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ABSTRACT

Our understanding of how individual mobility patterns shape
and impact the social network is limited, but is essential
for a deeper understanding of network dynamics and evo-
lution. This question is largely unexplored, partly due to
the difficulty in obtaining large-scale society-wide data that
simultaneously capture the dynamical information on indi-
vidual movements and social interactions. Here we address
this challenge for the first time by tracking the trajecto-
ries and communication records of 6 Million mobile phone
users. We find that the similarity between two individuals’
movements strongly correlates with their proximity in the
social network. We further investigate how the predictive
power hidden in such correlations can be exploited to ad-
dress a challenging problem: which new links will develop
in a social network. We show that mobility measures alone
yield surprising predictive power, comparable to traditional
network-based measures. Furthermore, the prediction accu-
racy can be significantly improved by learning a supervised
classifier based on combined mobility and network measures.
We believe our findings on the interplay of mobility patterns
and social ties offer new perspectives on not only link pre-
diction but also network dynamics.

1. INTRODUCTION

Social networks have attracted particular interest in recent
years, largely because of their critical role in various applica-
tions [11, 5]. Despite the recent explosion of research in this
area, the bulk of work has focused on the social space only,
leaving an important question of to what extent individ-
ual mobility patterns shape and impact the social network,
largely unexplored. Indeed, social links are often driven by
spatial proximity, from job- and family-imposed shared pro-
grams to joint involvement in various social activities [28].
These shared social foci and face-to-face interactions, repre-
sented as overlap in individuals’ trajectories, are expected to
have significant impact on the structure of social networks,
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from the maintenance of long-lasting friendships to the for-
mation of new links.

Our knowledge of the interplay between individual mobil-
ity and social network is limited, partly due to the difficulty
in collecting large-scale data that record, simultaneously, dy-
namical traces of individual movements and social interac-
tions. This situation is changing rapidly, however, thanks
to the pervasive use of mobile phones. Indeed, the records
of mobile communications collected by telecommunication
carriers provide extensive proxy of mobility patterns and
social ties, by keeping track of each phone call between any
two parties and the localization in space and time of the
party that initiates the call. The high penetration of mobile
phones implies that such data captures a large fraction of
the population of an entire country. The availability of these
massive CDRs (Call Detail Record) has made possible, for
instance, the empirical validation in a large-scale setting of
traditional social network hypotheses such as Granovetter’s
strength of weak ties [27], the development of a first gener-
ation of realistic models of human mobility [14, 29] and its
predictability [30]. Indeed, despite the inhomogeneous spa-
tial resolution (the uneven reception area of mobile phone
towers) and sampling rates (the timing of calls), the large
volume of CDR data allows us to reconstruct many salient
aspects of individual daily routines, such as the most fre-
quently visited locations, and the time and periodicity of
such visits. Therefore, these data serve as an unprecedented
social microscope helping us scrutinize the mobility patterns
together with social structure and the intensity of social in-
teractions.

In this work, we follow the trajectories and communication
patterns of approximately 6 Million users over three months,
by using CDR data from an anonymous country, aiming to
measure for any pair of users u and v:

e How similar is the movement of u and v. For this
purpose, we introduce a series of co-location measures
quantifying the similarity between their movement rou-
tines, prompting us to call them the mobile homophily
between u and v.

e How connected are u and v in the social network. For
this purpose, we adopt several well-established mea-
sures of network proximity, based on the common neigh-
bors or the structure of the paths connecting u and v
in the who-calls-whom network.

e How intense is the interaction between u and v. For



this purpose we use the number of calls between u and
v as a measure of the strength of their tie.

Our analysis offers empirical evidence that these three
facets, co-location, network proximity and tie strength, are
positively correlated with each other. In particular, we find
that the higher the mobile homophily of w and v, the higher
the chance that u and v are strongly connected in the so-
cial network, and that they have intense direct interactions.
These findings uncover how the social network, made of nu-
merous explicit who-calls-whom ties, is embedded into an
underlying mobility network, made with the implicit ties
dictated by the mobile homophily.

