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Services Towards Corporate Users

Geomarketing




I Problem definition

Based on the trajectories of a sample of
population, what is the best place to open

a new shop / mall ?




I The “best” place

Experts' knowledge: best place to open a mall is
where people pass during everyday activities

$

Area crossed by road segments with a high
frequency of systematic travels of people



Systematic movements

Step 1: Map-matching group A ouph 4
e See users' movements as [> W A
roup B /
sequences of road T
r 7 ,f’

segments.

group C

Step 2: Mobility profiles

« Select only systematic
movements.

User’s
systematic
movement:
L1 -»L2




I Frequently visited road
segments

« Aggregate systematic movements by road
segments

« Set a threshold to select the frequent ones
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Candidate areas for a mall

Using a spatial clustering we can extract cluster
of frequent road segments which are spatially
close each other.

* Distance of 2 segments ) ot

« Compare vertices

* Draw clusters as convex hu
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Temporal evolution

Repeat this process for each hour of the day
and analyze how they evolve

6:00' ~ 7:00 . 8:00 ~ 9:00
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Services Towards Corporate Users

Monitoring Driving-based Segmentation




I Segmentation and monitoring

" Mobility application scenario of the LIFT
European project

I_IFT USINIG LOCAL INFCRENCE _Z
INT MASSIVELY DISTRIBUTED SYSTCEMS TR

" Focused on distributed monitoring technologies



I Scenario context & motivation

«¢ Customer segmentation: a marketing
strategy that involves dividing a broad .
target market into subsets of consumers
who have common needs ;gw

http://en.wikipedia.org/wiki/Customer_segmentation

«¢ Needs: car insurance companies would like to define customer
segments that capture different driving profiles

« Each segment could then be offered suitable contract
conditions

«¢ Opportunities: the vehicles insured by some companies have
on-board GPS devices that can trace their movements

- They could aggregate such traces into driving habit indicators
based on recent history for the driver and transmit them



Scenario description

=t Driving indicators

« Each vehicle continuously keeps track of recent movements,
compute aggregate indicators and sends them to controller

=" Profile extraction

- The controller uses initial indicator values to build clusters
of drivers, each corresponding to a “driving profile”

= Profile monitoring

- The controller continuously checks updates to verify that
the driving profiles extracted are still good enough



I Step 1: Features for individual
mobility behaviors

* |Indicators for recent mobility behaviors
 Computed over recent history — sliding window

P )
4

time

window width

* |nclude information derivable from standard GPS
devices



I Step 1: Features for individual
mobility behaviors

 Which features?

- Superset of those currently used by insurance companies

How fast | drive

w.r.t. speed limits

Panoramica sul tuo stile di guida
Uitimo aggiomamento: 10/03/2013
Giudizio: Buono

Quality Level: 580/1000
% di sconto: 14,5% al rinnovo

Attenzione:

Legenda

O Eccellente
O Molto Buono
[@ Buono

Where | drive

w.r.t. road categories

B Da migliorare
[ MNon adeguato

uality Level in dettaglio

Livello Prudenza

How dynamic | drive

w.r.t. acc-/decelerations

Livello Rischio

Livello Attenzione

% Km oltre i limiti di velocita: 5,1%

Il tuo giudizio: * &
Livello Prudenza: 222/450
E' calcolato sulla percentuale di km perscorsi nel

rispetto dei limiti di velocita, con una tolleranza di
10km/h.

Il tuo giudizio: * Molto Buono
Livello Rischio: 309/450

Misura la percentuale di km percorsi nei diversi tipi
distrada durante mattino, pomeriggiolsera & notte
Le combinazioni meno rischiose migliorano il
Livello

% Km oltre i limiti di velocita: 5,1%

Il tuo giudizio: *
Livello Attenzione: 49/100

Considera 'intensits delle accelerazioni &
decslerazioni durante la guida. Al momento
questo livello viene calcolato in proporzione al
Livello Prudenza



I Features over sliding window

* Length = traveled distance ‘

e Duration = time spent driving ‘ - Basic aggregates
* Count = number of trips .

* Phighway = % km on highways

« Pcity = % km inside cities - Aggregates on spatial /
« Length_arc_crowded = km on 20% most crowded roads - temporal selection

* Pnight = % km in night time

» Pover = % km over speed limit \
« Profile = % of km on systematic trips f Count of events
* Radius_g = radius of gyration |
» Radius_g_L1 = radius of gyration w.r.t. L1
 Avg Dist L1 = average distance from L1
» Timel1L2 =% time spenton L1and L2 - Spatial/Temporal distribution
» EntropyArc = entropy on road segment frequencies
« EntropyLocation = entropy on location frequencies

» EntropyTime = entropy on hours of the day



Correlation analysis

Iength - crowded rac

0.75

0.73

timelll2

0.72




I Features over sliding window

° I:W—dﬁtante—_ : )

* Duration = time spent driving - Basic aggregates

o Count=numberoftrips— .

