Mobility Data Mining

Case Studies

Contents

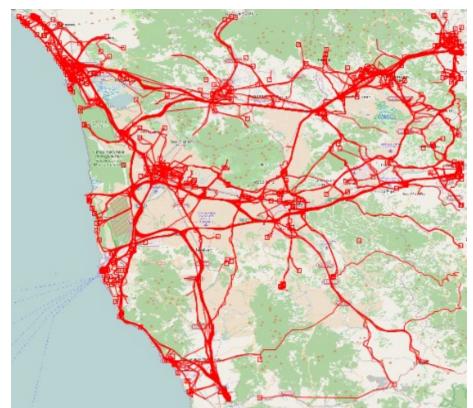
- Corporate Users
 - Geomarketing
 - Monitoring Driving-based Segmentation
- Individual Users
 - Self-awareness
 - Proactive Carpooling
- Public Sector
 - Urban Mobility Atlas
 - Borders

Services Towards Corporate Users

Geomarketing

Problem definition

Based on the trajectories of a sample of population, what is the best place to open a new shop / mall ?



The "best" place

Experts' knowledge: best place to open a mall is where people pass during everyday activities

Area crossed by road segments with a high frequency of systematic travels of people

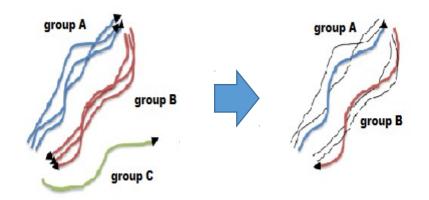
Systematic movements

Step 1: Map-matching

 See users' movements as sequences of road segments.

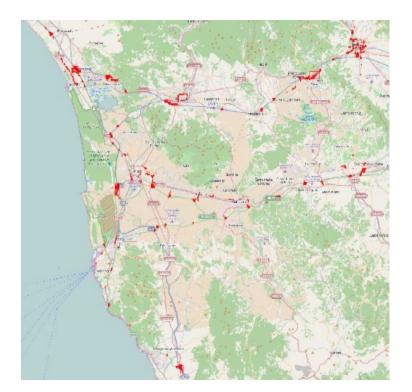
Select only systematic movements.

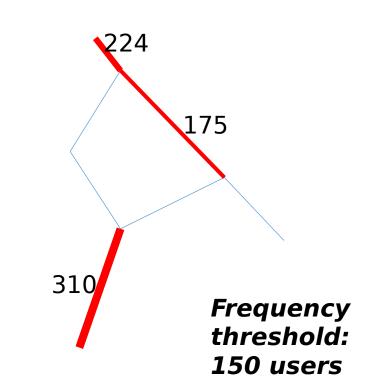
User's systematic movement: L1 → L2



Frequently visited road segments

- Aggregate systematic movements by road segments
- Set a threshold to select the frequent ones

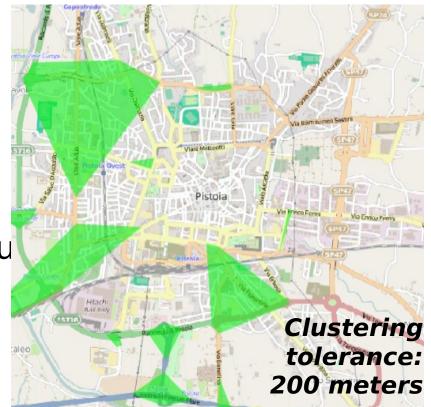




Candidate areas for a mall

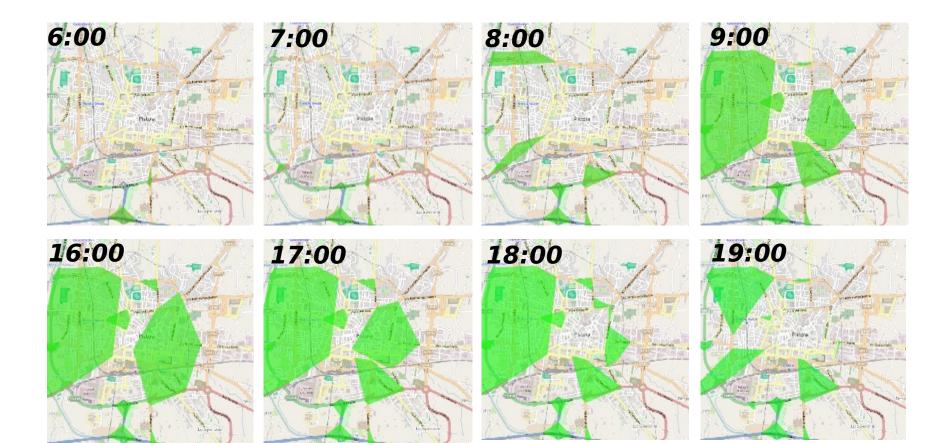
Using a spatial clustering we can extract cluster of frequent road segments which are spatially close each other.

- Distance of 2 segments
 - Compare vertices
- Draw clusters as convex hu



Temporal evolution

Repeat this process for each hour of the day and analyze how they evolve



Services Towards Corporate Users

Monitoring Driving-based Segmentation

Segmentation and monitoring

Mobility application scenario of the LIFT European project

Focused on distributed monitoring technologies

Scenario context & motivation

Customer segmentation: a marketing strategy that involves dividing a broad target market into subsets of consumers who have common needs

http://en.wikipedia.org/wiki/Customer_segmentation

- Needs: car insurance companies would like to define customer segments that capture different driving profiles
 - Each segment could then be offered suitable contract conditions
- Opportunities: the vehicles insured by some companies have on-board GPS devices that can trace their movements
 - They could aggregate such traces into driving habit indicators based on recent history for the driver and transmit them

Scenario description

- Driving indicators
 - **Each vehicle** continuously keeps track of recent movements, compute aggregate indicators and sends them to controller
- Profile extraction
 - The controller uses initial indicator values to build clusters of drivers, each corresponding to a "driving profile"
- Profile monitoring
 - The controller continuously checks updates to verify that the driving profiles extracted are still good enough

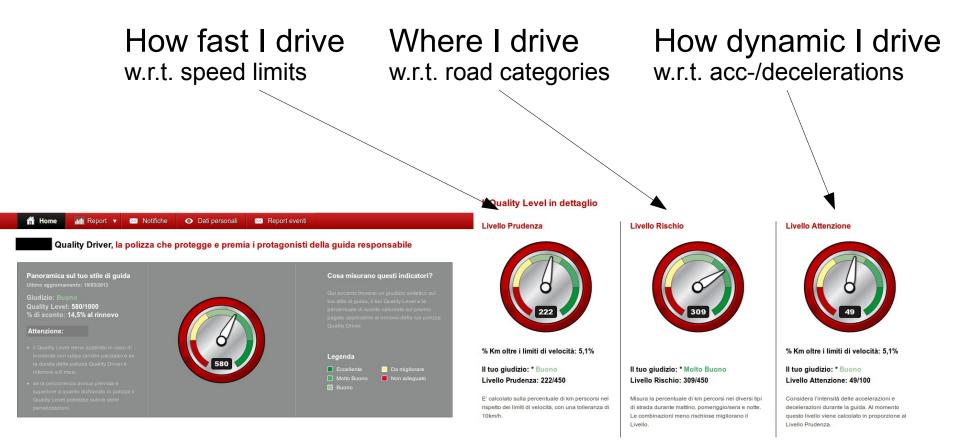
Step 1: Features for individual mobility behaviors

- Indicators for recent mobility behaviors
- Computed over recent history \rightarrow sliding window