The emergence of such surprising three-fold correlation
hints that it is conceivable, to some extent, to predict one
of the three aspects given the other two. Indeed, we demon-
strate in this study how the predictive power hidden in these
correlations can be exploited to identify new ties that are
about to develop in a social network. Specifically, we study
the influence of co-location and mobile homophily in link
prediction problems, asking: what is the performance of
mobility-based measures in predicting new links, and can
we predict more precisely whether two users u and v (that
did not call each other in the past) will call each other in
the future, by combining the measurements of their network
proximity and mobile homophily? Our key findings are sum-
marized as follows:

e The mobility measures on their own carry remarkably
high predictive power, comparable to that of network
proximity measures.

e By combining both mobility and network measures,
we manage to significantly boost the predictive perfor-
mance in supervised classification, detecting interest-
ing niches of new links very precisely. For example, by
considering a subset of potential links (pair of users)
with high network proximity and mobile homophily,
we are able to learn a decision-tree classifier with a
precision of 73.5% and a recall of 66.1% on the pos-
itive class. In other words, only approximately one
fourth of the predicted new links were false positives,
and only one third of the actual new links were missed
by the predictor.

To the best of our knowledge, this work presents the first
assessment of the extent individuals’ daily routines as a de-
terminant of social ties, from empirical analysis to predic-
tion models. With recent proliferating advances on human
mobility and social networks, we believe our findings are
of fundamental importance in our understanding of human
behavior, provide significant insights towards not only link
prediction problems but also the evolution and dynamics of
networks, and could potentially impact a wide array of areas,
from privacy implications to urban planning and epidemic
prevention.

2. MOBILE PHONE DATA

Currently the most comprehensive data that contains si-
multaneously both human mobility and social interactions
across a large segment of the population is collected by mo-
bile phone companies. Indeed, mobile phones are carried by
their owners during their daily routines. As mobile carri-
ers record for billing purposes the closest mobile tower each

time the user uses his phone, the data capture in detail indi-
vidual movements. With almost 100% penetration of mobile
phones in industrial countries, the mobile phone network is
the most comprehensive proxy of a large-scale social network
currently in existence. We exploit in this study a massive
CDR dataset of approximately 6M users, which, to the best
of our knowledge, is the largest dataset analyzed to date
containing both human trajectories and social interactions.
We focused on 50k individuals selected as the most active
users (identical to those that were studied in a recent pub-
lication [30]), following not only their trajectories but also
their communication records during 14 successive weeks in
2007".

The resulting dataset contains around 90M communica-
tion records among the individuals, and over 10k distinct
locations covering a radius of more than 1000 km. Each
record, for our purposes, is represented as 4-tuple (z,y, t, 1),
where user x is the caller, user y is the callee, ¢ is the time
of the call, and [ is the location of the tower that routed
the call. The temporal granularity used in this study is the
hour, justified by the finding in [14, 30, 29]. Let V de-
notes the set of users. For each user x € V, the total num-
ber of calls initiated by « is denoted as n(z). For z’s i-th
communication, where 1 < i < n(z), the time stamp, loca-
tion, and the contacted user are denoted as T;(z), L;(x) and
N;(z), respectively. Given a time interval between to and ¢,
the set of communications between pairs of users occurred
within the interval is denoted as Elto,t1] = {(z,y)|z,y €
V,3i,1 < i < n(x),to < Ti(z) < t1,Ni(z) = y}. In other
words, we add an edge (z,y) if there has been at least one
communication between x and y in the interval. There-
fore, Glto,t1] = {V, E[to, t1]} is the resulting social network
within the time interval.

To prepare for the link prediction experiments, we further
separate our data into 2 parts: first 9 weeks for constructing
the old network and the rest 5 weeks for the new network.
For each link e € E, we classify it according to its time
stamp t(e). Fy = {ele € E,t < t(e) < t+ 1} is defined as
the set of edges of the resulting network after aggregating the
communications in the ¢-th week. The “past” and “future”
sets are therefore denoted as Eoiq = U?:l E; and Epew =

tlim FE:. In our study, we focus on nodes in the largest
connected component Goig = {Void, Foid}, where we observe
in total |Viia| = 34,034 users and |Eqq| = 51,951 links.

3. NETWORK PROXIMITY

General approaches in link prediction tasks have been fo-
cused on defining effective network based “proximity” mea-
sures, so that two nodes that are close enough on the graph
but not yet connected may have a better likelihood of be-
coming connected in the future. As the main focus of the pa-
per is to explore the predictive power of mobility compared
and combined with topological predictors, we selected four
representative quantities which have been proven to per-
form reasonably well in previous studies (for more details of
the quantities and their performance on citation networks,
see [21].)

o Common neighbors. The number of neighbors that
nodes z and y have in common. That is, CN(z,y) =

'Regrettably, we cannot make this dataset available due to
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Figure 1: The probability density function P(I|link)
that a link has chemical distance [ in previous week.
Inset: the probability density function of chemical
P(l) for different weeks.

|IT'(z) N T(y)|, where I'(z) = {y|ly € V,(z,y) € E} is
the set of neighbors of x.

o Adamic-Adar [1]. A refinement of CN(z,y) by weight-
ing common neighbors based on their degrees, instead
of simple counting. Therefore the contribution from
hubs to common neighbors is penalized by the inverse
logarithm of their degree.