* Phighway = % km on highways

« Pcity = % km inside cities ~ Aggregates on spatial /
ength—arc—crowded=kmon26%most crowdedroads - temporal selection

* Pnight = % km in night time

* Pover = % km over speed limit | \

« Profile = % of km on systematic trips g Count of events

. Radius—g-=radi : .
» Radius_g_L1 = radius of gyration w.r.t. L1

 TimeL1L2 = % time spenton L1 and L2

- EntropyAre=-entropy-onroad-segmentirequencies——
« EntropyLocation = entropy on location frequencies

« EntrepyHme—-entropy-en-hours-ofthe-day—

Spatial/Temporal distribution




Features normalization

» Log transformation for features with skewed distribution

phighway
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00000000000

0000000
000000

000000000000000000000000000000000000

e /Z-score normalization for all features



(2) Compute driving profiles

» Clustering-based definition

- Profile = representative set of indicators for a large group of drivers
with similar behaviors (i.e. similar indicator values)

 Clustering method

- K-means — a partitional, center-based clustering algorithm
- Euclidean distance over driving indicators
- Refinements: lterated K-means & select best solution + Noise removal

» Profile = average point of each cluster



Cluster refinement

e |terated K-means

- Run clustering multiple times (— initial random seeding)

- Select output with best quality
» Based on clusters compactness (— SSE — see definition later)

 Noise removal

- Performed at postprocessing
- From each cluster, remove points p such that
d(p,c) > 2 median { d(x,c) | x in cluster}
where c is the cluster center

— Alternative solutions are possible
* e.g.: density-based noise removal



Experimental setting

 GSP traces of an insurance ;

company customers
- 35 days monitoring

« Sample of ~11k vehicles
moving in the area

» Short temporal thresholds for

testing purposes

— Compute driving indicators over a sliding window of 3 days
( ]
‘ width = 72h ) time

- Update indicators every 15'

- Most likely larger in a real application — parameter tuning to be
done with domain experts



I Experiments: clusters inspection
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Explorers
Long-range commuters
Sunday drivers




I (3) Driving profiles monitoring

* Translated to “cluster quality monitoring”
* Quality measure: SSE = Sum of Squared Errors

- Given aclusteringC={C, ..., C }, and average
points m for each cluster C

K
SSE= Z Z dist” ( m, x)

i=1 xeC,




(3) Driving profiles monitoring

DEFINITION 1  (CLUSTER MONITORING PROBLEM).
Given a clustering C = {Ci,...,Cy} having initial SSE
equal to SSEo, and given a tolerance a« € R, we require to
ensure that at each time instant t the following holds for the

SSE of the (dynamic) dataset D;:
SSE: < (1+«)SSEy

When that does not happen, a recomputation/update of clus-
ter assignments should be performed.



Monitoring process

[EE———

rI-niti‘alization: compute clusters, cluster centers (used as reference
points for Safe Zones) and distribute SSE thresholds to clusters

N
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Monit@rinReelustering 59

; Clustering-level test: checks that global
Monitor SSE SSE does not exceed threshold

Monitor SSE' ” Motbtor SSE° ‘ Monitor SSE X

——r—————= Cluster-level test: A S— S—

check that SSE" does
not exceed threshold
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I Experiments: communications /

ctrict nranhlam Ao

= Balancing/memoryless

__ Balancing/memory

— Trend Predictive Ms

History Predictive Ms

Oracle (no false alrms)

Strict Clustering Monitor: Communications vs Alpha

Hoess -#—Basic

0% | ——M

805 M+PT

—i—M+PT+PH

E 705 . \
-
5 sox%
£

40%
3
£ 30%

205

0%

01 02 03 04 06 08 1 1.5 2 2,2 3 35 4
Alpha Value

Communications from controller w/ broadcasting:
between 1.23% and 2.34%, dominated by balancing

Predictive Models usage
(Alpha = 2)

PH: Variable
16%

PT: Static
41%

PT: Linear |
Growth
0%

PH: Constant_
40%
“_PT: Speed/
Acceleration

3%




Services Towards Individual Users

Self-awareness




Self-awareness services

* Mobility-based specialization of self-
awareness services for generic users

- Provide summary of activity of the user
- Provide comparison against collectivity



Self-awareness services

e Summaries based on

- Temporal statistics
- Spatial statistics / distributions
- Movement aggregates



User's activity summaries

* Areal example

Ggenertel t

Home il

Panoramica sul tuo stile di guida
Uttimo aggiomamento: 10/0312013
Giudizio:
80/1000
di sconto: 14,5% al rinnovo

