
MDA, 2015

Mobility Data Mining

Case Studies



Contents

● Corporate Users
– Geomarketing

– Monitoring Driving-based Segmentation

● Individual Users
– Self-awareness

– Proactive Carpooling

● Public Sector
– Urban Mobility Atlas

– Borders



MDA, 2015

Services Towards Corporate Users

Geomarketing



Problem definition
Based on the trajectories of a sample of 
population, what is the best place to open 
a new shop / mall ?



The “best” place

Experts' knowledge: best place to open a mall is 
where people pass during everyday activities

Area crossed by road segments with a high 
frequency of systematic travels of people



Systematic movements

Step 1: Map-matching 

● See users' movements as 
sequences of road 
segments.

Step 2: Mobility profiles 

● Select only systematic 
movements.

User’s 
systematic 
movement: 
L1 → L2



Frequently visited road 
segments

● Aggregate systematic movements by road 
segments

● Set a threshold to select the frequent ones

310

224

175

Frequency 
threshold:
150 users



Candidate areas for a mall
Using a spatial clustering we can extract cluster 
of frequent road segments which are spatially 
close each other.

● Distance of 2 segments

● Compare vertices

● Draw clusters as convex hull

Clustering 
tolerance:

200 meters



Temporal evolution
Repeat this process for each hour of the day 
and analyze how they evolve

6:00 7:00 8:00 9:00

16:00 17:00 18:00 19:00
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Services Towards Corporate Users

Monitoring Driving-based Segmentation



Segmentation and monitoring

Mobility application scenario of the LIFT 
European project

Focused on distributed monitoring technologies



Scenario context & motivation

Needs: car insurance companies would like to define customer 
segments that capture different driving profiles

● Each segment could then be offered suitable contract 
conditions

Opportunities: the vehicles insured by some companies have 
on-board GPS devices that can trace their movements

– They could aggregate such traces into driving habit indicators 
based on recent history for the driver and transmit them

Customer segmentation: a marketing 
strategy that involves dividing a broad 
target market into subsets of consumers 
who have common needs

http://en.wikipedia.org/wiki/Customer_segmentation



Scenario description

Driving indicators

● Each vehicle continuously keeps track of recent movements, 
compute aggregate indicators and sends them to controller

Profile extraction

– The controller uses initial indicator values to build clusters 
of drivers, each corresponding to a “driving profile” 

Profile monitoring

– The controller continuously checks updates to verify that 
the driving profiles extracted are still good enough



Step 1: Features for individual 
mobility behaviors

● Indicators for recent mobility behaviors
● Computed over recent history → sliding window

● Include information derivable from standard GPS 
devices

time

window width



● Which features?

– Superset of those currently used by insurance companies

How fast I drive
w.r.t. speed limits

Where I drive
w.r.t. road categories

How dynamic I drive
w.r.t. acc-/decelerations

Step 1: Features for individual 
mobility behaviors



Features over sliding window
●   Length = traveled distance
●   Duration = time spent driving
●   Count = number of trips
●   Phighway = % km on highways
●   Pcity = % km inside cities
●   Length_arc_crowded = km on 20% most crowded roads
●   Pnight = % km in night time
●   Pover = % km over speed limit
●   Profile = % of km on systematic trips
●   Radius_g = radius of gyration
●   Radius_g_L1 = radius of gyration w.r.t. L1
●   Avg_Dist_L1 = average distance from L1
●   TimeL1L2 = % time spent on L1 and L2
●   EntropyArc = entropy on road segment frequencies
●   EntropyLocation = entropy on location frequencies
●   EntropyTime = entropy on hours of the day

Basic aggregates

Aggregates on spatial /
temporal selection

Count of events

Spatial/Temporal distribution



Correlation analysis



Features over sliding window
●   Length = traveled distance
●   Duration = time spent driving
●   Count = number of trips
●   Phighway = % km on highways
●   Pcity = % km inside cities
●   Length_arc_crowded = km on 20% most crowded roads
●   Pnight = % km in night time
●   Pover = % km over speed limit
●   Profile = % of km on systematic trips
●   Radius_g = radius of gyration
●   Radius_g_L1 = radius of gyration w.r.t. L1
●   Avg_Dist_L1 = average distance from L1
●   TimeL1L2 = % time spent on L1 and L2
●   EntropyArc = entropy on road segment frequencies
●   EntropyLocation = entropy on location frequencies
●   EntropyTime = entropy on hours of the day

