PRIVACY IN DATA MINING

Anna Monreale Università di Pisa

Knowledge Discovery and Delivery Lab (ISTI-CNR & Univ. Pisa) www-kdd.isti.cnr.it

Our digital traces

- We produce an unthinkable amount of data while running our daily activities.
- How can we manage all these data? Can we get an added value from them?

Big Data: new, more carefully targeted financial services

Mobility atlas of many cities

Big Data Analytics & Social Mining

The main tool for a Data Scientist to measure, understand, and possibly predict human behavior

Data Scientist needs to take into account ethical and legal aspects and social impact of data science

Anonymization vs Pseudonimization

- Pseudonymization and Anonymization are two distinct terms often confused
- Anonymized data and pseudonymized data fall under very different categories in the regulation
- Anonymization guarantees data protection against the (direct and indirect) data subject re-identification
- Pseudonymization substitutes the identity of the data subject in such a way that additional information is required to re-identify the data subject

Pseudonymization

Substitute an **identifier** with a surrogate value called **token**

Substitute unique names, fiscal code or any attribute that identifies uniquely individuals in the data

Example of Pseudonymization

Name	Gender	DoB	ZIP Code	Diagnosis	
Anna Verdi	F	1962	300122	Cancro	
Luisa Rossi	F	1960	300133	Gastrite	
Giorgio Giallo	Μ	1950	300111	Infarto	
Luca Nero	Μ	1955	300112	Emicrania	
Elisa Bianchi	F	1965	300200	Lussazione	
Enrico Rosa	Μ	1953	300115	Frattura	

ID	Gender	DoB	ZIP CODE	DIAGNOSIS
11779	F	1962	300122	Cancro
12121	F	1960	300133	Gastrite
21177	Μ	1950	300111	Infarto
41898	М	1955	300112	Emicrania
56789	F	1965	300200	Lussazione
65656	Μ	1953	300115	Frattura

Properties of a Surrogate Value

- Irreversible without private information
- Distinguishable from the original value

Is Pseudonymization enough for data protection?

Pseudonymized data are still Personal Data!!

Massachussetts' Governor

- Sweeney managed to re-identify the medical record of the governor of Massachussetts
 - MA collects and publishes sanitized medical data for state employees (microdata) left circle
 - voter registration list of MA (publicly available data) right circle
 - looking for governor's record
 - join the tables:
 - 6 people had his birth date
 - 3 were men
 - 1 in his zipcode

Latanya Sweeney: *k-Anonymity: A Model for Protecting Privacy.* International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)

Linking Attack

Governor: birth date = 1950, CAP = 300111

ID	Gender	DoB	ZIP	DIAGNOSIS	
1	F	1962	300122	Cancro	
3	F	1960	300133	Gastrite	
2	М	1950	300111	Infarto	
4	Μ	1955	300112	Emicrania	
5	F	1965	300200	Lussazione	
6	Μ	1953	300115	Frattura	

Which is the disease of the Governor?

Making data anonymous

K anonymisy Governor: Birth Date = 1950, CAP = 300111

ID	Gender	DoB	ZIP	DIAGNOSIS
1	F	[1960-1956]	300***	Cancro
3	F	[1960-1956]	300***	Gastrite
2	Μ	[1950-1955]	30011*	Infarto
4	Μ	[1950-1955]	30011*	Emicrania
5	F	[1960-1956]	300***	Lussazione
6	Μ	[1950-1955]	30011*	Frattura

Which is the disease of the Governor?

Ontology of Privacy in Data Mining Privacy Corporate (or Individual secrecy)

15

Attribute classification

Identifiers	C	Sensitive		
ID	Gender	Gender DoB		DIAGNOSIS
1	F	- 1962 3		Cancro
3	F	1960	300133	Gastrite
2	М	1950	300111	Infarto
4	М	1955	300112	Emicrania
5	F	1965	300200	Lussazione
6	М	1953	300115	Frattura

K-Anonymity

- k-anonymity hides each individual among k-1 others
 - each QI set should appear at least k times in the released data
 - linking cannot be performed with confidence > 1/k
- How to achieve this?
 - Generalization: publish more general values, i.e., given a domain hierarchy, roll-up
 - Suppression: remove tuples, i.e., do not publish outliers. Often the number of suppressed tuples is bounded
- Privacy vs utility tradeoff
 - do not anonymize more than necessary
 - Minimize the distortion

Vulnerability of K-anonymity

ID	Gender	DoB	ZIP	DIAGNOSIS	
1	F	1962	300122	Cancro	
3	F	1960	300133	Gastrite	
2	Μ	1950	300111	Infarto	
4	Μ	1950	300111	Infarto	
5	Μ	1950	300111	Infarto	
6	Μ	1953	300115	Frattura	

