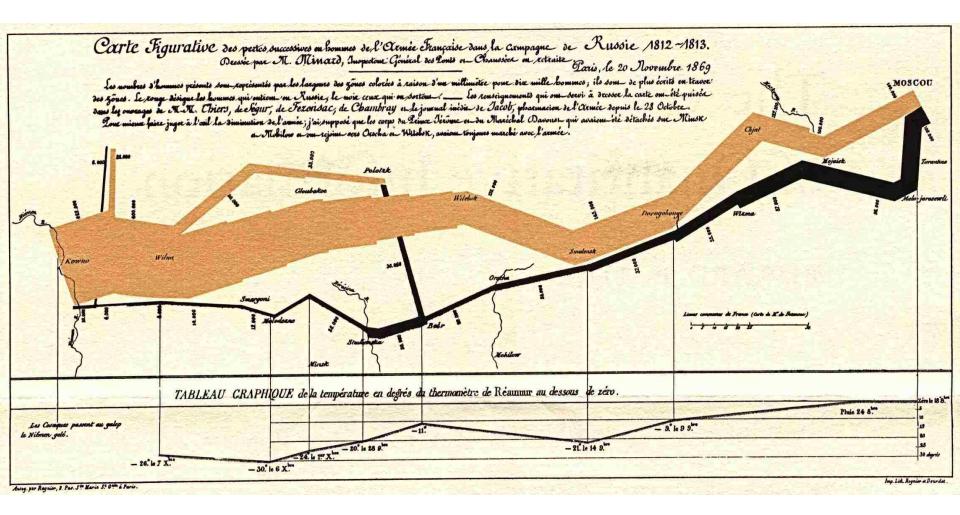
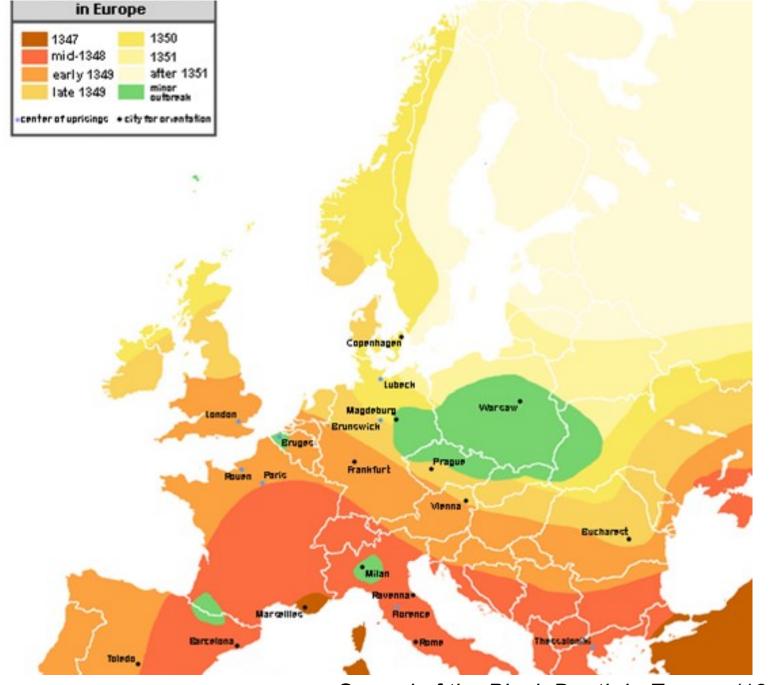
Mobility Data Mining

Mobility data Analysis Foundations

Understanding Human Mobility: a long path



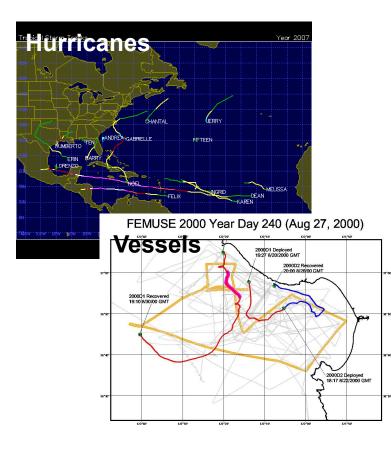
Charles Minard. "Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813", 1869.

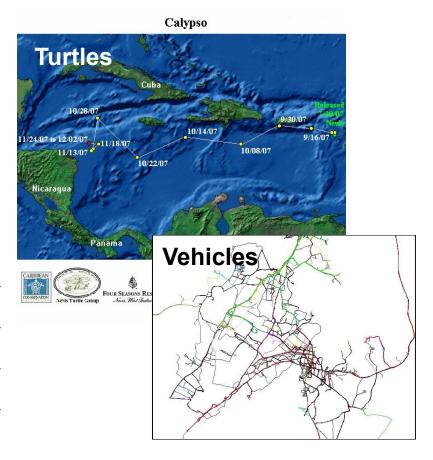


Spread of the Black Death in Europe (1346–53)

Moving Object Data

Several domains:

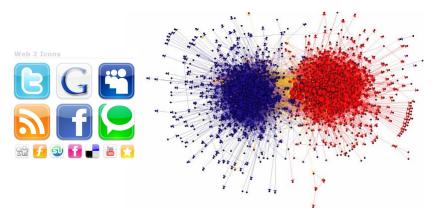




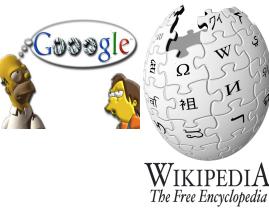
The novelty : BIG DATA

What we buy

Whom we interact with



What we search for

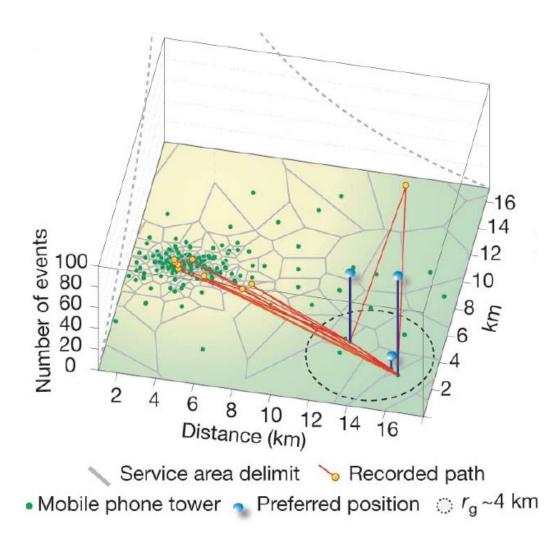


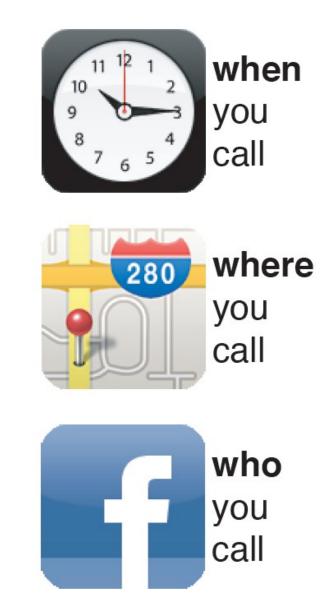
Where we go

Why Mining Moving Object Data?