— 1
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e Jaccard’s coefficient. Defined as the size of the inter-
section of the neighbors of two nodes, I'(z) and I'(y),
divided by the size of their union, characterizing the
similarity between their sets of neighbors.

J(z,y) = [L(z) NT(y)|/|0 (=) UT(y)].

e Katz [17]. Summation over all possible paths from x to
y with exponential damping by length to weight short
paths more heavily. K(z,y) = > 2, gt |pathslzﬂy ,
where pathslaw is the set of all paths with length [
from z to y (damping factor 8 is typically set to 0.05.)

Most network proximity measures are related to the chem-
ical distance on the graph, under the natural assumption
that new links are more likely to occur between nodes that
are within a small distance on the graph. The chemical dis-
tance l(z,y|E) is defined as the length of the shortest path
between two nodes z and y. I(x,y|E) = 1 implies that nodes
z and y are connected, or (z,y) € E. The role of chemical
distance on tie formation can be tested directly by measuring
the probability P;(I|link) for a new link e = (z,y) € Eiq1
to have a chemical distance I(z,y|E:) at previous week t.
That is, P;(I'llink) = |{ele = (i,j) € Fit1,1(4,j|E:) =
I"}|/|Et41]- This distribution is shown in Fig. 1, different
symbols indicating different time windows ¢. We find, first of
all, P(I'|link) is stable over different weeks (1 through 14.),
indicating that the aggregation process we adopted to con-
struct the network is robust, and that P, (I|link) is largely in-
dependent wrt the time windows. Second, P;(l|link) decays
rapidly as [ increases, consistent with previous study [20]
on other data sets. This implies that the majority of new
links are between nodes within two hops from each other,
i.e., nodes with common neighbors. Third, the Poisson dis-
tribution of the chemical distance for arbitrary pairs (inset
of Fig. 1) suggests that the most probable distance for two
users to form a link at random is ~ 12, while it is only 2 for
pairs that do form new links.
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Figure 2: a) The probability two users ¢ and j have
distance d(i,j) > D. b) The probability two users i
and j have Co-Location CoL(i,j) (solid) and Spatial
Co-Location SCoL(i;j) (dashed) greater than z.

4. MOBILE HOMOPHILY

Similar to the graph-based approaches, a natural strategy
to predict new links by leveraging mobility information is
to look for quantities that capture some degree of closeness
in physical space between two individuals. Indeed, people
who share high degree of overlap in their trajectories are ex-
pected to have a better likelihood of forming new links [28].
Therefore, we explored a series of quantities aiming to define
the similarity in mobility patterns of two individuals.

o Distance. Let
ML(z) = argmax;¢ ;. PV (z,1)

be the most likely location of user x, where Loc is the
set of all locations (cell phone towers), and

n(x)

D=3 50 L) /nlx)

is the probability that user z visits location I2. We
define d(z,y) = dist(M L(z), ML(y)) as the distance
between two users = and y, representing the physical
distance between their most frequented locations.

e Spatial Co-Location Rate. The probability that users
x and y visit at the same location, not necessarily at
the same time. Assuming that the probability of visit
of any two users are independent, we define:

= > PV(z,1) x PV(y,l)

leLoc

SCoL(z,y)

e Spatial Cosine Similarity. The cosine similarity of user
x and y’s trajectories, capturing how similar their vis-
itation frequencies are, assigned by the cosine of the
angle between the two vectors of number of visits at
each location for x and y.

PV (x,1) x PV(y,1)
SCos(z,y) l; 1PV (z,1) H x || PV (y, )]

o Weighted Spatial Cosine Similarity. The tf-idf ver-
sion of cosine similarity of the visitation frequencies of
users x and y, where the contribution of each location
! is inversely proportional to the (log of) its overall
population in [. Coherent with the tf-idf idea in infor-
mation retrieval, this measure promotes co-location in

*Here §(a,b) = 1 if a = b, 0 otherwise.
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Figure 3: Correlations between mobility measures (CoL and SCos) and a) Common Neighbor, b) Adamic
Adar, c) Jaccard Coefficient, d) Katz, and e) link weight. The upper panels show the mean values, whereas

the lower panels show the standard deviations

low-density areas, while penalizes co-location in popu-
lated places.

