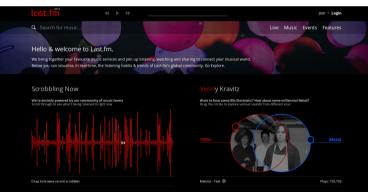
Data Mining A.A. 2015/16

Final projects


List of projects

- Market basket context
 - Individual vs collective purchase behaviours

- Online services
 - Churn analysis on LastFM listenings

- Mobility context
 - Taxi cabs & criminality in
 San Francisco

Project assignment

- Form groups of 1-3 students
- Send names and project chosen to the instructors
 - Detailed descriptions of the projects will be put online now
 - The datasets will be sent upon receiving your email
- Write a report on the analyses performed and the results obtained and send it before the final exam
 - Final exam will include a presentation with slides
 - 10-15min total for each group/project

Project assignment

- Each project includes
 - A preliminary data exploration phase
 - Data analysis: central phase, driven by the general objectives assigned to you
 - Conclusions, where a summary of the key results, limitations and issues met is provided

Individual vs collective supermarket purchase activity

 General idea: provide the customer a selfawareness of what he does w.r.t. the others

Market basket project Dataset

- Real data describing customers and transactions
 - Several department stores
 - Purchases performed over 12 months
 - Includes product details, customer ID
- articolo.csv
 - textual description of the products (in Italian)
- cliente.csv
 - basic information about customers (in Italian)
- data.csv
 - translation table for date coding
- marketing.csv
 - marketing hierarchy of products (in Italian)
- venduto.csv
 - transactions, a line for each product sold

Key table

Market basket project

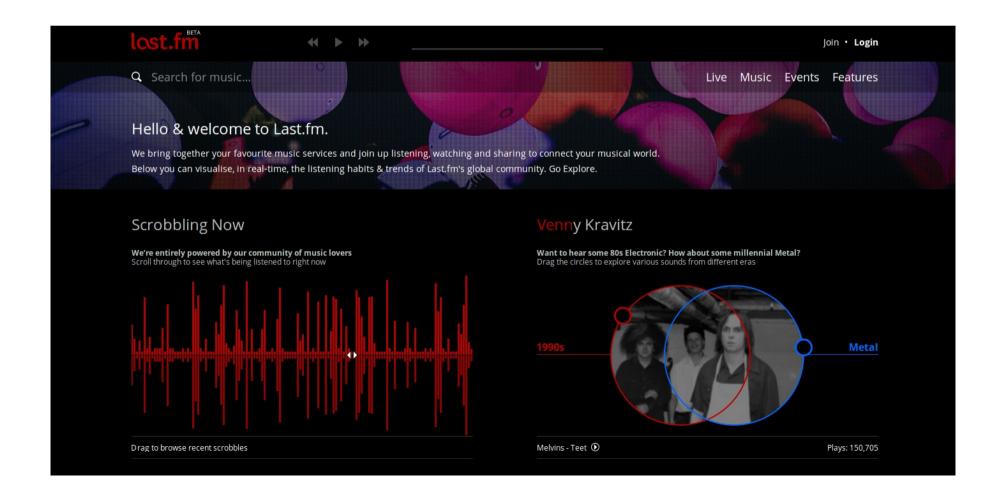
Top 10 most purchased products

- Choose the proper product category level to adopt
 - 70cl Whole Milk Brand X? Whole Milk? Milk?
- Identify an interesting period of day
 - 17-18? Mornings? Thursdays 16-19? Weekends?
- Discover top-10 products in the period for each customer
- Compute purchases distribution on them, for each customer
 - Milk: 50%, Bread: 30%, Wine: 10%, ...

Market basket project

Customer segmentation

- Segment customers into homogeneous groups
- Characterize each group
 - Purchase distributions
 - Other info derived from original data


Market basket project

Individual vs. collective

- Select (small) sample of customers
- Compare the customer to the segment he belongs to
 - Highlight similarities and deviations
 - Sketch a self-awareness-style service

LastFM & Churn

 General idea: who and why does stop listening to some music artist or genre?

LastFM & Churn Data

- Data about listenings: last 200 listening performed by a set a users:
 - user_id: identifies the user
 - date: timestamp of the listening
 - track: title of the song listened
 - artist: artist of the song
 - album: album of the song

LastFM & Churn Data

- Music genres: association of the predominant / best fitting genre for a given artist, according to LastFM weights:
 - artist: artist/group's name
 - genre: genre of the artist

LastFM & Churn Data

- Network of friendships of the users:
 - user_id1: user_id contained in listening file
 - user_id2: user which is friend of user_id1
 (Notice: he is not necessarily in listening file)

LastFM & Churn Churn analysis

- Choose an artist, set of artist or a whole genre
- Study the churn phenomenon for that:
 - Identify the users that consistently listen to them
 - Identify those that, at some point, abandoned the artist/group/genre (churn)
 - Try to understand what determined the churn, and build a model able to predict it in advance.
 - Possible causes to consider: features of the user, of the artist/group/genre, friends' feaures, etc.