Large diffusion of mobile devices, mobile services and location-based services

Country-wide mobile phone data





GPS tracks

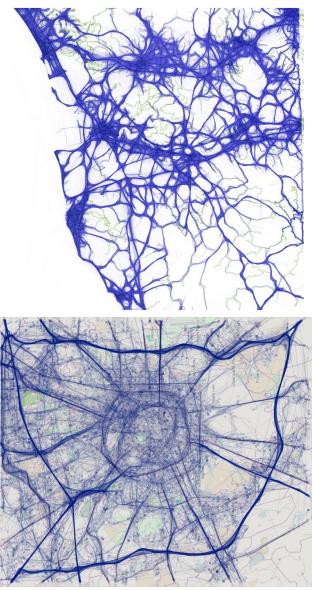
Onboard navigation devices send GPS tracks to central servers

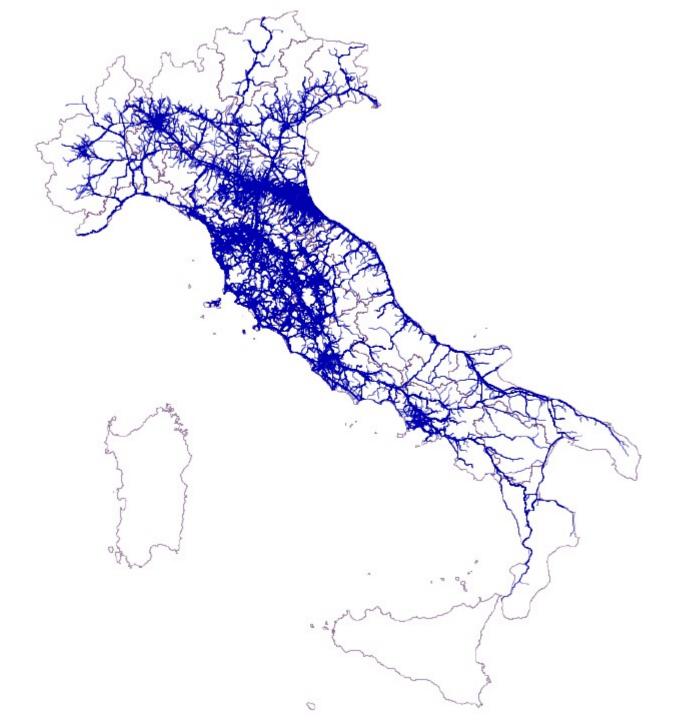
Ide;Time;Lat;Lon;Height;Course;Speed;PDOP;State;NSat

8;22/03/07 08:51:52;50.777132;7.205580; 67.6;345.4;21.817;3.8;1808;4 8;22/03/07 08:51:56;50.777352;7.205435; 68.4;35.6;14.223;3.8;1808;4 8;22/03/07 08:51:59;50.777415;7.205543; 68.3;112.7;25.298;3.8;1808;4 8;22/03/07 08:52:03;50.777317;7.205877; 68.8;119.8;32.447;3.8;1808;4 8;22/03/07 08:52:06;50.777185;7.206202; 68.1;124.1;30.058;3.8;1808;4 8;22/03/07 08:52:09;50.777057;7.206522; 67.9;117.7;34.003;3.8;1808;4 8;22/03/07 08:52:12;50.776925;7.206858; 66.9;117.5;37.151;3.8;1808;4 8;22/03/07 08:52:15;50.776813;7.207263; 67.0;99.2;39.188;3.8;1808;4 8;22/03/07 08:52:18;50.776780;7.207745; 68.8;90.6;41.170;3.8;1808;4 8;22/03/07 08:52:21;50.776803;7.208262; 71.1;82.0;35.058;3.8;1808;4 8;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.371;3.8;1808;4 ...

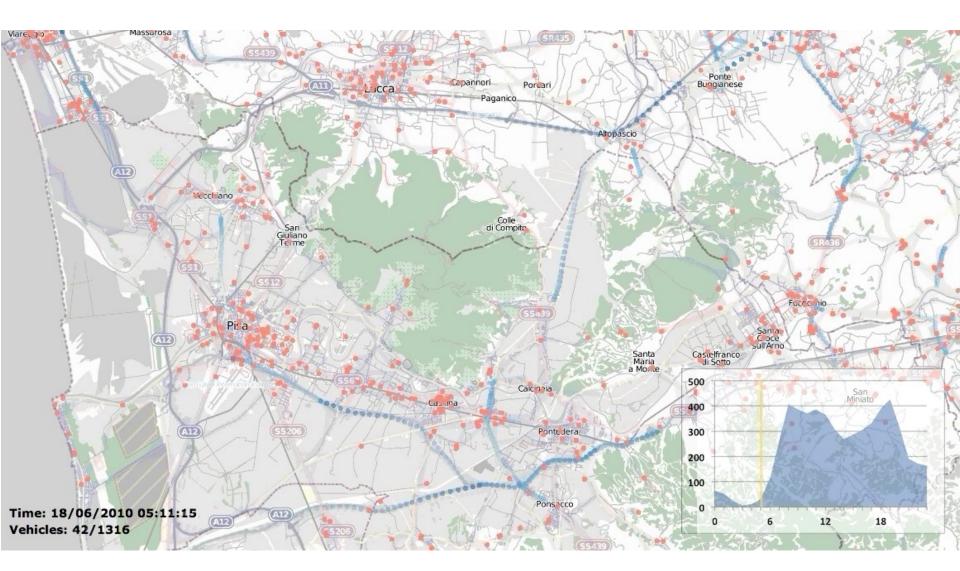
Sampling rate from few secs to 1-2 minutes