Attenzione:

Il Quality Level in dettaglio

Livello Prudenza

% Km oltre i limiti di velocita: 5,1%

Il tuo giudizio: * Hucno
Livello Prudenza: 222/450
E' calcolato sulla percentuale di km perscorsi nel

rispetto dei limiti di velocita, con una tolleranza di
10kmvh,

Livello Rischio

Legenda

[ Eccsllents
O Motto Bu

Livello Attenzione

Il tuo giudizio: * Molto Buono
Livello Rischio: 309/450

Misura la percentuale di km percorsi nei diversi fipi
di strada durante matiino, e notte

% Km oltre i limiti di velocita: 5,1%

Il tuo giudizio: * Buono

Livello Attenzione: 49/100

Considera I'intensita delle accelerazioni

Le combinazioni mena rischioss migliorano i
Livelio.

durante la guida. Al momento
questo livello visne calcolato in proporzions al
Livello Prudenza

Chilometraggio mensile

Km annui previsti dal s
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I Comparison against collectivity

* |[n space

City hotspots




I Comparison against collectivity

e In time

City time distribution User's distribution




I Comparison against collectivity

* On general statistics

KM traveled per month Speed vs. Length of trips
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Services Towards Individual Users

Proactive Carpooling




/
CARPOOLS ONLY

> OR MORE PERSONS
PER VEHICLE

Proactive car pooling

Appllcatlon developed within the EU project ICON



Carpooling cycle

Context

* Several initiatives, especially on the web

<‘)@'- Viaggialnsieme.it
g SISTEMA DI MOBILITASOSTENIBILE

ﬁﬂﬁh’f ﬂ fﬁ

drlvebook

carpooling

.
-g BlaglaCar
“RoadSharing

@ Raggiung !!Aﬂogmqe! Jh+
Fieracavalli

L4 in carpooling ®




Carpooling cycle
Distinctive features

Traditional approach vs.

« Users manually insert
and update their rides

« Users search and
contact candidate pals

 Users make individual,
“local”’ choice

>

Data-driven cycle

System autonomously
detect systematic trips

System automatically
suggest pairings

System seeks globally
optimal allocation



Carpooling cycle

Assumptions

s. Users provide access to their mobility traces




I Carpooling cycle

Step 1: Inferring Individual Systematic Mobility

« Extraction of Mobility Profiles
— Describes an abstraction in space and time
of the systematic movements of a user.

— Exceptional movements are completely

ignored.

— Based on trajectory clustering with noise
removal

_ Individual History Trajectory Clusters Routines

>




I Carpooling cycle

Step 2: Build Network of possible carpool matches

« Based on “routine containment” ®

passenger
- One user can pick P T """"

up the other along »I driver

|

his trip

« Carpooling network

- Nodes = users

R (r3%,r
- Edges = pairs of users |n| rl@J Crr o'W
= o W

with matching routines




I Carpooling cycle

Step 3: Optimal allocation of drivers-passengers

* Given a Carpooling Network N, select a
subset of edges that minimizes |S| N

— S = set of circulating vehicles

provided that the edges are coherent, i.e.: ﬂ
Nl

— indegree(n)=0 OR
outdegree(n)=0 (a driver cannot 0 ./.
be a passenger)

— indegree(n) < capacity(n)



Carpooling cycle

v

Input mobility data

v

Users accept/reject

suggestions
@ J V. e
CP: Optimal .
aIIocatFi)on (ritri) S ln' 2 DM.: Extract
" | o ‘\() mobility profiles
@ u Y
rl_g‘D
. erl‘” [ ) QV/
w ~ “4) )

r,"

Build Carpooling network



Carpooling cycle
Improvement

* In carpooling (especially if proactive) users
might not like the suggested matches
— Impossible to know who will accept a given
match

— Modeling acceptance might improve results
 Two new components

— Learning mechanism to guess success
probability of a carpooling match

— Optimization task exploits it to offer solution
with best expected overall success




Carpooling cycle revised

' p SN
\‘ N——
v

Training
data
Users accept/reject

suggestions

-~
DM: Extract
mobility profiles

-
-
_____
-
-
-

O, o

(]
CP: Allocation with best .
expected success ‘f/’r i
RN nd < ML: Learn/update
w J Car g\ success model
o 9.