Include information derivable from standard GPS devices

Step 1: Features for individual mobility behaviors

- Which features?
 - Superset of those currently used by insurance companies



Features over sliding window

- Length = traveled distance
- Duration = time spent driving
- Count = number of trips
- Phighway = % km on highways
- Pcity = % km inside cities
- Length_arc_crowded = km on 20% most crowded roads
- Pnight = % km in night time
- Pover = % km over speed limit
- Profile = % of km on systematic trips
- Radius_g = radius of gyration
- Radius_g_L1 = radius of gyration w.r.t. L1
- Avg_Dist_L1 = average distance from L1
- TimeL1L2 = % time spent on L1 and L2
- EntropyArc = entropy on road segment frequencies
- EntropyLocation = entropy on location frequencies
- EntropyTime = entropy on hours of the day

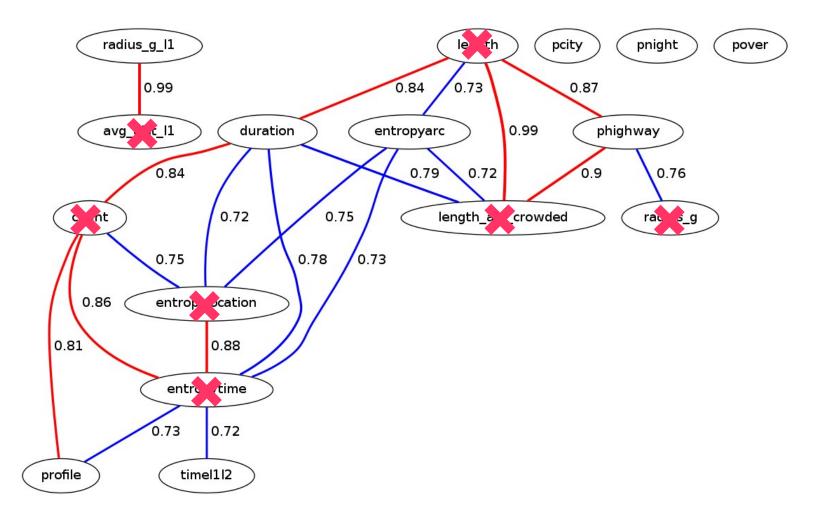
Basic aggregates

Aggregates on spatial / temporal selection

Count of events

Spatial/Temporal distribution

Correlation analysis



Features over sliding window

- Length = traveled distance
- Duration = time spent driving
- Count = number of trips
- Phighway = % km on highways
- Pcity = % km inside cities
- Length_arc_crowded = km on 20% most crowded roads
- Pnight = % km in night time
- Pover = % km over speed limit
- Profile = % of km on systematic trips
- Radius_g = radius of gyration
- Radius_g_L1 = radius of gyration w.r.t. L1
- Avg_Dist_L1 = average distance from L1
- TimeL1L2 = % time spent on L1 and L2
- EntropyArc = entropy on road segment frequencies
- EntropyLocation = entropy on location frequencies
- EntropyTime = entropy on hours of the day

Basic aggregates

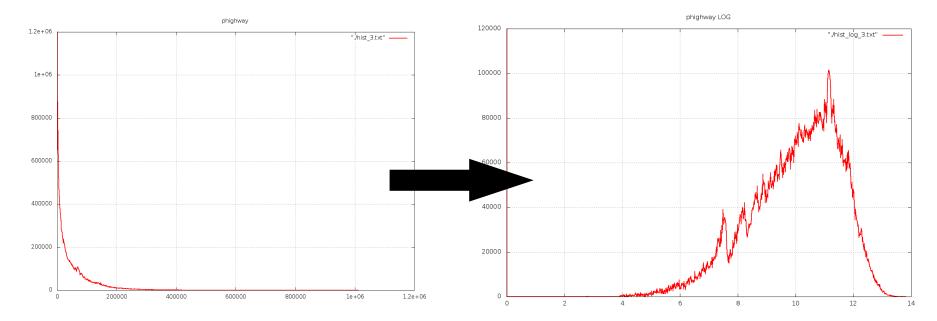
Aggregates on spatial / temporal selection

Count of events

Spatial/Temporal distribution

Features normalization

• Log transformation for features with skewed distribution



• Z-score normalization for all features

(2) Compute driving profiles

- Clustering-based definition
 - Profile = representative set of indicators for a large group of drivers with similar behaviors (i.e. similar indicator values)
- Clustering method
 - K-means a partitional, center-based clustering algorithm
 - Euclidean distance over driving indicators
 - Refinements: Iterated K-means & select best solution + Noise removal
- Profile = average point of each cluster

Cluster refinement

- Iterated K-means
 - Run clustering multiple times (\rightarrow initial random seeding)
 - Select output with best quality
 - Based on clusters compactness (\rightarrow SSE see definition later)
- Noise removal
 - Performed at postprocessing
 - From each cluster, remove points *p* such that

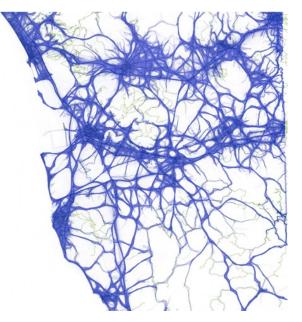
 $d(p,c) > 2 median \{ d(x,c) | x in cluster \}$

where c is the cluster center

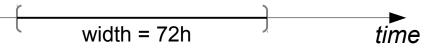
- Alternative solutions are possible
 - e.g.: density-based noise removal

Experimental setting

- GSP traces of an insurance company customers
 - 35 days monitoring
- Sample of ~11k vehicles moving in the area
- Short temporal thresholds for testing purposes

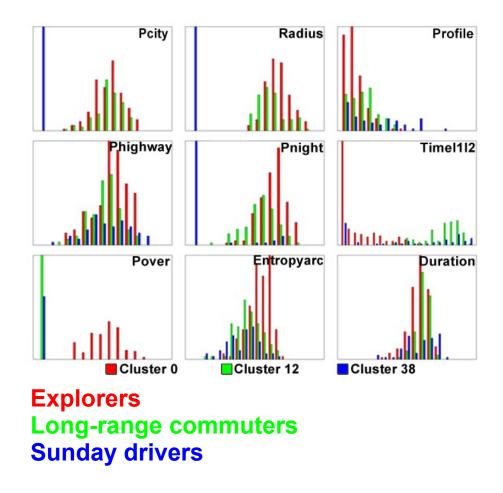


- Compute driving indicators over a sliding window of 3 days



- Update indicators every 15'
- Most likely larger in a real application parameter tuning to be done with domain experts

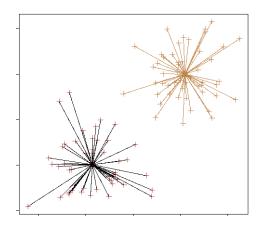
Experiments: clusters inspection



(3) Driving profiles monitoring

- Translated to "cluster quality monitoring"
- Quality measure: SSE = Sum of Squared Errors
 - Given a clustering C = { C_1, \dots, C_k }, and average points m for each cluster C

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$



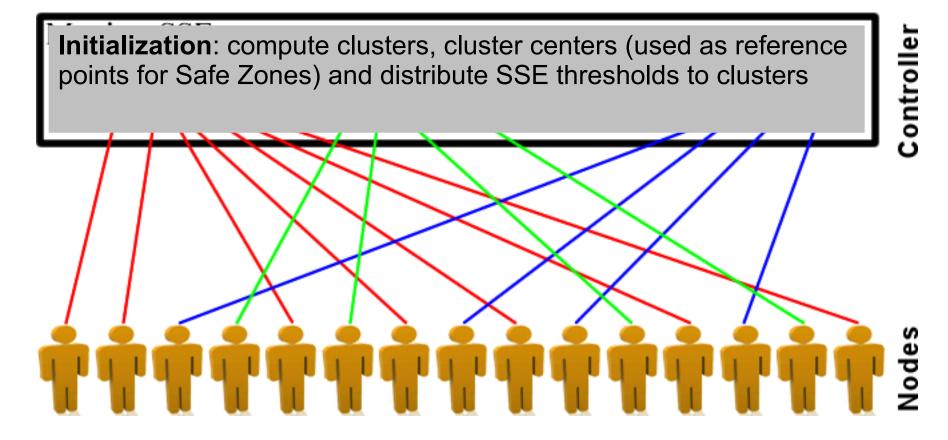
(3) Driving profiles monitoring

DEFINITION 1 (CLUSTER MONITORING PROBLEM). Given a clustering $C = \{C_1, \ldots, C_k\}$ having initial SSE equal to SSE_0 , and given a tolerance $\alpha \in \mathbb{R}^+$, we require to ensure that at each time instant t the following holds for the SSE of the (dynamic) dataset D_t :