Spatial precision ~ 10 m

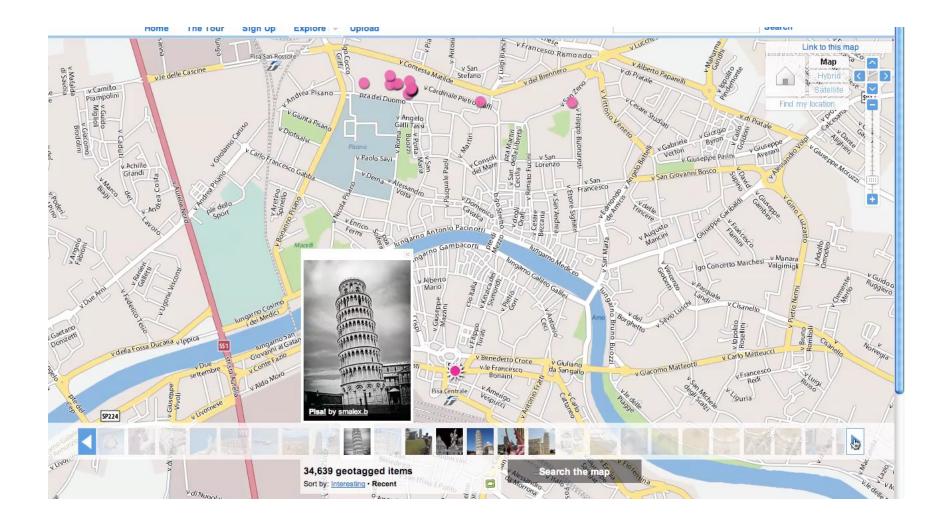




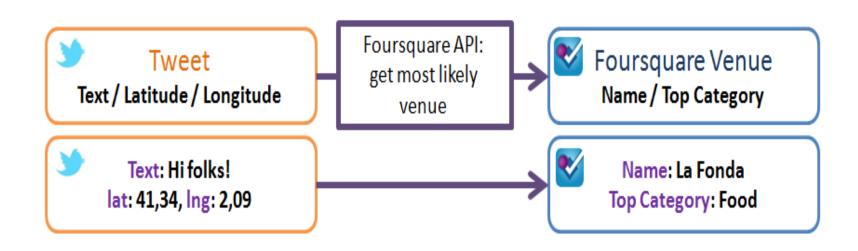
Urban Mobility Complexity: vehicles



Social networks



Twitter



Research Impacts

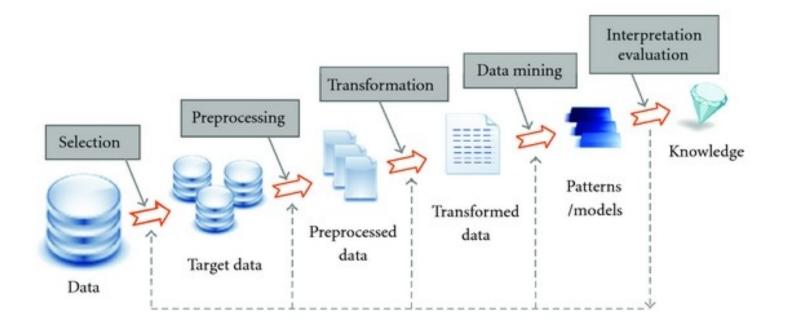
- Moving object and trajectory data mining has many important, real-world applications driven by the real need
 - Ecological analysis (e.g., animal scientists)
 - Weather forecast
 - Traffic control
 - Location-based services
 - Homeland security (e.g., border monitoring)
 - Law enforcement (*e.g.*, video surveillance)

Complexity of the Moving Object Data

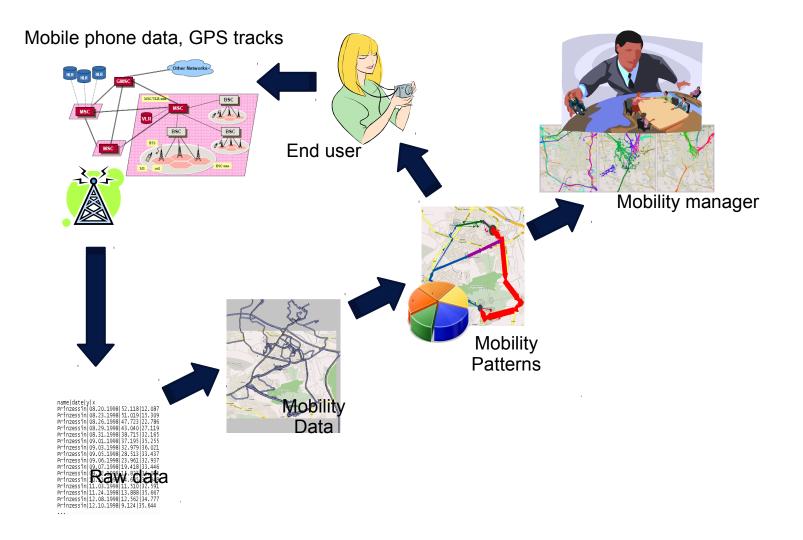
Uncertainty

- Sampling rate could be inconstant: From every few seconds transmitting a signal to every few days transmitting one
- Data can be sparse: A recorded location every 3 days
- Noise
 - Erroneous points (e.g., a point in the ocean)
- Background
 - Cars follow underlying road network
 - Animals movements relate to mountains, lakes, ...
- Movement interactions
 - Affected by nearby moving objects

Knowledge Discovery process



The KDD process for Mobility Data

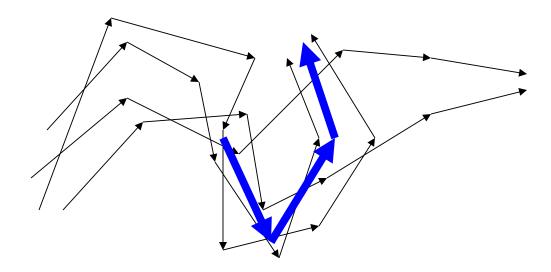


Data mining ...

- □ ... is about finding models that emerge directly from the data
 - Data-driven vs hypothesis-driven analysis
- Local models
 - Patterns: find groups of items/events that frequently cooccur in the data
- Global models
 - Clustering: find a natural partition of the data into groups of similar objects
 - Classification: find a function that predicts the value of a specified variable given the values of the others

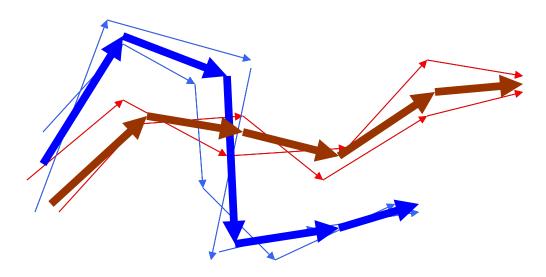
Trajectory patterns

Discover frequently followed itineraries



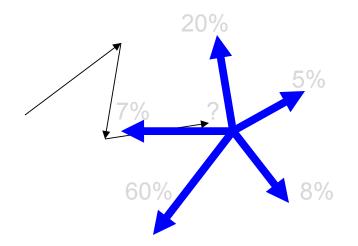
Trajectory Clustering

Group together similar trajectories
 For each group produce a summary



Trajectory classification and prediction

- Extract behaviour rules from history
- Use rules to predict behaviour of future users



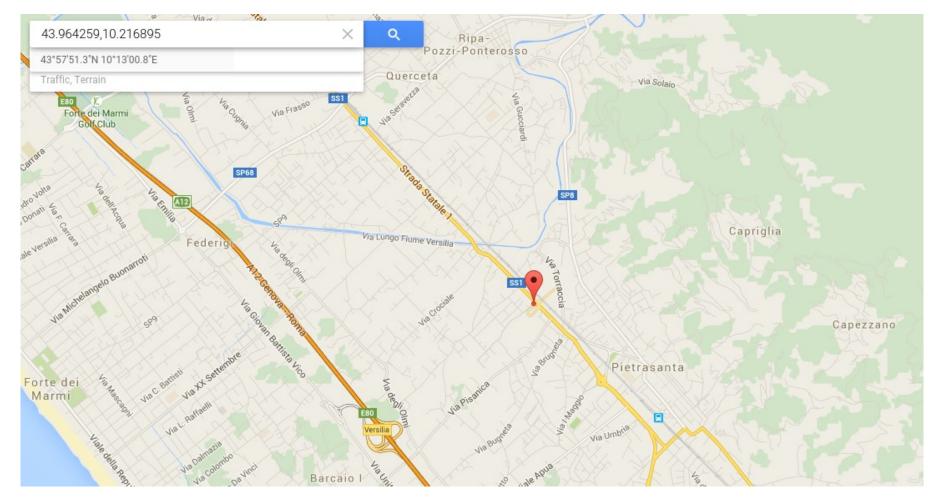
GPS processing and statistics

Raw GPS Data

Others Timestamp (optional) ID Longitude Latitude 946826,14/06/10 14:08:54,43964259,10216895,0,0,1,0,0 457380,13/06/10 22:05:27,43682201,10408320,0,0,3,0,0 457380,13/06/10 22:06:00,43682688,10408501,10,10,3,1,33 457380,13/06/10 22:06:34,43683609,10409146,14,24,3,1,115 457380,13/06/10 22:07:09,43685653,10410117,52,18,3,1,241 457380,13/06/10 22:07:43,43689775,10412032,50,18,3,1,484 457380,13/06/10 22:08:19,43692906,10413910,32,356,3,1,401 457380,13/06/10 22:08:53,43690801,10415016,60,126,3,1,279