Basic aggregates

Aggregates on spatial /
temporal selection

Count of events

Spatial/Temporal distribution



Features normalization
● Log transformation for features with skewed distribution

● Z-score normalization for all features



(2) Compute driving profiles
● Clustering-based definition

– Profile = representative set of indicators for a large group of drivers 
with similar behaviors (i.e. similar indicator values)

● Clustering method 
– K-means – a partitional, center-based clustering algorithm

– Euclidean distance over driving indicators

– Refinements: Iterated K-means & select best solution + Noise removal

● Profile = average point of each cluster



Cluster refinement
● Iterated K-means

– Run clustering multiple times (→ initial random seeding)

– Select output with best quality
● Based on clusters compactness (→ SSE – see definition later)

● Noise removal
– Performed at postprocessing

– From each cluster, remove points p such that 

                     d(p,c) > 2 median { d(x,c) | x in cluster} 

where c is the cluster center

– Alternative solutions are possible
● e.g.: density-based noise removal



Experimental setting
● GSP traces of an insurance

company customers
– 35 days monitoring

● Sample of ~11k vehicles

moving in the area
● Short temporal thresholds for

testing purposes
– Compute driving indicators over a sliding window of 3 days

– Update indicators every 15'

– Most likely larger in a real application – parameter tuning to be 
done with domain experts

timewidth = 72h



Experiments: clusters inspection

Explorers
Long-range commuters
Sunday drivers



(3) Driving profiles monitoring

● Translated to “cluster quality monitoring”

● Quality measure: SSE = Sum of Squared Errors

– Given a clustering C = { C
1
, … , C

k
 }, and average 

points m
i
 for each cluster C

i

SSE=∑
i=1

K

∑
x∈C i

dist 2(mi ,x )



(3) Driving profiles monitoring



Monitoring process

Initialization: compute clusters, cluster centers (used as reference 
points for Safe Zones) and distribute SSE thresholds to clusters



Monitoring process

Node-level test: each node checks to be within the safe zone

Cluster-level test: 
check that SSE(i) does 
not exceed threshold

Clustering-level test: checks that global 
SSE does not exceed threshold

Re-clustering



Experiments: communications / 
strict problem def.Balancing/memoryless

Balancing/memory

History Predictive Ms

Trend Predictive Ms

Oracle (no false alrms)

Communications from controller w/ broadcasting: 
between 1.23% and 2.34%, dominated by balancing
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Services Towards Individual Users

Self-awareness



Self-awareness services

● Mobility-based specialization of self-
awareness services for generic users
– Provide summary of activity of the user

– Provide comparison against collectivity



Self-awareness services

● Summaries based on
– Temporal statistics

– Spatial statistics / distributions

– Movement aggregates



User's activity summaries

● A real example



Comparison against collectivity

● In space

User's hotspots

City hotspots



Comparison against collectivity

● In time

City time distribution User's distribution



Comparison against collectivity

● On general statistics
KM traveled per month Speed vs. Length of trips

Total duration of travels Radius of gyration
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Services Towards Individual Users

Proactive Carpooling



Proactive car pooling 

Application developed within the EU project ICON 



Carpooling cycle
Context

 Several initiatives, especially on the web



  

Carpooling cycle
Distinctive features

● Users manually insert 
and update their rides

● Users search and 
contact candidate pals

● Users make individual, 
“local” choice

● System autonomously 
detect systematic trips

● System automatically 
suggest pairings

● System seeks globally 
optimal allocation

Traditional approach   vs.   Data-driven cycle



  

Carpooling cycle
Assumptions

● Users provide access to their mobility traces



  

Carpooling cycle
Step 1: Inferring Individual Systematic Mobility

• Extraction of Mobility Profiles
– Describes an abstraction in space and time 

of the systematic movements of a user.

– Exceptional movements are completely 
ignored.