/-Diversity

- Principle
 - Each equivalence class has at least / well-represented sensitive values
- Distinct *I*-diversity
 - Each equivalence class has at least / distinct sensitive values

ID	Gender	DoB	ZIP	DIAGNOSIS	
1	F	1962	300122	Cancro	
3	F	1960	300133	Gastrite	
2	М	1950	300111	Infarto	
4	М	1950	300111	Emicrania	
5	Μ	1950	300111	Lussazione	
6	Μ	1953	300115	Frattura	

K-Anonymity

- Samarati, Pierangela, and Latanya Sweeney. "Generalizing data to provide anonymity when disclosing information (abstract)." In PODS '98.
- Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)
- Machanavajjhala, Ashwin, Daniel Kifer, Johannes Gehrke, and Muthuramakrish- nan Venkitasubramaniam. "*I*-diversity: Privacy beyond *k*-anonymity." *ACM Trans. Knowl. Discov. Data* 1, no. 1 (March 2007): 24.
- Li, Ninghui, Tiancheng Li, and S. Venkatasubramanian. "t-Closeness: Privacy Beyond k-Anonymity and I-Diversity." ICDE 2007.

Randomization

Original values x₁, x₂, ..., x_n

- from probability distribution X (unknown)

• To hide these values, we use $y_1, y_2, ..., y_n$

- from probability distribution Y
 - Uniform distribution between $[-\alpha, \alpha]$
 - Gaussian, normal distribution with $\mu = 0, \sigma$
- Given
 - $-x_1+y_1, x_2+y_2, ..., x_n+y_n$
 - the probability distribution of Y

Estimate the probability distribution of X.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of SIGMOD 2000.

Randomization Approach Overview

Differential Privacy

 The risk to my privacy should not increase as a result of participating in a statistical database

- Add noise to answers such that:
 - Each answer does not leak too much information about the database
 - Noisy answers are close to the original answers

Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12

Attack

Name	Has Diabetes
Alice	yes
Bob	no
Mark	yes
John	yes
Sally	no
Jack	yes

- 1) how many persons have Diabetes? **4**
- 2) how many persons, excluding Alice, have Diabetes? 3
- So the attacker can infer that Alice has Diabetes.
- Solution: make the two answers similar
- 1) the answer of the first query could be 4+1 = 5
- 2) the answer of the second query could be 3+2.5=5.5

Differential Privacy

Randomization

- R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of SIGMOD 2000.
- D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining algorithms. In Proceedings of PODS, 2001.
- W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving data mining. In Proceedings of SIGKDD 2003.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In Proceedings of PODS 2003.
- A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of association rules. In Proceedings of SIGKDD 2002.
- K. Liu, H. Kargupta, and J. Ryan. Random Projection-based Multiplicative Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on Knowledge and Data Engineering (TKDE), VOL. 18, NO. 1.
- K. Liu, C. Giannella and H. Kargupta. An Attacker's View of Distance Preserving Maps for Privacy Preserving Data Mining. In Proceedings of PKDD'06

Differential Privacy

- Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12
- Cynthia Dwork: The Promise of Differential Privacy: A Tutorial on Algorithmic Techniques. FOCS 2011: 1-2
- Cynthia Dwork: Differential Privacy in New Settings. SODA 2010: 174-183

Ontology of Privacy in Data Mining

Privacy-aware Knowledge Sharing

- What is disclosed?
 - the intentional knowledge (i.e. rules/patterns/models)
- What is hidden?
 - the source data
- The central question:

"do the data mining results themselves violate privacy \H

Privacy-aware Knowledge Sharing

Association Rules can be dangerous...

A: Age = 27, Postcode = 45254, Religion=Christian \Rightarrow Country=American (support = 758, confidence = 99.8%)

B: Age = 27, Postcode = $45254 \Rightarrow$ Country=American (support = 1053, confidence = 99.9%)

Since *sup(rule) / conf(rule) = sup(premise)* we can derive:

Age = 27, Postcode = 45254, Country=not American (support = 1)

Age = 27, Postcode = 45254, Country=not American, Religion=Christian (support = 1)

Age = 27, Postcode = 45254, Country=not American ⇒ Religion=Christian (support = 1, confidence=1100%)

This information refers to my France neighbor.... he is Christian!

How to solve this kind of problems?