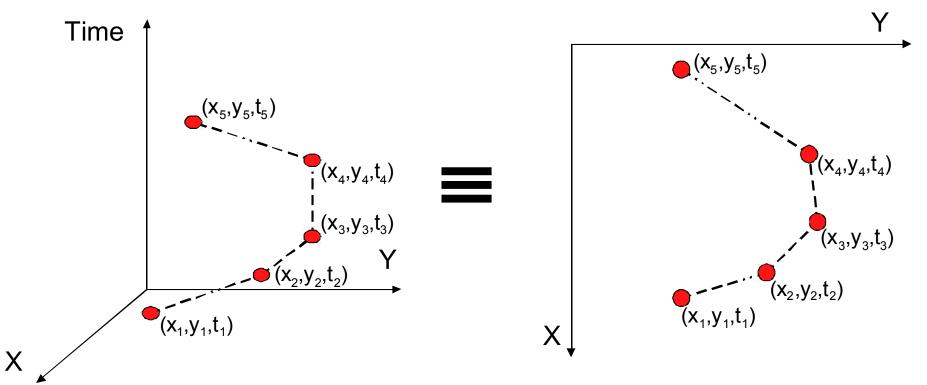
Sample point on the map

946826,14/06/10 14:08:54,43964259,10216895,0,0,1,0,0



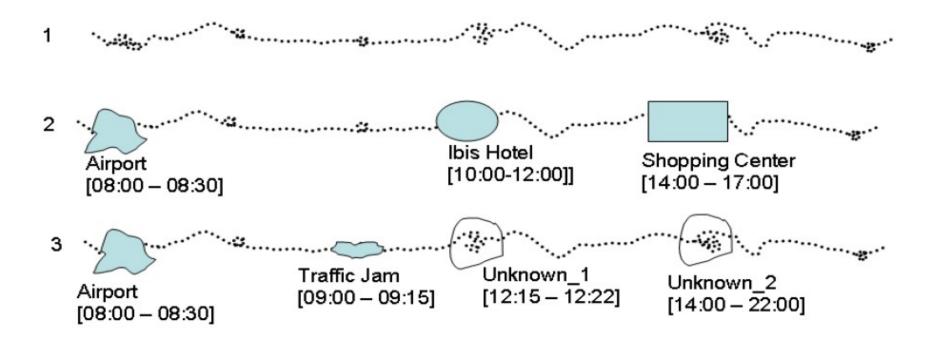
Trajectory data

- Mobility of an object is described by a set of trips
- Each trip is a trajectory, i.e. a sequence of time-stamped locations



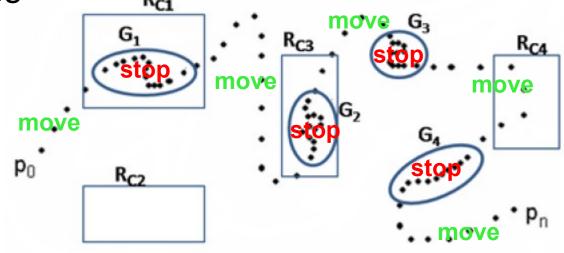
Trajectory reconstruction

- Raw data forms a continuous stream of points
- How to cut it into stops and trips?
 - Example on smart phone traces:



Trajectory reconstruction

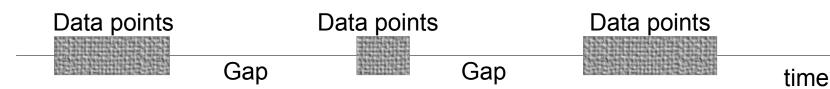
- General criteria based on speed
 - If it moves very little (threshold Th_s) over a significant time interval (threshold Th₁) then it is practically a stop
 - Trajectory (trip) = contiguous sequence of points between two stops
 R_{c1}



Trajectory reconstruction

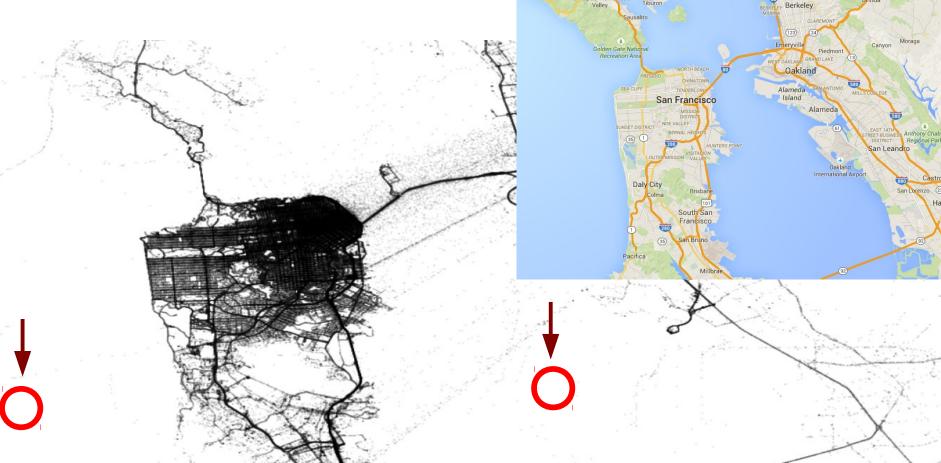
- Special cases, easier to treat
 - Stop explicitly in the data: e.g. engine status on/off
 - Simply "cut" trajectories on status transitions

- Device is off during stops:
 - Typical of cars data
 - A stop results in a time gap in the data
 - Exceptions: short stops might remain undetected