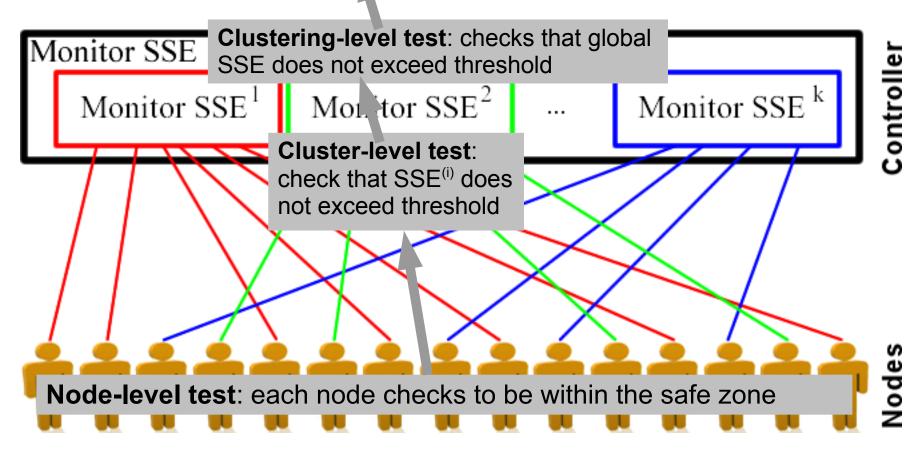
 $SSE_t \le (1+\alpha)SSE_0$

When that does not happen, a recomputation/update of cluster assignments should be performed.

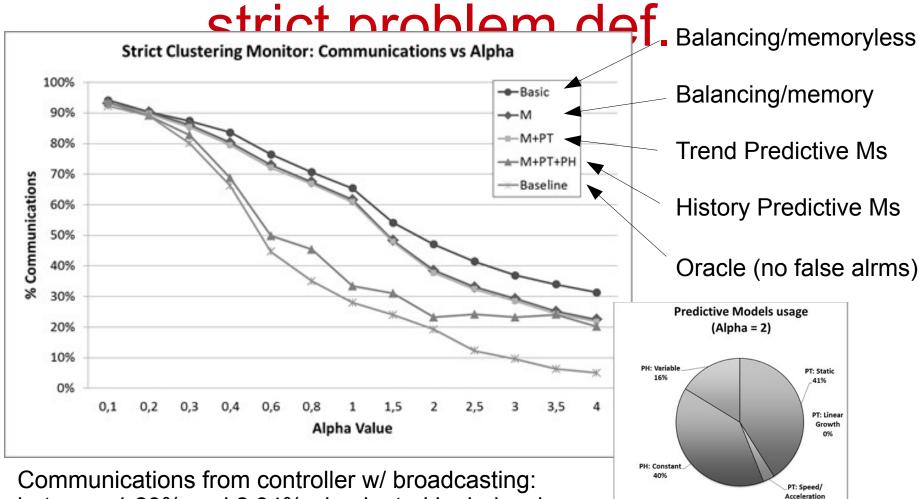
Monitoring process



Monitorin Re-clustering SS



Experiments: communications /



3%

between 1.23% and 2.34%, dominated by balancing

Services Towards Individual Users

Self-awareness

Self-awareness services

- Mobility-based specialization of selfawareness services for generic users
 - Provide summary of activity of the user
 - Provide comparison against collectivity

Self-awareness services

- Summaries based on
 - Temporal statistics
 - Spatial statistics / distributions
 - Movement aggregates

User's activity summaries

• A real example

Il Quality Level in dettaglio

% Km oltre i limiti di velocità: 5,1%

Il tuo giudizio: * Buono Livello Prudenza: 222/450

E' calcolato sulla percentuale di km perscorsi nel rispetto dei limiti di velocità, con una tolleranza di 10km/h.

ll tuo giudizio: * Molto Buono Livello Rischio: 309/450

Misura la percentuale di km percorsi nei diversi tipi di strada durante mattino, pomeriggio/sera e notte. Le combinazioni meno rischiose migliorano il Livello.

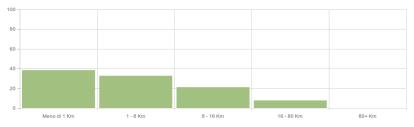
% Km oltre i limiti di velocità: 5,1%

Il tuo giudizio: * Buono Livello Attenzione: 49/100

Livello Attenzione

Considera l'intensità delle accelerazioni e decelerazioni durante la guida. Al momento questo livello viene calcolato in proporzione al Livello Prudenza.