e Co-Location Rate. The probability for users x and y
to appear at the same location during the same time
frame (hour):

n(@) n(y)
> 2 O(AT — |Ti(z) — T5(y)|) 6 (Li(x), L (y))
Col. = = Fln(m)n(y)
; ;1 © (AT — |Ti(z) — T;(y)|)

where ©(x) is the Heaviside step function, and AT is
set to 1 hour. This quantity takes into account the
simultaneous visits of two users at the same location,
i.e., both spatial and temporal proximity, normalized
by the number of times they are both observed at the
same time frame.

e Weighted Co-Location Rate. The tf-idf version of CoL,
i.e., the probability for two users z and y to co-locate
during the same hour, normalized by the (log of) pop-
ulation density of the co-location at that hour.

e [Lxtra-role Co-Location Rate. The probability for two
users x and y to co-locate during the same hour at
night or weekends. As shown in [10], close proxim-
ity of two individuals during off-hours may serve as a
powerful predictor for symmetric friendship.

The quantities listed above either aim at measuring the
geographical closeness or the degree of trajectory overlap of
two individuals, characterizing their mobile homophily. It
should be noted that it is not obvious whether the spa-
tiotemporal co-location measures, e.g., CoL, would yield
better estimates of the probability of face-to-face interac-
tions than spatial only measures, e.g., SCoL. Indeed, on
one hand, CoL quantifies the co-presence of two users in the
same place around the same moments, corresponding to a
high likelihood of meeting face-to-face. Yet there are circum-
stances where two users do co-locate but are not captured
by the data if any one of them did not place any phone calls.
And this latter case is captured to some extent by SCoL,

as the necessary condition for two individuals to meet is the
spatial overlap of their trajectories.

We now explore the distributions of the various measures
over the linked pairs of individuals (z,y) € Eyq. In Fig. 2a
we show the complementary cumulative distribution func-
tion (CCDF) of geographical distances d(z,y). We find that
d(x,y) follows a fat-tailed distribution, consistent with pre-
vious studies [19, 18, 22], meaning that while most friends
live close to each other, there are also friends who are far
apart. The CCDF plots of CoL and SCoL are shown in
Fig. 2b as solid and dashed line, respectively. SCoL mea-
sures the probability for two users to appear at the same
location, capturing, spatially, the degree of trajectory over-
lapping. CoL quantifies the probability of appearing at the
same place around the same time, characterizing the spatio-
temporal overlap of trajectories. We find that “friends” typ-
ically do co-locate, in that most pairs (x,y) € Eqq exhibit
non-zero spatial or spatio-temporal overlap in their trajec-
tories, and such overlap decays very fast.

5. CORRELATION BETWEEN MOBILE HO-
MOPHILY AND NETWORK PROXIMITY

We explore a series of connections between similarity in
individual mobility patterns and social proximity in the call
graph, by measuring the correlation between the proposed
mobility and network quantities, using again the edges in
Goia. We also consider the strength of the ties in the net-
work, quantified by the number of calls placed between any
two users (during the first 9 weeks of our observation pe-
riod.) In Fig. 3, we plot the mean values and the standard
deviations of Common neighbors, Adamic-Adar, Jaccard’s
coefficient, Katz, and the strength of social ties for differ-
ent values of Co-Location and Spatial Cosine Similarity, dis-
cretized by logarithmic binning. We find that the quantities
that characterize the proximity in the social graph system-
atically correlate with mobility measures. The more similar
two users’ mobility patterns are, the higher is the chance
that they have close proximity in the social network, as well
as the higher is the intensity of their interactions. Further-
more, Fig. 4 demonstrates that the geographical distance
between two individuals decays logarithmically with mobil-



Table 1: Pearson Coefficients

CoL Scos CN J AA K w dML
CoL 1 0.76286  0.25359  0.19618 0.2251 0.18952 0.14521 -0.17894
Scos  0.76286 1 0.30789  0.25657 0.28679 0.24933 0.14402 -0.24938
CN 0.25359  0.30789 1 0.82384 0.88147 0.81108 0.11348 -0.10136
J 0.19618  0.25657  0.82384 1 0.94437 0.99939 0.05989  -0.098562
AA 0.2251 0.28679  0.88147  0.94437 1 0.93806  0.086881  -0.10126
K 0.18952  0.24933  0.81108 0.99939 0.93806 1 0.053842  -0.095631
w 0.14521  0.14402 0.11348  0.05989  0.086881 0.053842 1 -0.029339
dML -0.17894 -0.24938 -0.10136 -0.098562 -0.10126 -0.095631 -0.029339 1