Outliers / noise

Single points might contain errors of various kinds

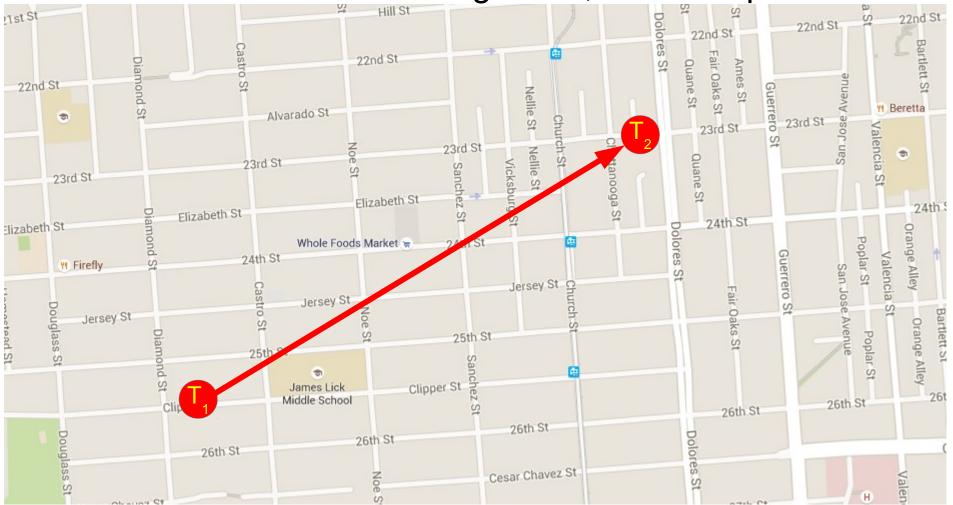


Gaps

 Sometimes the space/time gap between consecutive points is significant

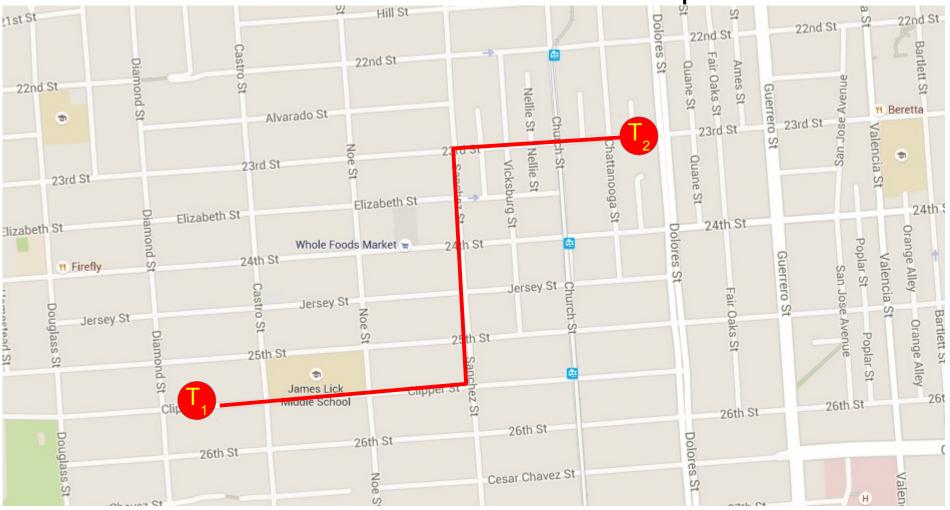
Free vs. constrained movement

- Typical solutions:
 - Free movement => straight line, uniform speed

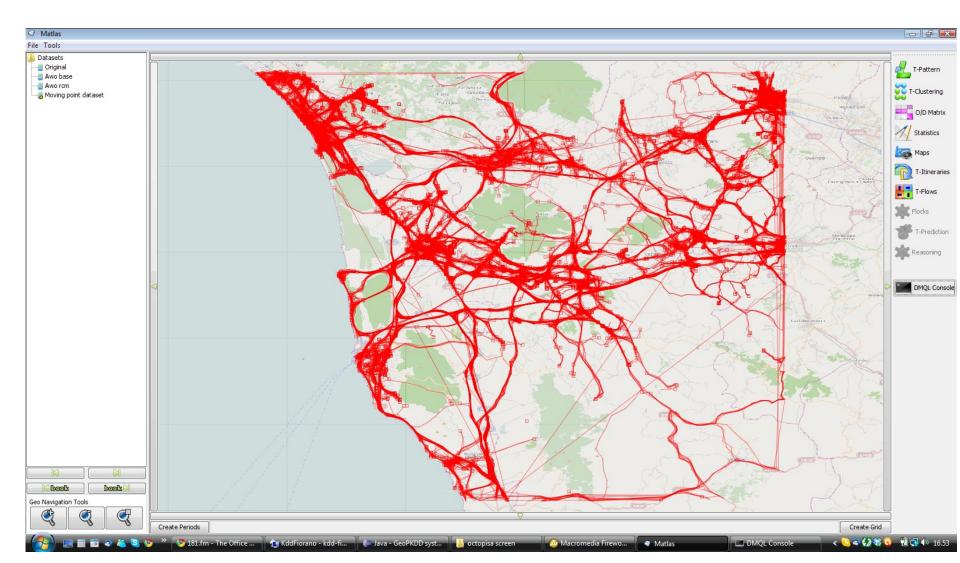


Free vs. constrained movement

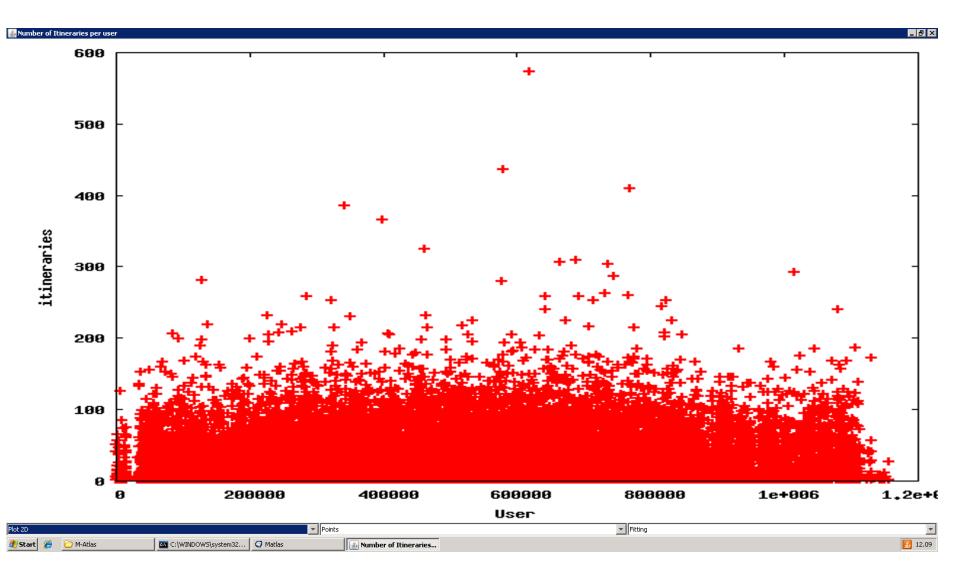
- Typical solutions:
 - Constrained movement => shortest path