Weighted Carpooling network




Carpooling cycle
Learning a success model

* Input: set of features describing a single carpooling pair
* Output: success probability p in [0,1]
« 36 Features adopted

Ease of carpooling: space dist start pickup, space dist end drop off,
time_dist_start_pickup, time_dist_end _drop_off, time pick up get off,
start_together, end_together, distance between homes,
dist_between_works

Personal features (of both driver and passenger): age, gender,
marital_status, occupation, is_smoker, has_children, has_animals,
car_free seats — Cannot be inferred, need external data

Past personal history in the service (of both driver and passenger):
last_driver_accepted, last_passenger_accepted, % _acceptance_driver,
% acceptance passenger

History of the two users together (if any): last_accepted_pair,
last_rejected_pair,%_accepted pair



Carpooling cycle
Learning a success model
* Model selected: “probability estimation tree”

— simple decision tree with assigned probabilities
of prediction in the leaves

12_I2_dist <= 3584.8220
entropy = 0.949452015388
samples = 76

AN

time_dist_start_pickup <= 1879.0000 12_I2_dist <= 12888.0615
entropy = 0.801469893134 entropy = 0.999411064739
samples = 41 samples = 35

A /

12_12_dist <= 1073.6254 entropy = 0.3095

entropy = 0.965636133371
samples = 23

samples = 18
value=[ 1. 17.]

P(Yes) = 6/10 = 60%

/N

entropy = 0.9710

samples—=
value <[ 6. 4.]

entropy = 0.7793
samples=

o

value =\ 3. 10.

.

\
\
\
\

car_free_seats_p <= 3.5000 entropy = 0.7219
entropy = 0.942683189255 samples = 10
samples = 25 value=[ 2. 8]

VAN

entropy = 0.6194

value=[11. 2.]

samples = 13

entropy = 0.9799
samples = 12
value=[5. 7.]

P(Yes) = 3/13 = 23%




Carpooling cycle
Revised optimization model

* Given a Carpooling Network N, select a
subset W of edges that maximize . N

— sump(w) | win W
provided that the edges are coherent, i.e.: ﬂ
— indegree(n)=0 OR
outdegree(n)=0 (a driver cannot 0 ./.

be a passenger)
— indegree(n) < capacity(n)



Carpooling cycle
Two usage scenarios
e Scenario 1:

- Real service is implemented, with real users
interacting (accept/reject suggestions)

e Scenario 2:

- Simulation environment where the users' behaviour
Is simulated through a model X

| B (] ‘J‘,‘
L] %

- Mobility data is taken from historical traces

- Useful to perform what-if analyses on

(i — social) effects of different users' behaviours
* (ii — performances) effects of different learning strategies



Carpooling cycle
Scenario 2 — sample results

* Profiles involved in carpooling network
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Carpooling cycle
Scenario 2 — sample results

 Prediction models

is_smoker_p <= 0.5000
entropy = 0.83147438801
samples = 76

v

N

car_free_seats_d <= 3.5000
entropy = 0.975525951126
samples = 49

entropy = 0.0000
samples = 27
value =[ 27. 0.]

AN

space_dist_start_pickup <= 521.2913
entropy = 0.890491640219
samples = 39

entropy = 0.7219
samples = 10
value=[2. 8]

N

space_dist_end_drop_off <= 286.5556 entropy = 0.9710
entropy = 0.735508581554 samples = 10
samples = 29 value=[ 4. 6.]

VAR

entropy = 0.0000 entropy = 0.9183
samples = 11 samples = 18
value=[11. 0.] value=[12. 6.]

Iteration 0

iIs smoker p: 0.51763342041

car free seats d: 0.196822768067

space dlst end _drop_off : 0.161445930025
space dist start _pickup : 0.124097881498
time_dist_ start _pickup : 0.0

last accepted pair : 0.0

11 11 dist: 0.0

age_ d: 0.0

gender p: 0.0

has_children p : 0.0

lteration 4

last_accepted pair: 0.300009683595

% accepted pair: 0.18422352604
gender d : 0.121782490916

iIs smoker d: 0.096830535215

11 11 dist : 0.0947711528021

iIs smoker p:0.0921934235296

age p: 0.0549409842076

gender p : 0.0396236591312

time_dist start pickup : 0.00874162379163
car_ free seats d :0.00628292077177



Carpooling cycle
Scenario 2 — sample results

e Performances

Carpooling ICON Loop - Statistics - lteration 4
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Services Towards Public Sector

Urban Mobility Atlas




Dynamics of urban mobility




Impact of Systematic Mobility

T Pagancy

Mixed Area:
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Pisa — Incoming traffic

Incoming Traffic (36.464 Trajectories)




Pisa — Outgoing Traffic




... and Comparison




Services Towards Public Sector

Mobility-based Redefinition of Borders




Mobility coverages




Step 1: spatial regions




Step 2: evaluate flows among
regions




forget geography

Step 3




Step 4: perform community
detection




Step 4: perform community
detection




Step 5: map back to




Step 6: draw borders




Final result




Final result: compare with




Borders in different time
periods

Only weekdays movements

Similar to global clustering
influence of systematic
movements
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of systematic movements (home-
work) is missing



Borders at regional scale
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Final results




Comparison with “new
provinces’
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