>$ $\{A\}\{A\}\{D\}>$ $\{A\}\{A,B\}\{F\}>$

in the input sequence below

 find instances/occurrence of the following patterns

 $\{C\} \{H\} \{C\} > \{A\} \{B\} > \{C\} > \{C\} \{C\} \{E\} > \{C\} \{C\} \{C\} \{E\} > \{A\} \{E\} > \{C\} \{E\} < \{C\} \{E\} > \{C\} \{E\} < \{C\} \{E\} > \{C\} \{E\} < \{C\} < \{C\} \{E\} < \{C\} <$

In the input sequence below

Extracting Sequential Patterns

• Given n events: $i_1, i_2, i_3, \dots, i_n$

Candidate 1-subsequences:
 <{i₁}>, <{i₂}>, <{i₃}>, ..., <{i_n}>

- Candidate 2-subsequences:
 <{i₁, i₂}>, <{i₁, i₃}>, ..., <{i₁} {i₁}>, <{i₁} {i₂}>, ..., <{i_{n1}} {i_n}>
- Candidate 3-subsequences: $\{i_1, i_2, i_3\}>, \{i_1, i_2, i_4\}>, \dots, \{i_1, i_2\} \{i_1\}>, \{i_1, i_2\} \{i_2\}>, \dots, \{i_1\} \{i_1, i_2\}>, \{i_1\} \{i_1, i_2\}>, \{i_1\} \{i_1, i_3\}>, \dots, \{i_1\} \{i_1\} \{i_1\}>, \{i_1\} \{i_1\} \{i_2\}>, \dots$

Generalized Sequential Pattern (GSP)

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

Base case (k=2):

- Merging two frequent 1-sequences <{i₁}> and <{i₂}> will produce two candidate 2-sequences: <{i₁} {i₂}> and <{i₁ i₂}>
- General case (k>2):
 - A frequent (*k*-1)-sequence w₁ is merged with another frequent (*k*-1)-sequence w₂ to produce a candidate *k*-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂

• The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2 .

- If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
- Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

 Merging the sequences w₁=<{1} {2 3} {4}> and w₂ =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w₂ (4 and 5) belong to the same element

- Merging the sequences w₁=<{1} {2 3} {4}> and w₂ =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w₂ (4 and 5) do not belong to the same element
- We do not have to merge the sequences w₁ =<{1} {2 6} {4}> and w₂ =<{1} {2} {4 5}> to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w₁ with < {1} {2 6} {5}>

GSP Example

GSP Exercise

Given the following dataset of sequences

ID		Sequence				
1	a b	\rightarrow	а	\rightarrow	b	
2	b	\rightarrow	а	\rightarrow	c d	
3	а	\rightarrow	b			
4	а	\rightarrow	а	\rightarrow	b d	

Generate sequential patterns if min_sup = 35%

	S	eque	ntial p	attern	Support
а					100 %
b					100 %
d					50 %
а	\rightarrow	а			50 %
а	\rightarrow	b			75 %
а	\rightarrow	d			50 %
b	\rightarrow	а			50 %
а	\rightarrow	а	\rightarrow	b	50 %

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

 $x_g = 2, n_g = 0, m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No
© Tan,Steinbach, Kumar	Sequential Pattern Mining	20

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question:
 - Does Apriori principle still hold?

Object	Timestamp	Events
А	1	1,2,4
A	2	2,3
A	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Suppose:

- $x_g = 1 (max-gap)$
- $n_g = 0$ (min-gap)
- $m_s = 5$ (maximum span)

minsup = 60%

<{2} {5}> support = 40% but <{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Sequential Pattern Mining

Contiguous Subsequences

s is a contiguous subsequence of

 $w = \langle e_1 \rangle \langle e_2 \rangle \dots \langle e_k \rangle$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e_1 or e_k
- 2. s is obtained from w by deleting an item from any element e, that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of
 < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of
 < {1} {3} {2}> and < {2} {1} {3} {2}>

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2, n_g = 0, ws = 1, m_s = 5$$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

© Tan, Steinbach, Kumar

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - Any data sequences that contain

will contribute to the support count of candidate pattern

Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining

Pattern: <E1> <E3>

General Support Counting Schemes