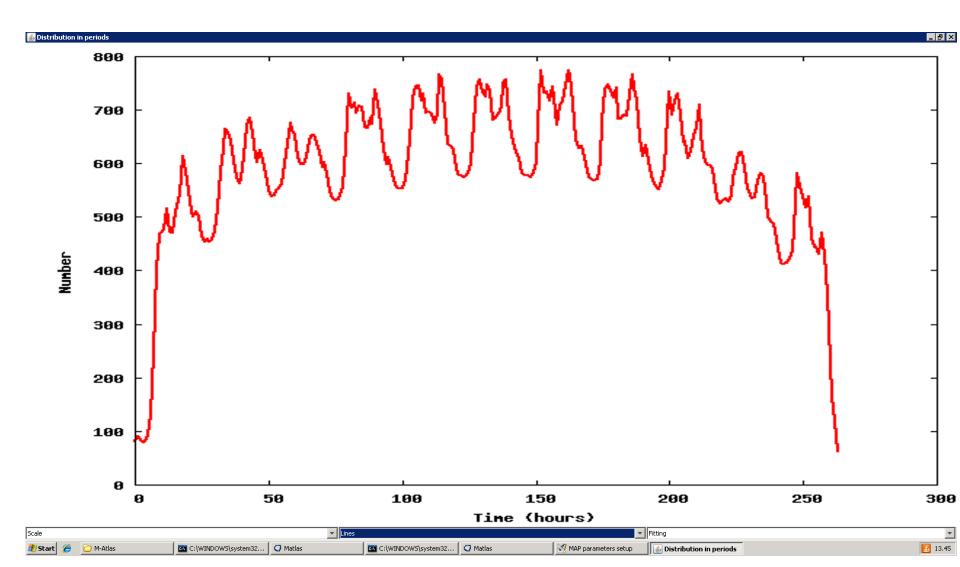
A Dataset (2/7 \rightarrow 12/7)



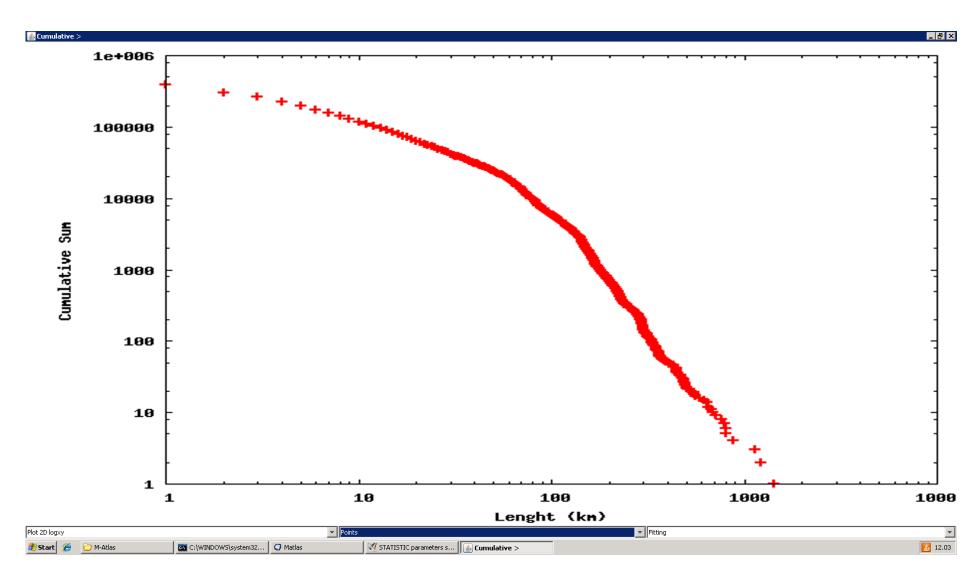
Number of trajectories per User



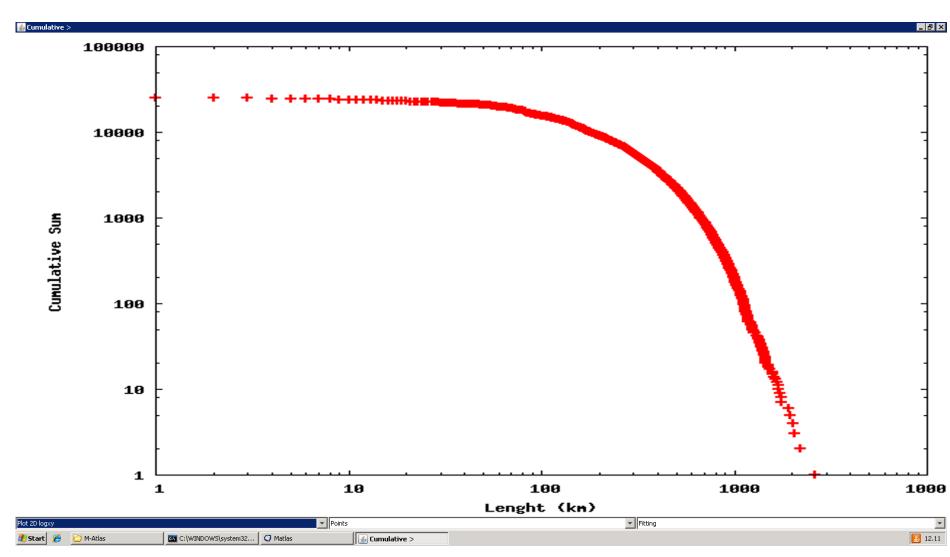
Distribution in periods (hours)



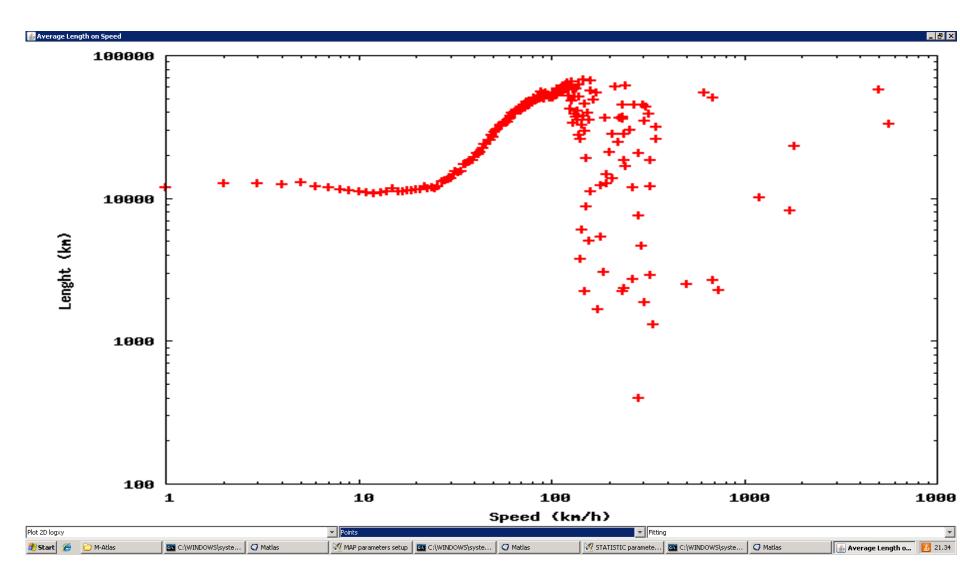
Distribution of lengths (Cumulative)