The scenario

Privacy-aware Knowledge Sharing

- M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results violate privacy? In Proceedings of the tenth ACM SIGKDD, 2004.
- S. R. M. Oliveira, O. R. Zaiane, and Y. Saygin. Secure association rule sharing. In Proc.of the 8th PAKDD, 2004.
- P. Fule and J. F. Roddick. Detecting privacy and ethical sensitivity in data mining results. In Proc. of the 27° conference on Australasian computer science, 2004.
- Maurizio Atzori, Francesco Bonchi, Fosca Giannotti, Dino Pedreschi: Anonymity preserving pattern discovery. VLDB J. 17(4): 703-727 (2008)
- A. Friedman, A. Schuster and R. Wolff. *k*-Anonymous Decision Tree Induction. In Proc. of PKDD 2006.

New Regulation

- Privacy by Design
- Privacy Risk Assessment

Privacy by design Methodology

- The framework is designed with assumptions about
 - The **sensitive data** that are the subject of the analysis
 - The **attack model**, i.e., the knowledge and purpose of a malicious party that wants to discover the sensitive data
 - The target analytical questions that are to be answered with the data
- Design a privacy-preserving framework able to
 - transform the data into an anonymous version with a quantifiable privacy guarantee
 - guarantee that the analytical questions can be answered correctly, within a quantifiable approximation that specifies the data utility

Privacy Risk Assessment

Privacy-by-Design in Big Data Analytics

Privacy risk measures

Probability of re-identification denotes the probability to correctly associate a record to a unique identity, *given* a BK

Risk of re-identification is the maximum probability of reidentification *given* a set of BK

Risk and Coverage (RaC) curve

- A diagram of coverage (% of data preserved) at varying values of risk
- Concept has analogies with ROC curves.
- Each curve can be summarized by a single measure, e.g. AUC (area under the curve) – the closer to 1, the better

 $RAC_U \rightarrow$ for each risk value, quantifies the percentage of users in U having that risk

 $RAC_{D} \rightarrow$ for each risk value, quantifies the data in D covered by <u>only</u> users having at most that risk

The approach

Generalize from exemplary set of services (data, query, requirements, BK, risk)

Key issue: the language of BK – how to specifies the set of possible attacks

Several kinds of data in each domain. Ex in **mobility**:

- presence (individual frequent locations)
- trajectory (individual movements)
- road segment (collective frequent links)
- profiles (individual systematic movements)
- individual call profiles (from CDR data)

Data Statistics

Area Covered: 726 Km²

Number of trajectories: 247.633 Number of users: 10.355 Temporal window: 1 month

Only active users are selected: at least 7 trajectories in 1 month.

Number of trajectories: 235.306 Number of active users: 3.780 Temporal window: 1 month

Data description

For each user, list of locations (grid cells) that the user has frequently visited (#visit>threshold)

User_id, Cell id

Blue: <B2,5>,<D3,4>,<C3,3>,<A1,2>,<D1,2> Green: <D1,4>,<D3,3>,<C2,2>,<C3,2> Orange: <C2,3>,<B3,2> Purple: <B2,4>,<D3,3>,<D1,2>

Pink: <C2,3>,<B3,2>

Data Dimensions

Grid size: defines the granularity of the spatial information released about each user

Frequency threshold: defines a filter on the data DO can distribute

Spatial granularity used: Grids (cell side): 250, 500 and 750 meters

Frequency threshold: 1, 4, 7, 10, 13

The attacker knows some location(s) with minimum frequencies

Background Knowledge Dimensions:

- Number of locations known (h = 1, 2, 3)
- Minimum frequency associate to the known locations (100% of original freq, 50% of original freq, only presence)
 E.g., Mr. Smith was seen once in A1 and 3 times in D3

Simulation Attack Model

Empirical Privacy Risk Assessment

- Defining a set of attacks based on common data formats
- Simulates these attacks on experimental data to calculate privacy risk

Time complexity is a problem!

Attack Simulation

Tabular data

Background knowledge:

- 1. Gender, DoB, Zip
- 2. Gender, DoB
- 3. Gender, Zip
- 4. DoB, Zip
- 5. Gender
- 6. DoB
- 7. Zip

ID	Gender	DoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancro
3	F	1960	300133	Gastrite
2	Μ	1950	300111	Infarto
4	Μ	1950	300111	Infarto
5	Μ	1950	300111	Infarto
6	М	1953	300115	Frattura

Background knowledge:

Sequences and Trajectories

All the possible sub-sequences!