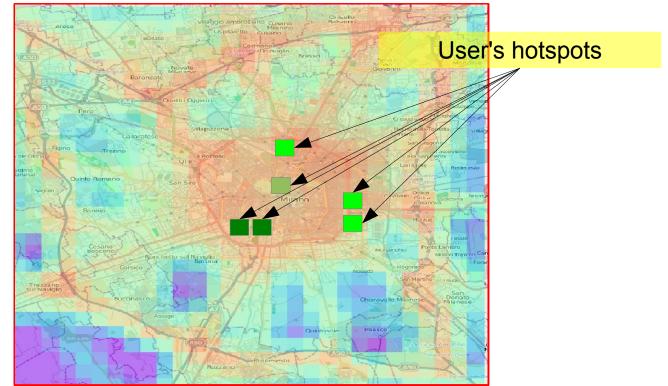
Marzo 2013 🛟



Comparison against collectivity

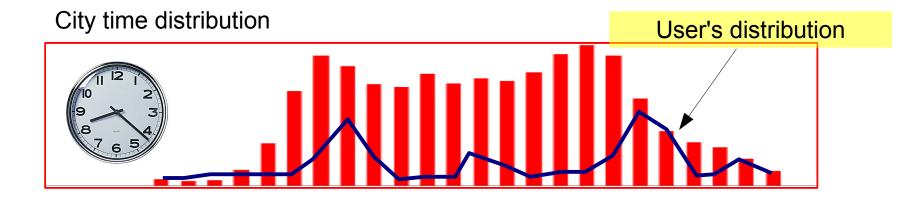
In space

City hotspots



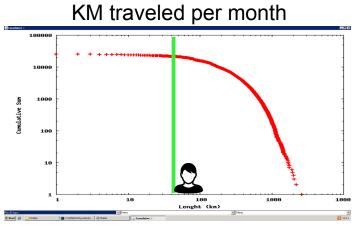
Comparison against collectivity

• In time

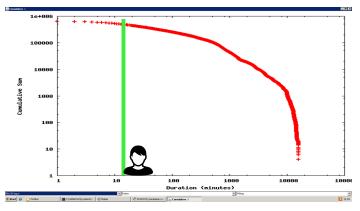


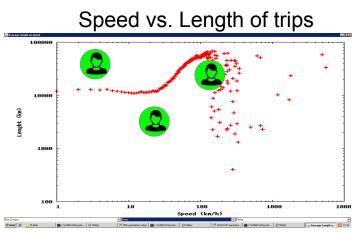
Comparison against collectivity

On general statistics

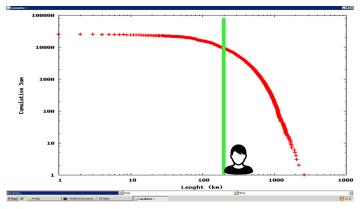


Total duration of travels





Radius of gyration



Services Towards Individual Users

Proactive Carpooling

Proactive car pooling

Application developed within the EU project ICON

Carpooling cycle Context

Several initiatives, especially on the web

Carpooling cycle Distinctive features

Traditional approach vs. Data-driven cycle

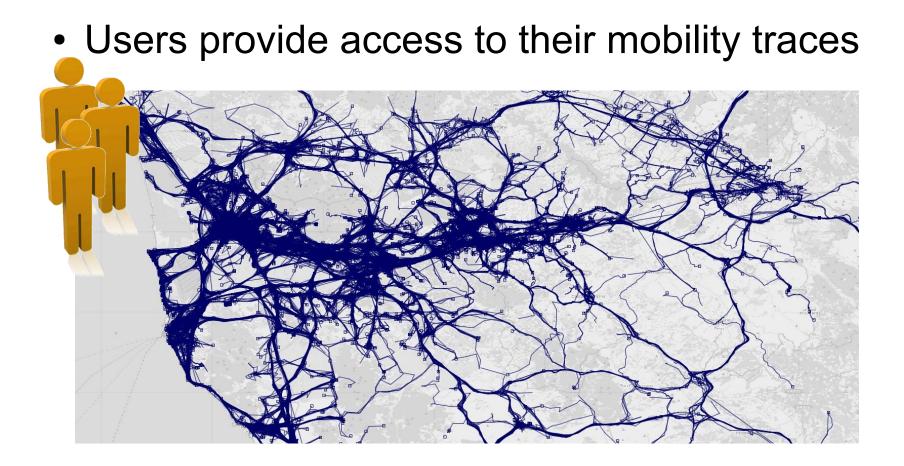
Users manually insert
 and update their rides

 System autonomously detect systematic trips

 Users search and contact candidate pals

- System automatically suggest pairings
- Users make individual, _____
 System seeks globally optimal allocation

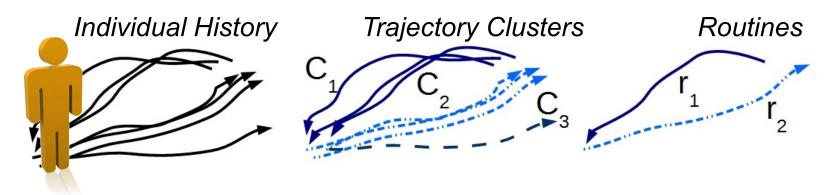
Carpooling cycle Assumptions



Carpooling cycle

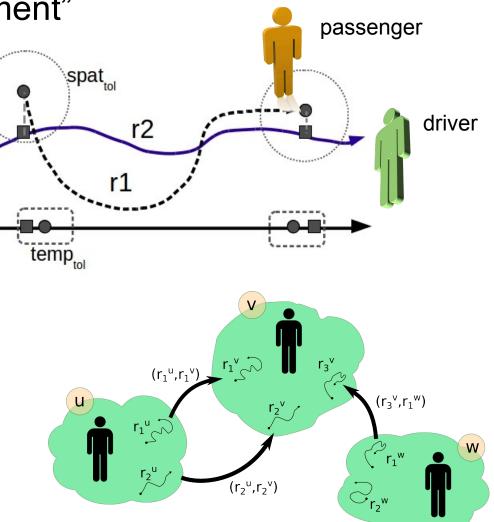
Step 1: Inferring Individual Systematic Mobility

- Extraction of Mobility Profiles
 - Describes an abstraction in space and time of the systematic movements of a user.
 - Exceptional movements are completely ignored.
 - Based on trajectory clustering with noise removal



Carpooling cycle Step 2: Build Network of possible carpool matches

- Based on "routine containment"
 - One user can pick
 up the other along
 his trip



- Carpooling network
 - Nodes = users
 - Edges = pairs of users
 with matching routines

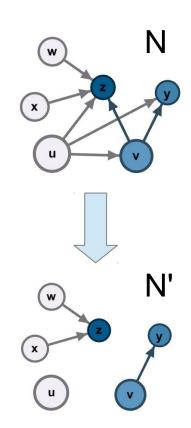
Carpooling cycle

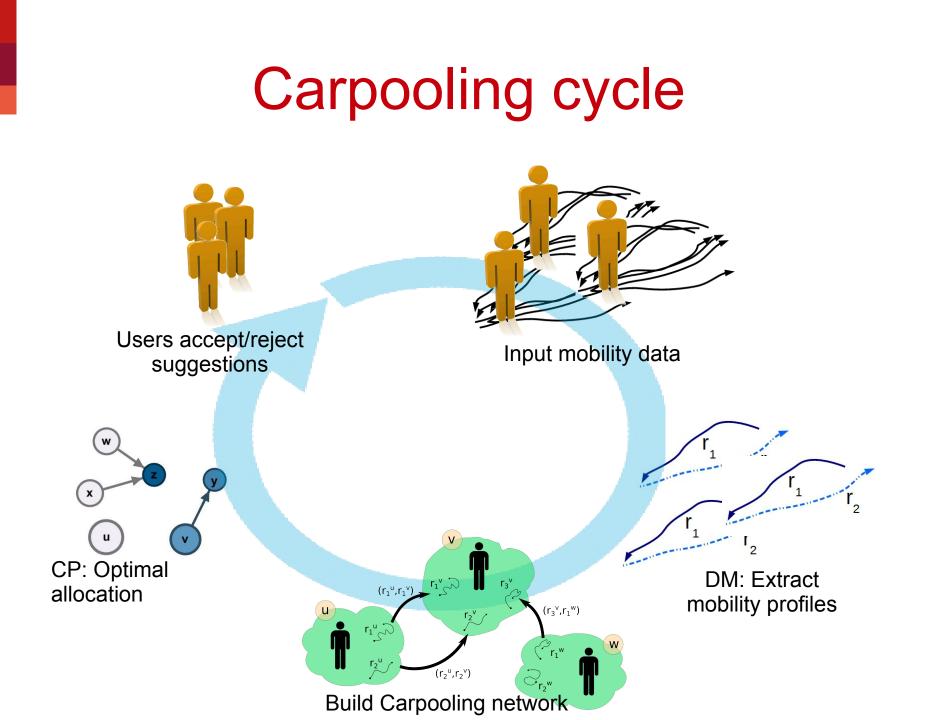
Step 3: Optimal allocation of drivers-passengers

- Given a Carpooling Network N, select a subset of edges that minimizes |S|
 - S = set of circulating vehicles

provided that the edges are coherent, i.e.:

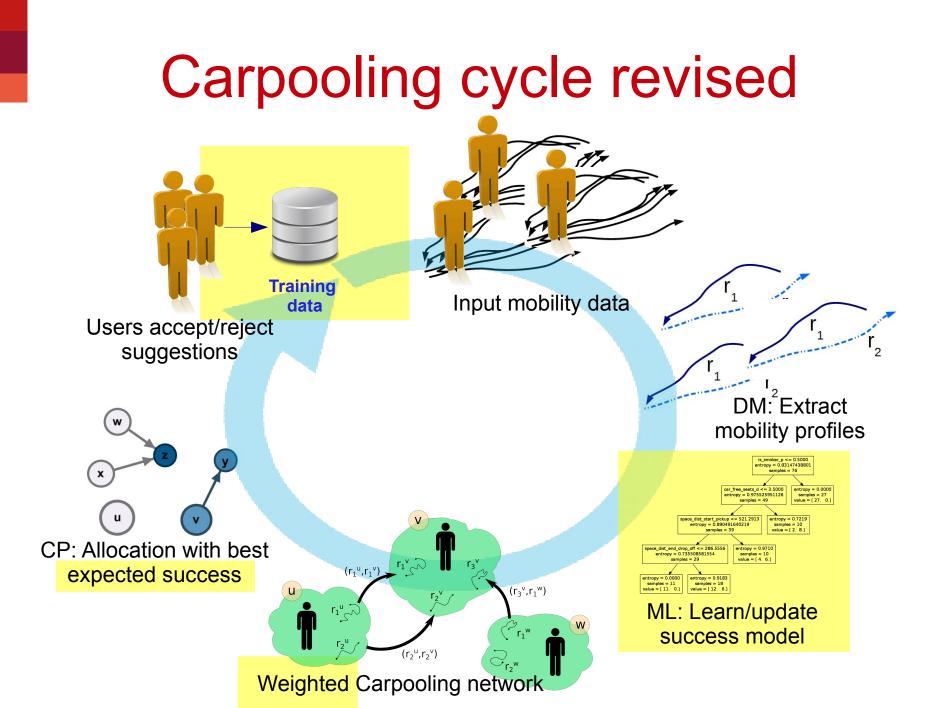
- indegree(n)=0 OR
 outdegree(n)=0 (a driver cannot be a passenger)
- indegree(n) \leq capacity(n)