ity measures. We omit the plots, for space limitations, where
the network proximity measures and the tie strength are on
the z-axis, but we observe an entirely similar trend in all
cases. The Pearson coefficients of each pairs of variables
are reported in Table 1. It is interesting to observe that
tie strength, although conceived as a network measure, is
more strongly correlated with mobile homophily than with
network proximity measures.
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Figure 4: Correlations between mobility measures
(CoL and SCos) and distance between two individ-
uals. (mean values in a and standard deviations in
b)

Taken together, our results indicate that mobile homophily,
network proximity and tie strength strongly correlate with
each other. This fact implies that mobile homophily is a vi-
able alternate candidate to predict network structures, and
motivates the investigation of a novel approach to link pre-
diction that takes into account both mobility and network
measures. Moreover, we find that the standard deviation for
the correlation plots are not small, hinting that there are ex-
tra degrees of freedom which allow us to further improve our
predictive power by using supervised classification methods
combining the mobility and network dimensions together.

6. LINK PREDICTION

6.1 Design of the link prediction experiment

We now study the link prediction problem in the context
of our mobile social network. Link prediction is a classifica-
tion problem, aimed at detecting, among all possible pairs of
users that did not call each other in the past, those that will
communicate in the future. We define a potential link any
pair of users (u,v) such that (u,v) ¢ Eqyq, i.e., users u and
v did not call each other from week 1 through 9, and a new

link any potential link (u,v) such that (u,v) € Epew, i.e.,
users u and v did not call each other from week 1 through
week 9, but did call each other (at least once) from week
10 through week 14. Finally, we define a missing link any
potential link which is not a new link, i.e., a pair of users
that did not call each other in the entire period from week 1
through week 14. For any potential link (u,v), let N L(u,v)
be a binary variable with value 1 if (u,v) is a new link, and
0 if (u,v) is a missing link.

In this setting, link prediction is formalized as a binary
classification problem over the set of all potential links, where
the class label is specified by the N L variable, and the pre-
dictive variables are the network and mobility quantities in-
troduced in Sec. 3 and 4, measured over the first period from
week 1 through week 9. According to this formulation, we
aim to predict whether a potential link becomes a new link
in the “future” based on the observation of its “past” network
connectedness and co-location.

Our dataset consists of n = 34,034 users and m = 51,951
links, resulting in (n(n—1)/2) —m = 579,087,610 potential
links. Yet the actual new links are only 12,484 — about 2 new
links every 10° potential links! The significant number of po-
tential links creates obvious computational challenges, both
in terms of memory and time. Moreover, the huge dispropor-
tion between new links and missing links implies an extreme
unbalance between the positive and negative class, which
makes the classification task prohibitive. To cope with both
difficulties, we followed two complementary strategies for
selecting subsets of potential links: i) progressive sampling:
we consider increasingly large samples of missing links, up to
some manageable size, and ii) links with common neighbors:
we concentrate on the interesting case of pairs of nodes that
are two hops away in the network, i.e., nodes with common
neighbors, and consider the entire population of potential
links between such nodes. We report below the results ob-
tained in our link prediction analysis in both cases.

Another dimension of our study is the kind of classification
used. Adhering to the machine learning terminology [23], we
consider both unsupervised and supervised link prediction:

e The unsupervised method, originally proposed in [21],
consists in ranking the set of potential links using one
of the available network or mobility quantities, and
then classifying as new links the k top-ranked potential
links, where k is the expected number of new links (as
measured in the dataset.) The rest are classified as
missing links.



predicted class = 0 | predicted class = 1

actual class = 0 TN (true neg.) FP (false pos.)

actual class = 1 FN (false neg.) TP (true pos.)

Table 2: Confusion matrix of a binary classifier

e The supervised method consists in learning a classifier,
e.g., a decision tree, using a training set of new links
and missing links, and then classifying each pair as a
new or missing link according to the class assigned by
the learned classifier.