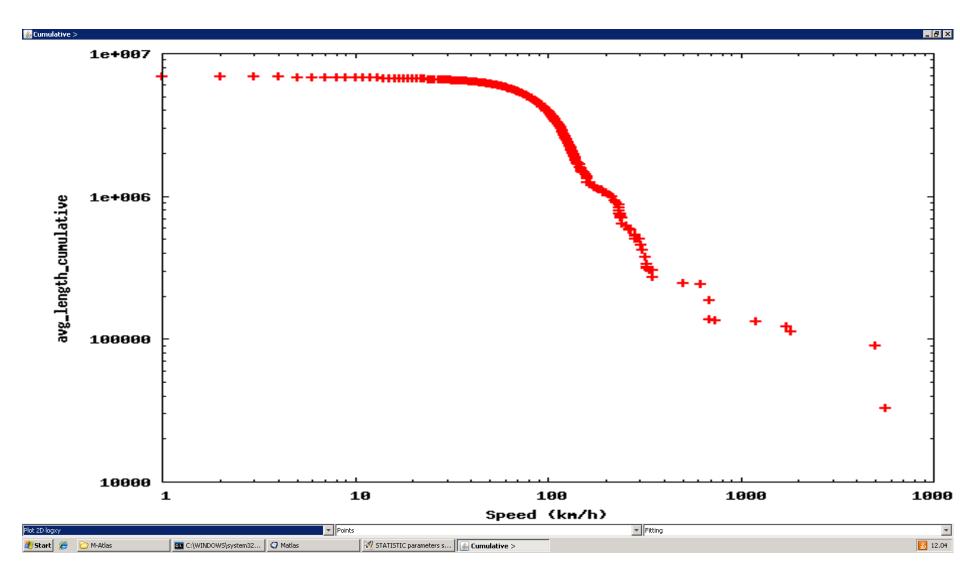
Distribution of Lengths per User (Cumulative)



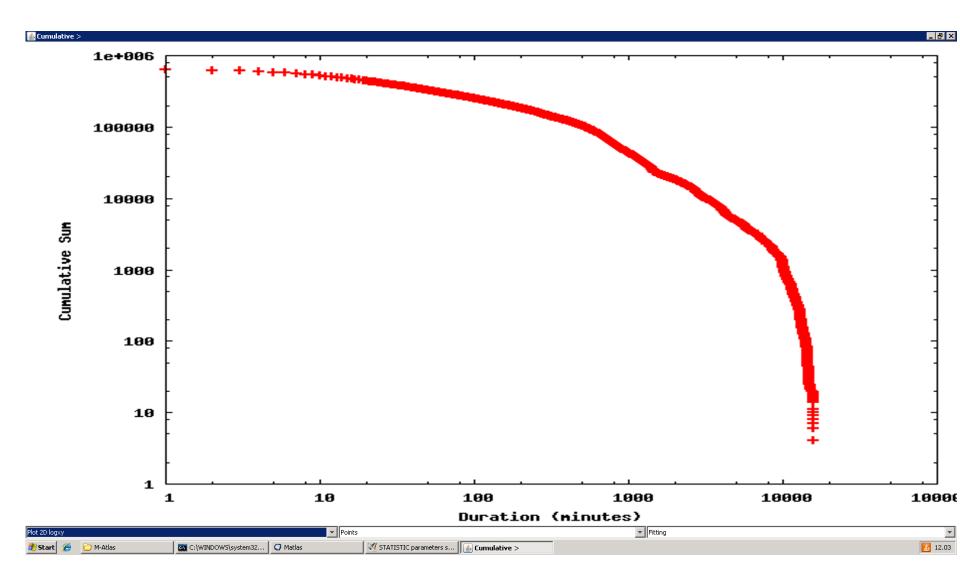
Average length on speed



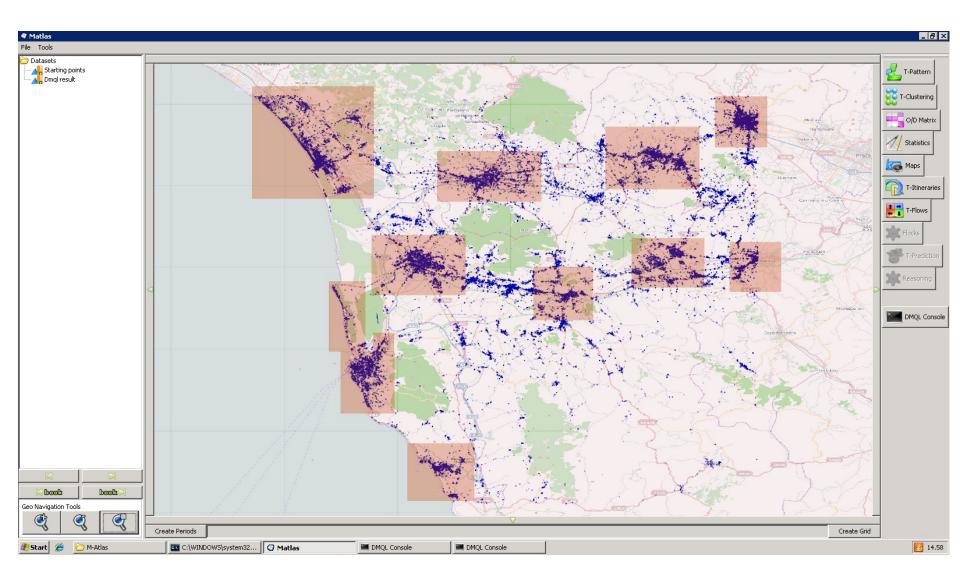
Average length on speed (Cumulative)



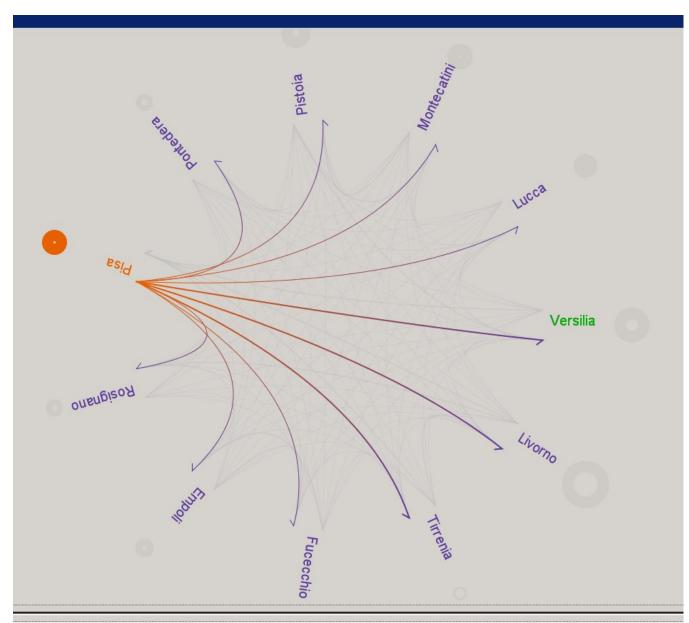
Distribution of Durations (Cumulative)