Carpooling cycle Improvement

- In carpooling (especially if proactive) users might not like the suggested matches
 - Impossible to know who will accept a given match
 - Modeling acceptance might improve results
- Two new components
 - Learning mechanism to guess success probability of a carpooling match
 - Optimization task exploits it to offer solution with best <u>expected</u> overall success

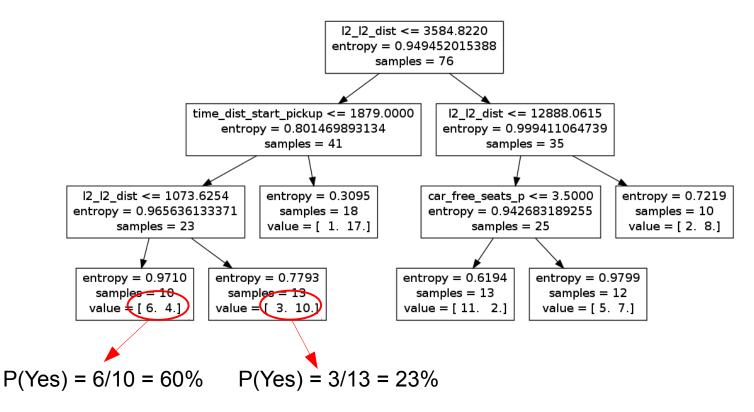


Carpooling cycle Learning a success model

- Input: set of features describing a single carpooling pair
- **Output**: success probability p in [0,1]
- 36 Features adopted
 - Ease of carpooling: space_dist_start_pickup, space_dist_end_drop_off, time_dist_start_pickup, time_dist_end_drop_off, time_pick_up_get_off, start_together, end_together, distance_between_homes, dist_between_works
 - Personal features (of both driver and passenger): age, gender, marital_status, occupation, is_smoker, has_children, has_animals, car_free_seats → Cannot be inferred, need external data
 - Past personal history in the service (of both driver and passenger): last_driver_accepted, last_passenger_accepted, %_acceptance_driver, %_acceptance_passenger
 - History of the two users together (if any): last_accepted_pair, last_rejected_pair,%_accepted_pair

Carpooling cycle Learning a success model

 Model selected: "probability estimation tree" → simple decision tree with assigned probabilities of prediction in the leaves



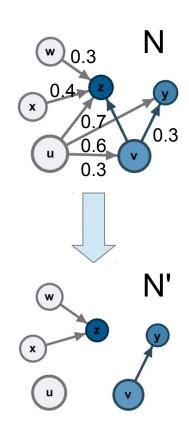
Carpooling cycle Revised optimization model

 Given a Carpooling Network N, select a subset W of edges that maximize

- sum p(w) | w in W

provided that the edges are coherent, i.e.:

- indegree(n)=0 OR
 outdegree(n)=0 (a driver cannot
 be a passenger)
- indegree(n) \leq capacity(n)

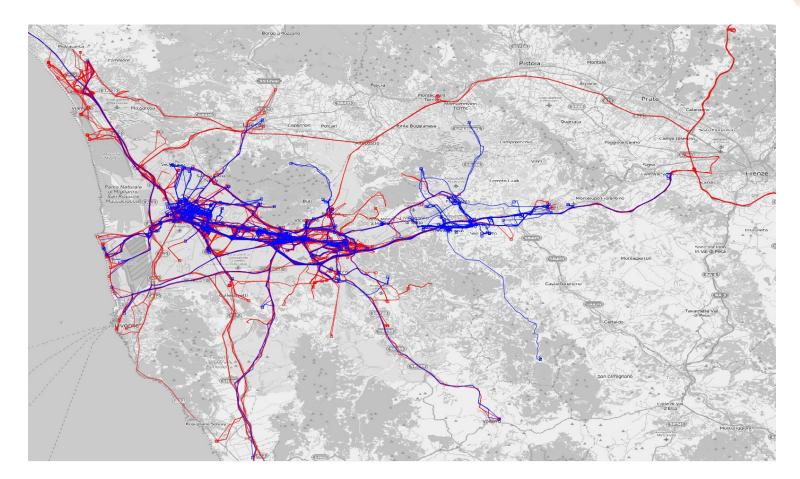


Carpooling cycle Two usage scenarios

- Scenario 1:
 - Real service is implemented, with real users interacting (accept/reject suggestions)
- Scenario 2:
 - Simulation environment where the users' behaviour is simulated through a model
 - Mobility data is taken from historical traces
 - Useful to perform what-if analyses on
 - (i social) effects of different users' behaviours
 - (ii performances) effects of different learning strategies

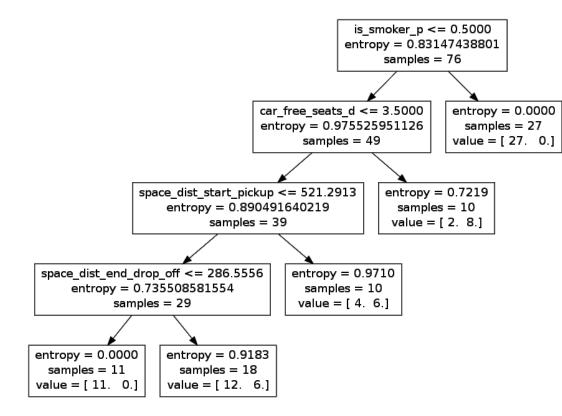
Carpooling cycle Scenario 2 – sample results

Profiles involved in carpooling network



Carpooling cycle Scenario 2 – sample results

Prediction models



Iteration 0

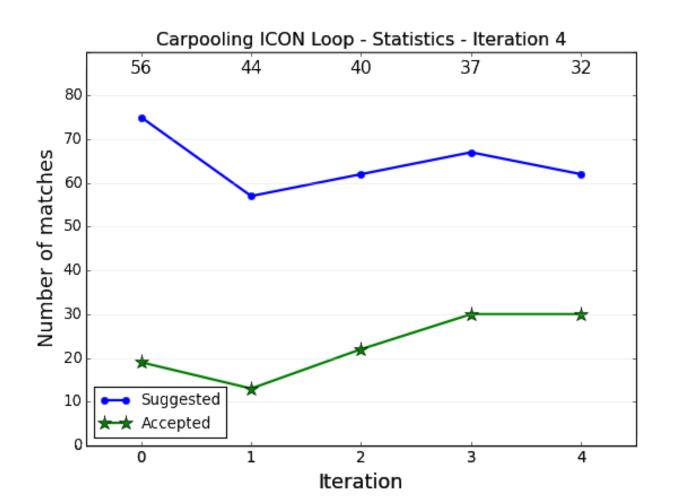
is_smoker_p: 0.51763342041 car_free_seats_d: 0.196822768067 space_dist_end_drop_off: 0.161445930025 space_dist_start_pickup: 0.124097881498 time_dist_start_pickup: 0.0 last_accepted_pair: 0.0 l1_l1_dist: 0.0 age_d: 0.0 gender_p: 0.0 has_children_p: 0.0