– Based on trajectory clustering with noise 
removal

Individual History Trajectory Clusters Routines



  

Carpooling cycle
Step 2: Build Network of possible carpool matches

● Based on “routine containment”

– One user can pick 

up the other along 

his trip

● Carpooling network

– Nodes = users

– Edges = pairs of users 

with matching routines

passenger

driver



  

Carpooling cycle
Step 3: Optimal allocation of drivers-passengers

• Given a Carpooling Network N, select a 
subset of edges that minimizes |S|

– S = set of circulating vehicles

provided that the edges are coherent, i.e.:

– indegree(n)=0 OR 
outdegree(n)=0 (a driver cannot 
be a passenger)

– indegree(n) ≤ capacity(n)

N

N'



  

Carpooling cycle

Input mobility data

DM: Extract 
mobility profiles

Build Carpooling network

CP: Optimal 
allocation

Users accept/reject 
suggestions



  

Carpooling cycle
Improvement

• In carpooling (especially if proactive) users 
might not like the suggested matches
– Impossible to know who will accept a given 

match

– Modeling acceptance might improve results

• Two new components

– Learning mechanism to guess success 
probability of a carpooling match

– Optimization task exploits it to offer solution 
with best expected overall success



  

 

 

Carpooling cycle revised

Input mobility data

DM: Extract 
mobility profiles

Weighted Carpooling network

CP: Allocation with best 
expected success

Users accept/reject 
suggestions

Training 
data

ML: Learn/update 
success model



  

Carpooling cycle
Learning a success model

• Input: set of features describing a single carpooling pair

• Output: success probability p in [0,1]

• 36 Features adopted
– Ease of carpooling: space_dist_start_pickup, space_dist_end_drop_off, 

time_dist_start_pickup, time_dist_end_drop_off, time_pick_up_get_off, 
start_together, end_together, distance_between_homes, 
dist_between_works

– Personal features (of both driver and passenger): age, gender, 
marital_status, occupation, is_smoker, has_children, has_animals, 
car_free_seats                   → Cannot be inferred, need external data

– Past personal history in the service (of both driver and passenger): 
last_driver_accepted, last_passenger_accepted, %_acceptance_driver,
%_acceptance_passenger

– History of the two users together (if any): last_accepted_pair, 
last_rejected_pair,%_accepted_pair



  

Carpooling cycle
Learning a success model

• Model selected: “probability estimation tree”
→ simple decision tree with assigned probabilities 
of prediction in the leaves

P(Yes) = 3/13 = 23%P(Yes) = 6/10 = 60%



  

Carpooling cycle
Revised optimization model

• Given a Carpooling Network N, select a 
subset W of edges that maximize 

– sum p(w)  |  w in W

provided that the edges are coherent, i.e.:

– indegree(n)=0 OR 
outdegree(n)=0 (a driver cannot 
be a passenger)

– indegree(n) ≤ capacity(n)

N

N'

0.3

0.4

0.7
0.6
0.3

0.3



  

Carpooling cycle
Two usage scenarios

● Scenario 1:
– Real service is implemented, with real users 

interacting (accept/reject suggestions)

● Scenario 2:
– Simulation environment where the users' behaviour 

is simulated through a model

– Mobility data is taken from historical traces

– Useful to perform what-if analyses on 
● (i – social) effects of different users' behaviours
● (ii – performances) effects of different learning strategies 



  

Carpooling cycle
Scenario 2 – sample results

● Profiles involved in carpooling network



  

Carpooling cycle
Scenario 2 – sample results

● Prediction models



  

Carpooling cycle
Scenario 2 – sample results

● Performances



Services Towards Public Sector

Urban Mobility Atlas



  

Dynamics of urban mobility



  

Impact of Systematic Mobility

Access Routes 
Systematic Mobility (%)

Highway

Commuters
Area

Mixed Area:
Commuters + Malls



Pisa – Incoming traffic



Pisa – Outgoing Traffic



  

… and Comparison

Florence Montepulciano
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Services Towards Public Sector

Mobility-based Redefinition of Borders



Mobility coverages



Step 1: spatial regions



Step 2: evaluate flows among 
regions



Step 3: forget geography



Step 4: perform community 
detection



Step 4: perform community 
detection



Step 5: map back to 
geography



Step 6: draw borders



Final result



Final result: compare with 
municipality borders



Borders in different time 
periods

Only weekdays movements Only weekend movements

Similar to global clustering: strong 
influence of systematic 
movements

Strong fragmentation: the influence 
of systematic movements (home-
work) is missing 



Borders at regional scale



Final results



Comparison with “new 
provinces”
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