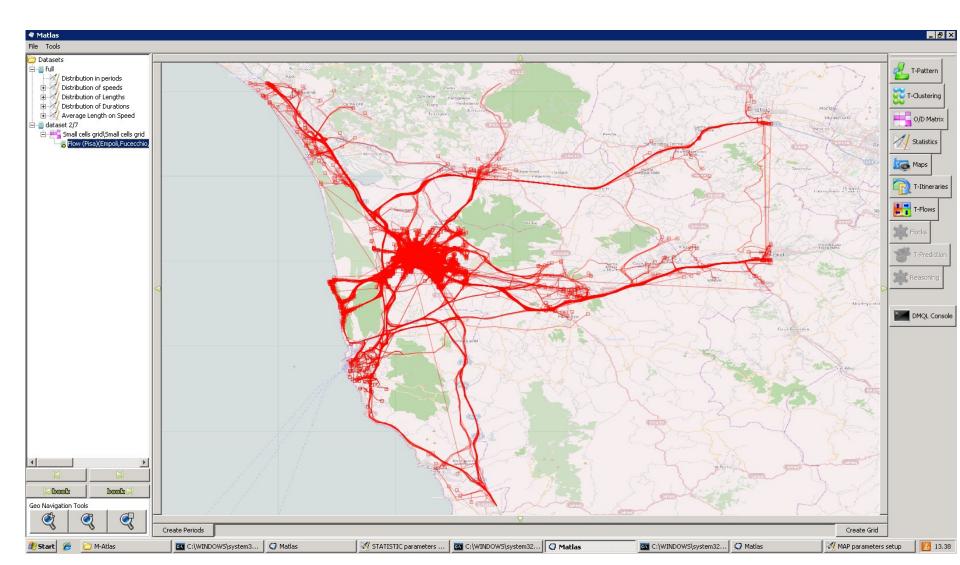
Cities (Approximation)



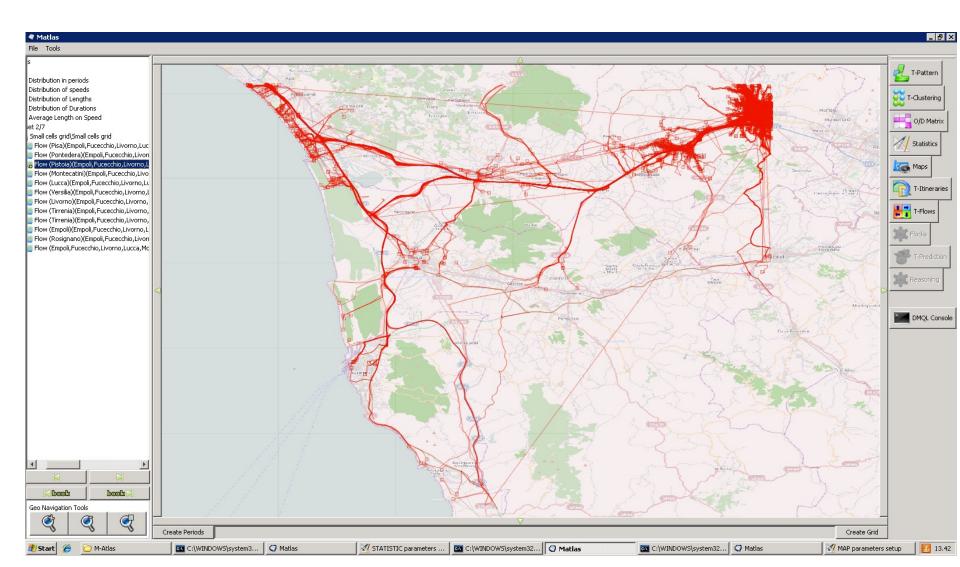
OD Matrix (Cities $\leftarrow \rightarrow$ Cities)



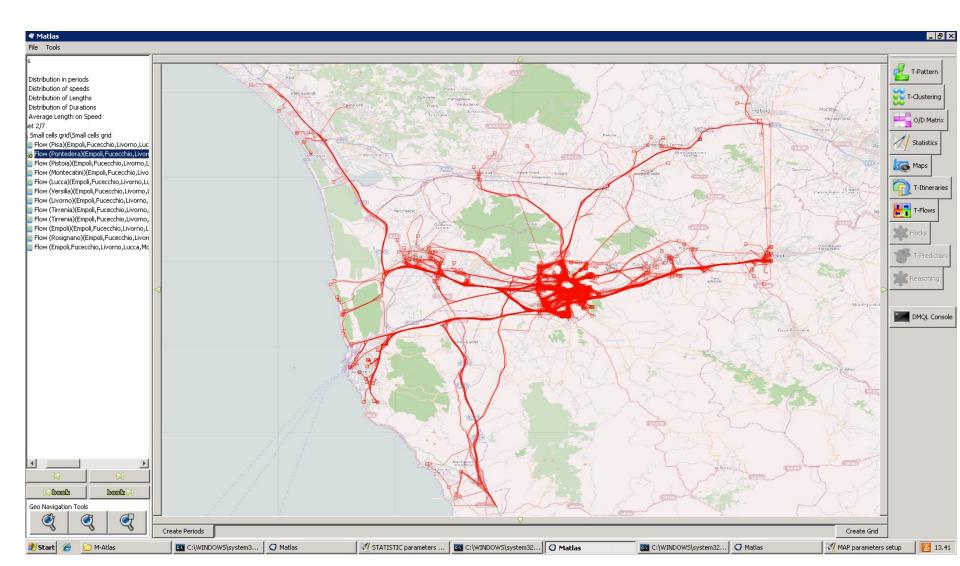
Flow from Pisa



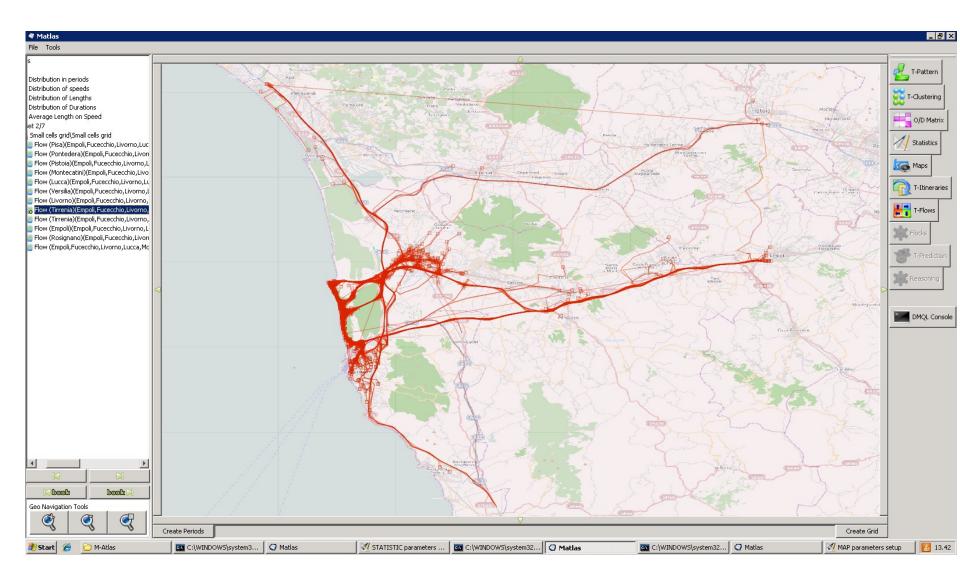
Flow From Pistoia



Flow From Pontedera



Flow From Tirrenia



Flow To Pisa