Iteration 4

last_accepted_pair : 0.300609683595 %_accepted_pair : 0.18422352604 gender_d : 0.121782490916 is_smoker_d : 0.096830535215 I1_I1_dist : 0.0947711528021 is_smoker_p : 0.0921934235296 age_p : 0.0549409842076 gender_p : 0.0396236591312 time_dist_start_pickup : 0.00874162379163 car_free_seats_d : 0.00628292077177

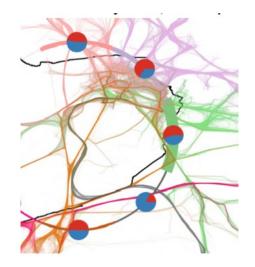
Carpooling cycle Scenario 2 – sample results

Performances

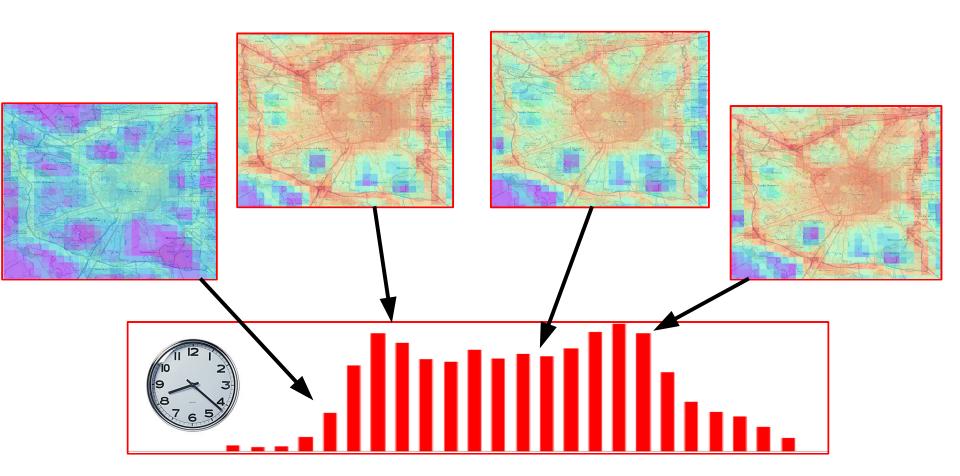


Services Towards Public Sector

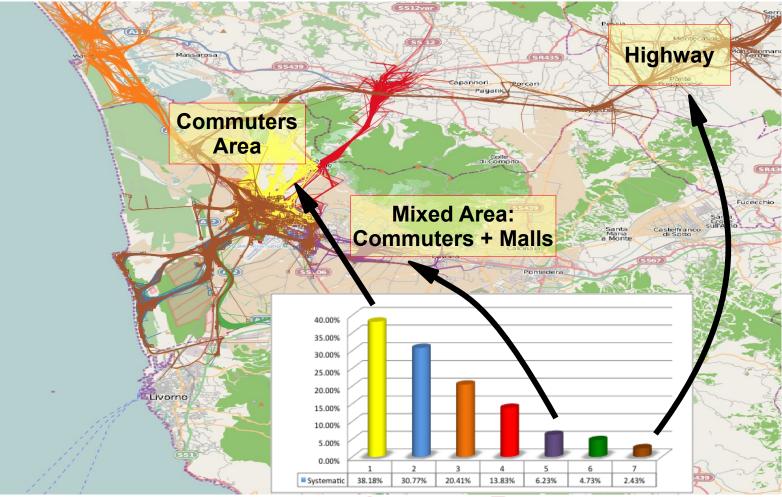
Urban Mobility Atlas



Dynamics of urban mobility

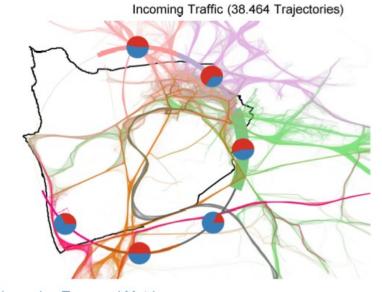


Impact of Systematic Mobility

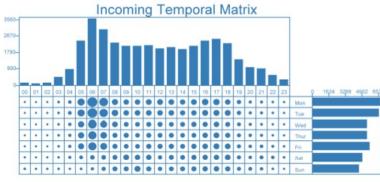


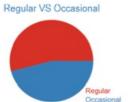
Access Routes Systematic Mobility (%)

Pisa – Incoming traffic

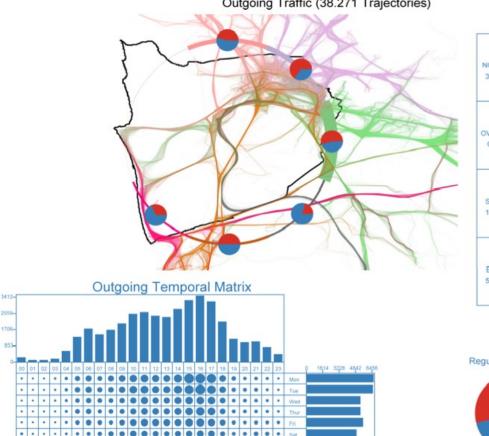


	City	Traj	Perc
NORD 32%	San Giuliano T	4.816	62%
	Vecchiano	1.425	94%
	Viareggio	1.142	99%
	Lucca	862	67%
	Camaiore	358	94%
OVEST 0%			
		1	
		1	
SUD 12%	Livorno	2.843	92%
	Collesalvetti	565	50%
	Rosignano Mari.	140	41%
	Fauglia	137	19%
	Cecina	124	45%
EST 54%	Cascina	7.078	97%
	San Giuliano T	2,881	37%
	Pontedera	1.350	95%
	Calci	795	79%
	Calcinaia	693	92%





Pisa – Outgoing Traffic



Outgoing Traffic (38.271 Trajectories)

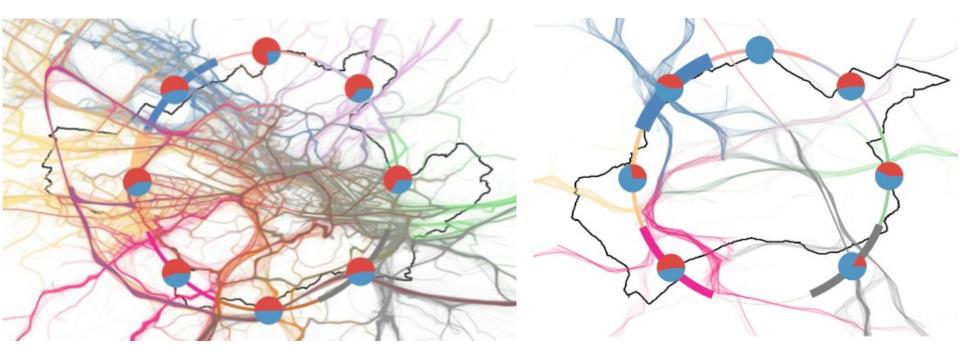
	City	Traj	Perc
NORD 32%	San Giuliano T	4.842	62%
	Vecchiano	1.418	93%
	Viareggio	1,117	99%
	Lucca	886	67%
	Camaiore	329	96%
OVEST 0%			
SUD 13%	Livomo	2.812	92%
	Collesalvetti	565	51%
	Rosignano Mari	143	44%
	Fauglia	130	19%
	Cecina	123	45%
EST 54%	Cascina	7.253	97%
	San Giuliano T.,	2.860	37%
	Pontedera	1.326	95%
	Calci	798	82%
	Calcinaia	704	93%