 $<\!\!\text{loc}_1,\,t_1\!\!><\!\!\text{loc}_2,\,t_2\!\!><\!\!\text{loc}_3,\,t_3\!\!><\!\!\text{loc}_4,\,t_4\!\!><\!\!\text{loc}_5,\,t_4\!\!>$

DATA MINING APPROACH

- Using classification techniques to predict the privacy risks of individuals.
- 1. Simulate the risk of each individual *R*
- 2. Extract from the dataset a set of individual features *F*
- 3. Construct a training dataset (F,R)
- 4. Learning a classifier/regressor to predict the risk/risk level

For each new user extracting **Features** and using the classifier to predict the risk

Experiments on Mobility Data

symbol	name	structures	attacks		
V	visits				
\overline{V}	daily visits		LOCATION		
D_{max}	max distance	trajectory	LOCATION SEQUENCE		
D_{sum}	sum distances		VISIT		
\overline{D}_{sum}	D_{sum} per day		VISII		
D_{max}^{trip}	D_{max} over area	trajectory location set	*		
Locs	distinct locations	frequency vector	FREQUENT LOCATION		
$Locs_{ratio}$	Locs over area	frequency vector location set	FREQUENT LOC. SEQUENCE		
R_{g}	radius of gyration	probability vostor			
E	mobility entropy	probability vector	DROBA BIL ITY		
E_i	location entropy	probability vector probability vector dataset	FRODADILITI		
U_i	individuals per lo-				
	cation	frequency vector	FREQUENCY		
U_i^{ratio}	U_i over individuals	frequency vector,	PROPORTION		
w_i	location frequency	nequency vector dataset	HOME AND WORK		
w_i^{pop}	w_i over overall fre-				
	quency				
\overline{w}_i	daily location fre-				
	quency				

Datasets

- GPS provided by Octo-Telematics May 2011, Tuscany
- . Two datasets:
 - Florence: 9715 trajectories
 - Pisa: 2280 trajectories
- Classification:
 - Random Forest Classifier
 - Evaluation by accuracy of classification and weighted average F-measure

	configuration	n	Flore	Florence Pisa		sa	$\mathbf{FI} ightarrow \mathbf{PI}$		$\mathbf{PI} ightarrow \mathbf{FI}$	
			ACC	F	ACC	F	ACC	F	ACC	F
		k=2	0.94	0.94	0.93	0.93	0.93	0.92	0.93	0.93
sit	locations with	k=3	0.94	0.94	0.93	0.93	0.93	0.93	0.93	0.93
Vis	timestamps	k = 4	0.94	0.94	0.93	0.93	0.93	0.93	0.92	0.92
-		k = 5	0.94	0.94	0.92	0.92	0.93	0.93	0.91	0.92
	avg ba	aseline	0.82	0.81	0.81	0.80				
cy		k=2	0.90	0.89	0.83	0.82	0.79	0.79	0.76	0.70
len	locations	k=3	0.94	0.93	0.89	0.89	0.84	0.86	0.83	0.79
nbe	with frequencies	k = 4	0.92	0.93	0.89	0.89	0.85	0.86	0.85	0.85
Fre		k = 5	0.93	0.93	0.89	0.89	0.71	0.73	0.85	0.82
	avg ba	aseline	0.53	0.53	0.41	0.41				
ΜH	two most frequent locations		0.62	0.59	0.57	0.54	0.57	0.55	0.51	0.49
	avg ba	aseline	0.37	0.37	0.28	0.29				
g		k=2	0.93	0.92	0.86	0.86	0.87	0.87	0.85	0.81
tic	locations without	k=3	0.95	0.95	0.91	0.91	0.87	0.87	0.87	0.82
ca	sequence	k = 4	0.95	0.95	0.91	0.91	0.89	0.89	0.89	0.86
Γ		k = 5	0.95	0.95	0.91	0.91	0.89	0.90	0.87	0.85
	avg ba	aseline	0.57	0.56	0.44	0.44				
S S		k=2	0.93	0.92	0.88	0.87	0.88	0.87	0.86	0.83
en.	locations with	k=3	0.94	0.94	0.88	0.89	0.90	0.89	0.73	0.66
eq	sequence	k = 4	0.94	0.94	0.89	0.89	0.85	0.87	0.86	0.82
Se Se		k = 5	0.93	0.94	0.89	0.89	0.90	0.90	0.86	0.83
	avg ba	aseline	0.58	0.57	0.46	0.45				
n nt		k=2	0.81	0.79	0.71	0.69	0.73	0.74	0.65	0.62
tic	locations without	k=3	0.86	0.85	0.8	0.78	0.81	0.81	0.75	0.72
eq	sequence	k = 4	0.87	0.86	0.81	0.79	0.83	0.83	0.79	0.75
F ol		k = 5	0.87	0.87	0.81	0.8	0.82	0.83	0.78	0.75
	avg ba	aseline	0.65	0.65	0.56	0.55				