Different unsupervised classifiers are obtained by consider-
ing the various network and mobility measures, and different
supervised classifiers are obtained by considering different
combinations of the same quantities as predictive variables.
We systematically constructed the complete repertoire of
classifiers, based either on network quantities, or mobility
quantities, or the combination of the two; we then com-
pared their quality and predictive power. To this extent,
we put particular attention on the metric used to assess a
classifier, given that simple accuracy (over either the train-
ing or test set) is a misleading measure for classifiers learned
over highly unbalanced datasets. Indeed, recall that in our
case the trivial classifier that labels each potential link as
missing has a 99.998% accuracy. The real challenge in link
prediction is achieving high precision and recall over positive
cases (new links), defined in terms of the confusion matrix
of a classifier (see Table. 2): precision = %, and recall

= TPZ%. Traditionally, precision and recall are combined
into their harmonic mean, the F-measure. However, we put
more emphasis on precision, as the most challenging task is
to classify some potential links as new links with high prob-
ability, even at the price of a non negligible number of false
negatives. We also use lift and gain charts to compare the
precision of the various classifiers over the percentiles of the
examined test cases.

6.2 Progressive sampling of missing links

In our first set of experiments we created various unsuper-
vised and supervised classifiers over the complete dataset of
positive cases, i.e., 12,484 new links, augmented with up to
51M negative cases of missing links. We assess the preci-
sion achieved by each classifier when used with all 12,484
new links and increasing fractions of missing links, i.e., to
1%, 25%, 50%, 75% and 100% of the total 51M missing links
sampled. Figure 5 summarizes our findings for unsupervised
classifiers. For each network/mobility quantity @ and each
dataset with increasing samples of missing links, we rank the
potential links in the dataset for decreasing values of @, and
the top ranked 12,484 links are predicted as new links. Each
line in Fig. 5 describes how the precision for different quan-
tities decays with the size of missing links. On the positive
side, all unsupervised classifiers are significantly better than
random guessing, and the decay of their precision tends to
stabilize. Nevertheless, as these 51M links are only about
10% of the total missing links, we conclude that all quanti-
ties exhibit modest predictive power. The most surprising
finding is that the co-location measures have a compara-
ble precision to network measures: slightly worse than best
network predictors (Katz, Adamic-Adar), but better than
Common Neighbors. Moreover, mobility measures have a
slower decay than network measures over increasing nega-

tive sample size. The observation that the two classes of
measures have approximately similar predictive power offer
further evidence that social connectedness is strongly corre-
lated with mobile homophily.
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Figure 5: Precision of unsupervised classifiers over
increasing fractions of missing links (1%, 25%, 50%,
75% and 100% of the total 51M missing links sam-
pled). Ranking is obtained using the various net-
work and mobility measure; precision refers to the
fraction of new links among the top-ranked 12,484
potential links; the precision of the random classifier
is shown as baseline.

Figure 6 illustrates the supervised case: we consider the
best classifiers obtained using network and mobility mea-
sures, both in isolation and combined together. Once again,
we consider negative samples of increasing size, up to 51M
missing links, and measure the decay of precision as in the
unsupervised case. We considered a vast repertoire of clas-
sification algorithms (decision trees, random forests, SVM,
logistic regression) under diverse parameter settings, and re-
port in the chart the most robust classifiers, evaluated with
cross validation, with strongest evidence against overfitting.
In the chart we also compare the precision of the super-
vised methods with that of the best unsupervised predic-
tor (Katz). We observe that the precision of the supervised
classifiers is about double of their unsupervised counterpart,
and mobility measures once again achieve comparable pre-
dictive powers to the traditional network measures. The
best precision, around 30% in the 51M case, is obtained us-
ing the network and mobility measures combined together.
Therefore, using network measures in combination with co-
location measures yields a sensible improvement. Indeed,
the probability of correctly predicting a new link is 15004
times larger than random guessing.

6.3 Potential links with common neighbors

To get better insight, we concentrate on the nodes that are
two hops away from each other in E,q4, i.e., all potential links
(u,v) of mobile users in our complete network such that u
and v have at least one common neighbor during the first two
months. The motivations behind this approach are two-fold.
First, most new links that do form belong to this category
(Fig. 1), and we hope to boost our prediction models by
focusing on this most promising set of links. Second, by
focusing on these links, the total number of potential links
becomes computationally manageable, which enables us to
assess the asymptotic behavior of prediction accuracy.