Regular VS Occasional

... and Comparison

Florence

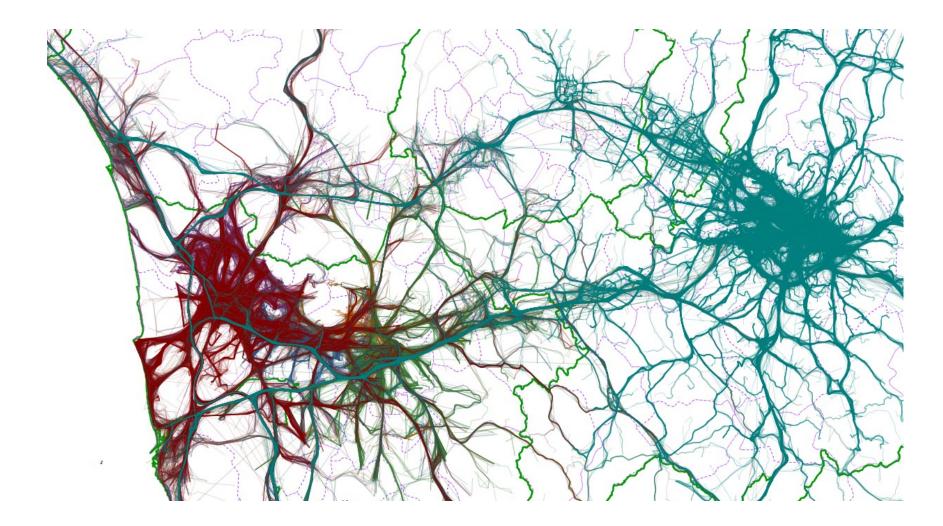
Montepulciano



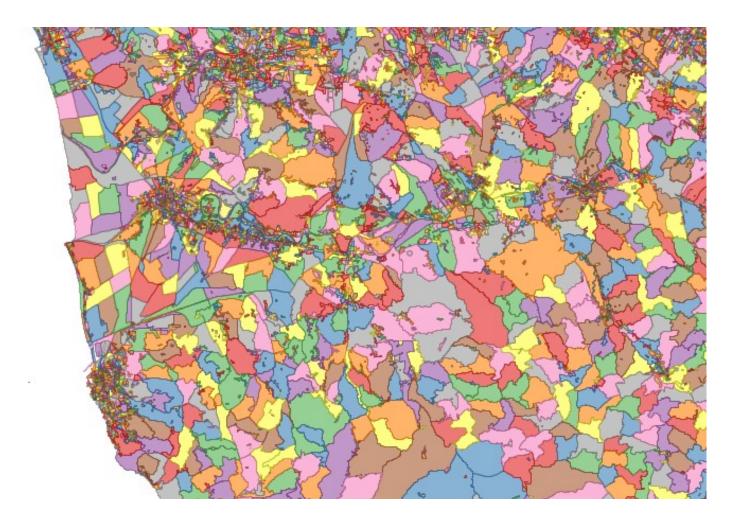
Services Towards Public Sector

Mobility-based Redefinition of Borders

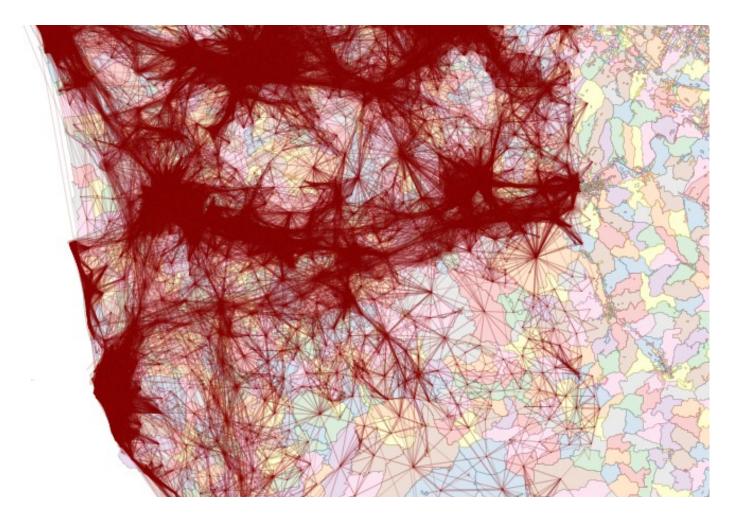
Mobility coverages



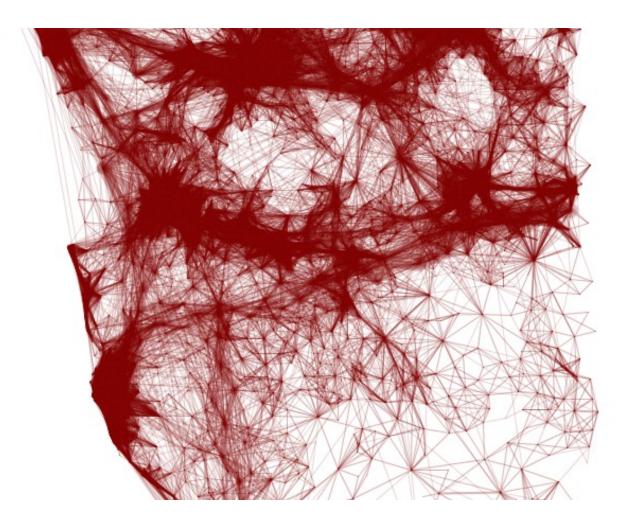
Step 1: spatial regions



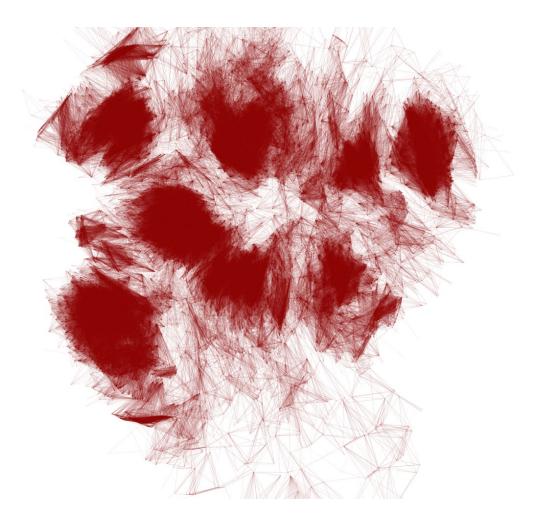
Step 2: evaluate flows among regions



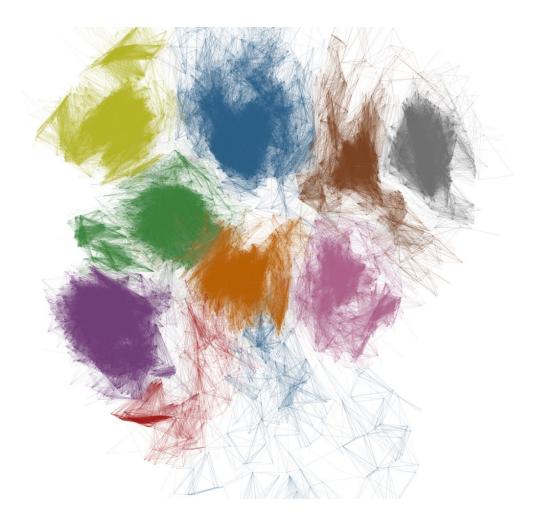
Step 3: forget geography



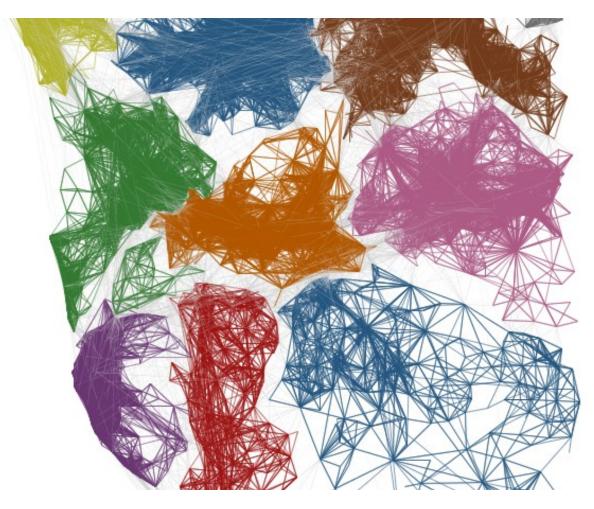
Step 4: perform community detection



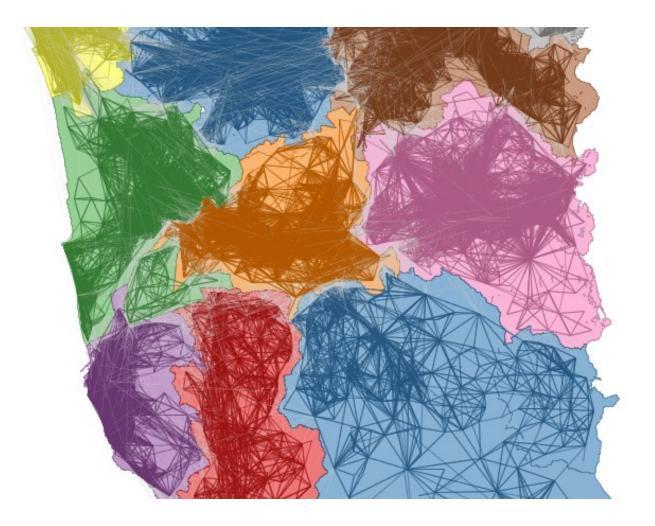
Step 4: perform community detection