Measure importance

	Florence		Pisa			Florence		Pisa	
	measure impo.		measure	impo.		measure	impo.	measure	impo.
1	\overline{V}	3.66	$Locs_{ratio}$	3.24	15	U_2^{ratio}	0.96	U_2^{ratio}	0.92
2	E	2.92	D_{sum}	3.22	16	U_n	0.88	U_n	0.88
3	D_{sum}	2.75	\overline{V}	2.87	17	w_n^{pop}	0.83	r_g	0.87
4	$Locs_{ratio}$	2.51	E	2.62	18	E_n	0.79	E_n	0.79
5	V	1.91	V	1.69	19	E_2	0.74	E_2	0.75
6	w_1^{pop}	1.77	Locs	1.66	20	D_{max}	0.68	w_n^{pop}	0.73
7	Locs	1.67	w_1^{pop}	1.62	21	D_{max}^{trip}	0.63	D_{max}^{trip}	0.67
8	U_1	1.44	U_1	1.46	22	r_g	0.61	D_{max}	0.58
9	U_1^{ratio}	1.32	U_1^{ratio}	1.40	23	w_1	0.42	\overline{w}_1	0.48
10	\overline{D}_{sum}	1.19	U_2	1.16	24	\overline{w}_2	0.40	w_1	0.44
11	U_2	1.12	U_n^{ratio}	1.09	25	\overline{w}_1	0.36	\overline{w}_2	0.36
12	w_2^{pop}	1.07	w_2^{pop}	1.07	26	w_n	0.13	w_n	0.15
13	E_1	1.05	E_1	1.06	27	\overline{w}_n	0.12	w_2	0.13
14	U_n^{ratio}	0.99	\overline{D}_{sum}	0.98	28	w_2	0.10	\overline{w}_n	0.13

Privacy by Design in Mobility Atlas

A. Monreale, G. Andrienko, N. Andrienko, F. Giannotti, D. Pedreschi, S. Rinzivillo *The Journal Transactions on Data Privacy, 2010*

Knowledge Discovery and Delivery Lab (ISTI-CNR & Univ. Pisa) www-kdd.isti.cnr.it

Privacy-Preserving Framework

- Anonymization of movement data while preserving clustering
- Trajectory Linking Attack: the attacker
 - knows some points of a given trajectory
 - and wants to infer the whole trajectory
- Countermeasure: method based on
 - spatial generalization of trajectories
 - k-anonymization of trajectories

Trajectory Generalization

- Given a trajectory dataset
 - 1. Partition of the territory into Voronoi cells
 - 2. Transform trajectories into sequence of cells

Partition of territory: Characteristic points

Characteristic points extraction:

- Starts (1)
- Ends (2)
- Points of significant turns (3)
- Points of significant stops, and representative points from long straight segments (4)

Partition of territory: spatial clusters

- Group the extracted points in Spatial Clusters with desired spatial extent
- MaxRadius: parameter to determine the spatial extent and so the degree of the generalization

Partition of territory: Voronoi Tessellation

- Partition the territory into Voronoi cells
- The centroids of the spatial clusters used as generating points

Generation of trajectories

- Divide the trajectories into segments that link Voronoi cells
- □ For each trajectory:
 - the area a₁ containing its first point p₁ is found
 - The following points are checked
 - If a point p_i is not contained in a₁ for it the containing area a₂ is found
 and so on ...
- Generalized trajectory: From sequence of areas to sequence of centroids of areas

Generalization vs k-anonymity

- Generalization could not be sufficient to ensure k-anonymity:
 - For each generalized trajectory there exist at least others k-1 different people with the same trajectory?
- Two transformation strategies
 - KAM-CUT
 - publishing only the k-frequent prefixes of the generalized trajectories
 - KAM-REC
 - recovering portions of trajectories which are frequent at least k times
 - without introducing noise

KAM-CUT Approach

- The prefix tree is anonymized w.r.t. a threshold k
 - all the trajectories whose support is less than k are pruned from the prefix tree

KAM-REC Approach

- The prefix tree is anonymized w.r.t. a threshold k
 - all the trajectories with support less than k are pruned from the prefix tree and put into a list
 - A subtrajectory is recovered and appended to the root if
 - appears in the prefix tree
 - appears in at least k different trajectories in the list

KAM-REC: Example

Clustering on Anonymized Trajectories

Probability of re-identification: k=16

Known Positions	Probability of re-identification
1 position	98% trajectories have a P <= 0.03 (K=30)
2 positions	98% of trajectories have a P <= 0.05 (K=20)
4 positions	99% of trajectories have a P <= 0.06 (K=17)