There are 266,750 potential links in this case, of which
3,130 (1.17%) formed a new link. Note that, different from
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Figure 6: Precision of the best supervised classifiers
found over increasing fractions of missing links (1%,
25%, 50%, 75% and 100% of the total 51M missing
links sampled), using only network measures, only
mobility measures, and combination of both. Preci-
sion of best unsupervised classifier (X) and random
classifier is shown as baseline.

the previous case, we now consider the entire population of
missing links. We study the precision of the unsupervised
and supervised methods in this case. In the unsupervised
case, the precision for the different measures is computed by
considering the fraction of new links in the top-ranked 3,130
cases in the list ordered by the precision of each measure in
descending order:

Measure Precision
Katz 9.1%
Adamic-Adar 7.8%
Spatial Cosine Similarity 5.6%
Weighted Spatial Cosine Similarity 5.6%
Extra-role Co-Location Rate 5.1%
Weighted Co-Location Rate 5.1%
Common Neighbors 5.1%
Co-Location Rate 5.0%
Jaccard 3.0%

As we now have a complete set of negative cases, we cor-
roborate our findings in Sec. 6.2 that mobility measures in-
deed yield remarkably high predictive power in the unsuper-
vised setting, comparable to network measures in the link
prediction literature. Furthermore, various mobility mea-
sures have very similar performance, indicating these mea-
sures all adequately capture the similarity in mobility pat-
terns.

In the supervised case, after systematic, yet heuristic, ex-
ploration of a large space of classification methods with dif-
ferent parameters, we construct a decision-tree using Quin-
lan’s C4.5 classification over the combined network and mo-
bility measures, with cross validation to control over-fitting,
applied to the subset of potential links with common neigh-
bors under the further constraint AA > 0.5 and SCoL > 0.7.
Our tree has the following confusion matrix over an indepen-
dent test set (1 = new link), implying a precision of 73.5%
and a recall of 66.1%.

pred. class = 0 | pred. class =1
actual class = 0 6.627 82
actual class = 1 117 228

100~ -+

1000-tile

Figure 7: Lift chart of the best decision tree found
in the dataset of potential links with common neigh-
bors; the z-axis represents the percentiles of the
potential links in the test set ranked by decreas-
ing probability of being new links, as specified by
the learned classifier; a point (z,y) in the blue curve
represents the fact that y% of the actual new links
are found when considering the top-ranked z% po-
tential links predicted as positive. The red straight
line is the lift of the random classifier. In our classi-
fier, more than 85% new links are found considering
only the 10% most probable positive potential links.

Both precision and recall are one order of magnitude larger
than all previous figures. The lift chart (Fig. 7) for this clas-
sifier shows how, e.g., 86.4% of new links are found by con-
sidering only the top 10% positive cases, as ranked by the
classifier in descending order of their probability of being
new links. Interestingly, we find that the classifier obtained
with the procedure discussed above, but using network mea-
sures only, has precision 36.2% and recall 6.1%, suggesting
that the combination of topology and mobility measures is
crucial to achieve high precision and recall. In other words,
learning a supervised classifier based on combined network
and mobility measures significantly boosts the precision and
recall of predicted new links. The price to pay is that we
need to focus on a niche of promising potential links with
high AA and Scos coefficients, concentrating on a relatively
small number of candidates, yet for those we gain a very high
probability of guessing the correct new links. While stressing
the use of specific classification techniques, e.g., ad-hoc link
prediction methods optimized for highly-unbalanced data,
such as HPLP [23, 6], to achieve better precision is beyond
our goals here, it is indeed an interesting open question for
future research.

7. RELATED WORK

In this section, we review three categories of related work:
studies on human mobility patterns, link prediction in social
networks, and interplay between physical space and network
structure.

7.1 Human Mobility

In the past few years, the availability of large-scale datasets,
such as mobile-phone records and global-positioning-system
(GPS) data, has offered researchers from various disciplines
access to detailed patterns of human behavior, greatly en-
hancing our understanding of human mobility.

From statistical physics perspective, significant efforts have
been made to understand the patterns of human mobility.



Brockmann et al. [4] tested human movements using half a
million dollar bills, finding that the dispersal of bills is best
modeled by continuous-time random walk (CTRW) mod-
els. Gonzalez et al. [14] then showed that each individual
is characterized by a time-independent travel distance and
a significant probability to re-visit previous locations, by
using mobile phone data of 100,000 individuals. Song et
al. [29] then proposed a statistically self-consistent micro-
scopic model for individual human mobility. Researchers
have also found individuals’ daily routines are highly pre-
dictable, by using principal component analysis [9] and mea-
suring mobility entropy [30].