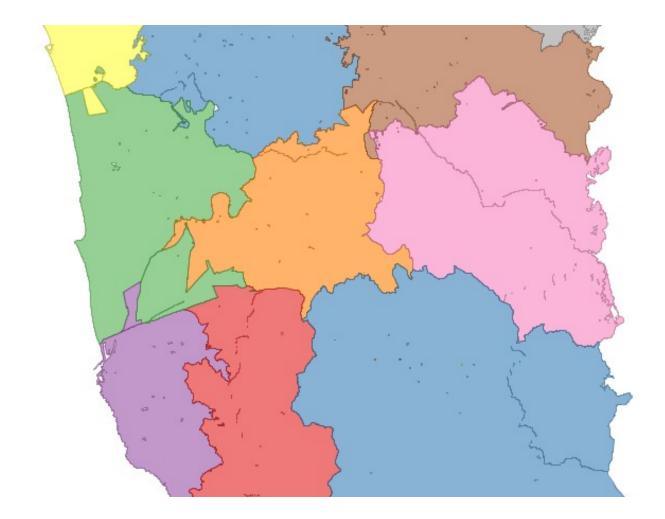
Step 5: map back to geography



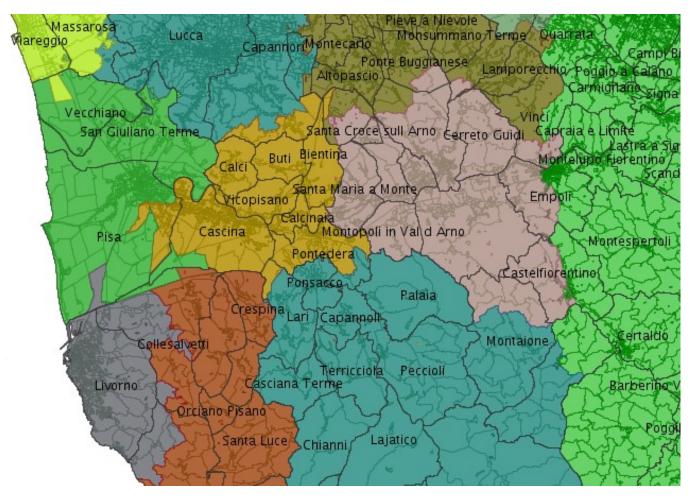
Step 6: draw borders



Final result

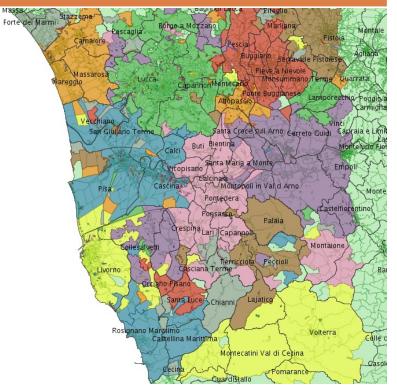


Final result: compare with municipality borders



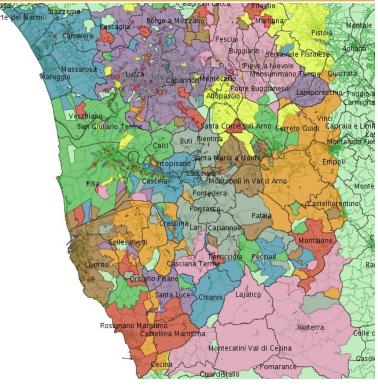
Borders in different time periods

Only weekdays movements



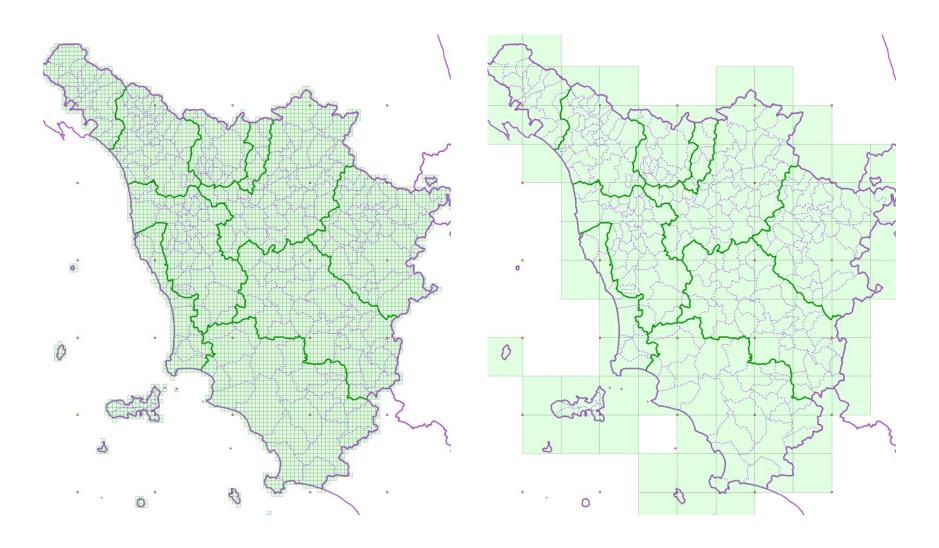
Similar to global clustering: strong influence of systematic movements

Only weekend movements

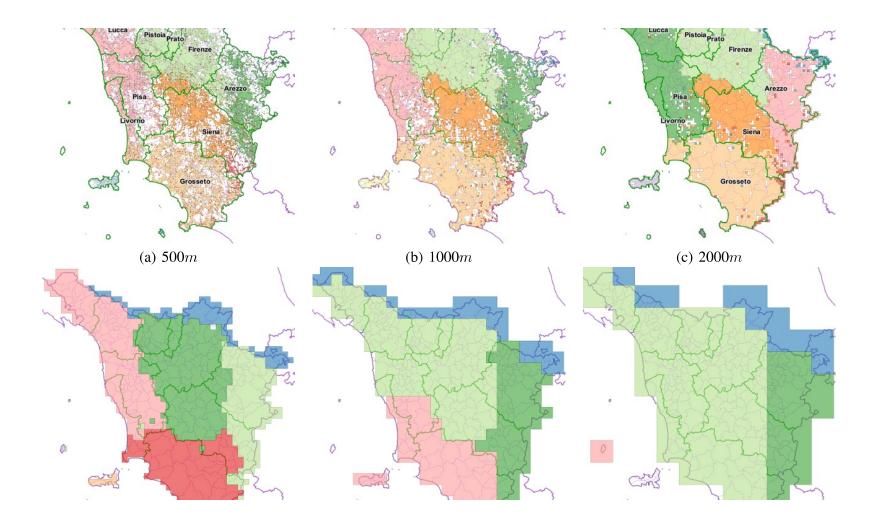


Strong fragmentation: the influence of systematic movements (homework) is missing

Borders at regional scale



Final results



Comparison with "new provinces"