From data mining perspective, there have been a number
of studies mining frequent patterns on human movements.
General approaches are based on frequent patterns and as-
sociation rules, and build predictive models for future lo-
cations. To name a few, Morzy used a modified version of
Apriori [25] and Prefixspan [26] algorithms to generate asso-
ciation rules. Jeung et al. [16] developed a hybrid approach
by combining predefined motion functions with the move-
ment patterns of the object, extracted by a modified version
of the Apriori algorithm. Yavas et al. [32] predicted user
movements in a mobile computing system. Furthermore,
Giannotti et al. [12, 13] developed trajectory pattern min-
ing, and applied it to predict the next location at a certain
level of accuracy by using GPS data [24].

7.2 Link prediction in social networks

Link prediction has attracted much interest in recent years
after the seminal work of Liben-Nowell and Kleinberg [21].
It is a significant challenge in machine learning due to the in-
herent extreme disproportion of positive and negative cases.
Existing approaches have focused on defining various prox-
imity measures on network topology, to serve as predictors
of new links in both supervised [2, 31, 23, 15] and un-
supervised [21] frameworks. Most of the empirical analy-
ses are based on co-authorship networks, and the domain-
dependent features developed in certain studies (see, e.g.,
[2]) are tailored to this particular data set. The supervised
high-performance link prediction method HPLP in [23, 15]
has also been applied to a large phone dataset, using only
network proximity measures.

The fundamental difference of our study from this litera-
ture is that we focus on the impact of human mobility, an
intrinsic property of human behavior, on link prediction. In-
deed, we have designed a broad range of mobile homophily
measures and explored their power in predicting new links.
Our research is orthogonal to the above line of research,
in the sense that any general link prediction method can be
used in combination with our mobility features, e.g., the ma-
chine learning techniques for extremely unbalanced classes.

7.3 Interplay between physical space and net-
work structure

Although it is in general difficult to obtain data that con-
tain simultaneously the geographical and network informa-
tion, there have been a few interesting attempts to assess
the interplay between the two. For example, there is em-
pirical evidence [19, 18, 22] showing that the probability of
forming a social tie decays with distance as a power law.
Based on this fact, Backstrom, et al. [3] introduced an al-
gorithm that predicts the location of an individual. A few
recent studies focused either on small populations of volun-

teers, whose whereabouts and social ties were monitored at
fine detail using ad-hoc smart-phone applications [10] and
location-sharing services [8], or on large but specific online
communities such as Flickr [7]. Although none of these data
could provide a society-wide picture of either social inter-
actions or individuals’ daily routines, these studies indeed
indicate that the strong correlation between physical space
and network structures emerges in many diverse settings.

8. CONCLUSIONS AND FUTURE WORK

Recent advances on human mobility and social networks
have turned the fundamental question, to what extent do
individual mobility patterns shape and impact the social
network, into a crucial missing chapter in our understand-
ing of human behavior. In this work, by following daily
trajectories and communication records of 6 Million mobile
phone subscribers, we address this problem for the first time,
through both empirical analysis and predictive models. We
find the similarity between individuals’ movements, their so-
cial connectedness and the strength of interactions between
them are strongly correlated with each other. Human mobil-
ity could indeed serve as a good predictor for the formation
of new links, yielding comparable predictive power to tradi-
tional network-based measures. Furthermore, by combining
both mobility and network measures, we show that the pre-
diction accuracy can be significantly improved in supervised
learning.

We believe our findings on the interplay of mobility pat-
terns and social ties offer new perspectives on not only link
prediction but also network dynamics. At the same time,
they also have important privacy implications. Indeed, the
surprising power of mobility patterns in predicting social
ties indicates potential information leakage from individu-
als’ movements to their friendship relations, posing a new
challenge in privacy protection. Furthermore, we believe
our results could impact a wide array of phenomena driven
by human movements and social networks, from urban plan-
ning to epidemic prevention.

The results presented in this paper also open up many
interesting directions for future research. The first is to
search for improvement in link prediction tasks by judi-
ciously mixing mobility and network measures. For example,
we find that adding co-location measures into Adamic-Adar
could yield a precision of 9.6% in unsupervised classifica-
tion, overtaking any traditional measures listed in the paper.
While exhaustively searching for such quantities is beyond
our goals here, further work in this direction would be very
important. Another interesting direction is to look at the
inverse problem with respect to this work. Indeed, upon
uncovering the strong correlations between mobility simi-
larity and social connectedness and predicting links based
on mobility patterns, the question thereafter is can we gain
more insights about individuals’ whereabouts by leveraging
our knowledge of their social ties and activity patterns? In
sum, the increasing availability of mobile phone data and
the emergence of location-based social networking websites
has the power to revolutionize our understanding of the in-
terplay between mobility and social networks, making this
field particularly fallow for new results.
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