LastFM & Churn

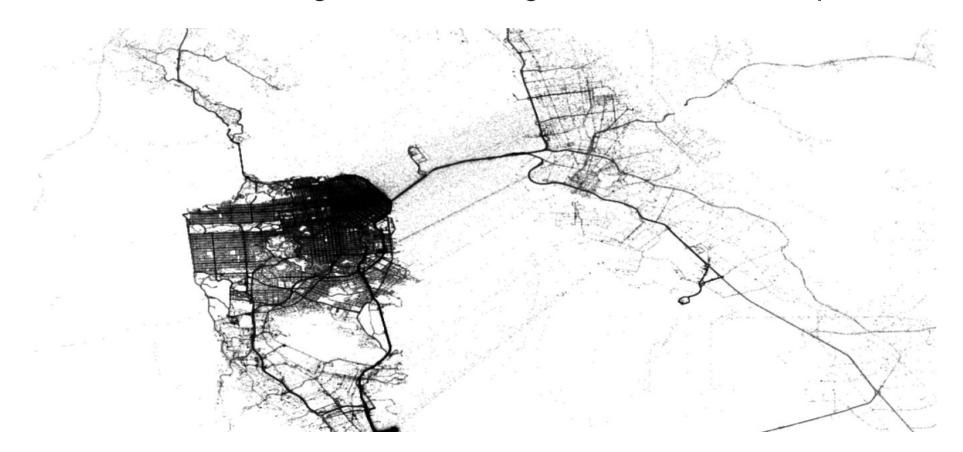
Customer segmentation

- Build a customer segmentation of LastFM users based on as much information as you can infer:
 - what they listen to
 - when they do that
 - friendships
 - etc.

Taxi cabs & crimes in S.F.

 General idea: does crime influence how taxis operate their service?

Taxi cabs in S.F. Dataset


- GPS traces of ~500 taxis over 30 days
- Each San Francisco based Yellow Cab vehicle is currently outfitted with a GPS tracking device
- The data is transmitted from each cab to a central receiving station, and then delivered in real-time to dispatch computers via a central server
- This system broadcasts the cab number, location and whether currently has a fare

Taxi cabs in S.F. Dataset

• Raw dataset: ~500 files, one per cab:

<Latitude, Longitude, Passenger?, Unix Timestamp>

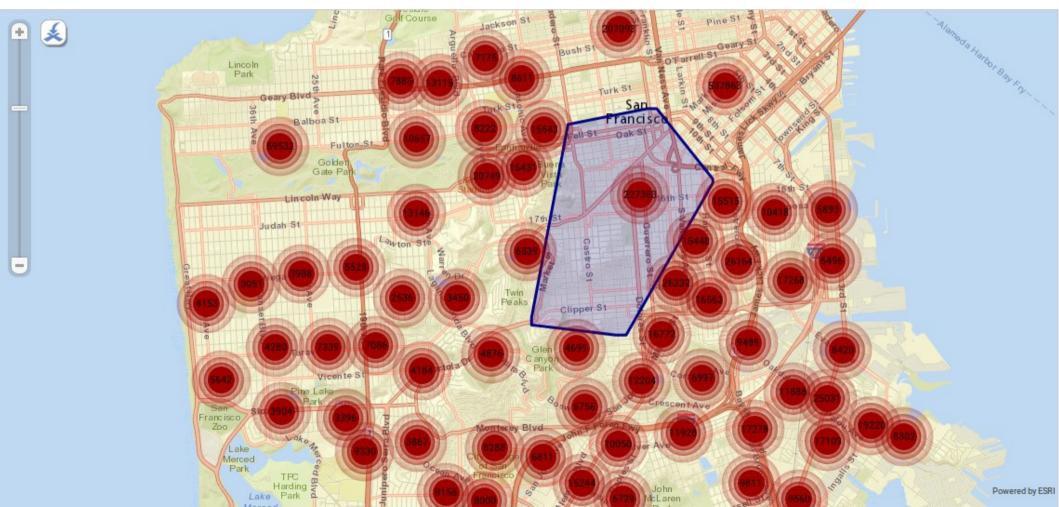
Crimes in S.F. Dataset

- Crime event records for S.F. over several years
 - Source: Kaggle data challenge

https://www.kaggle.com/c/sf-crime

- Incidents derived from SFPD Crime Incident Reporting system.
- The data ranges from 1/1/2003 to 5/13/2015

Crimes in S.F. Dataset


• Data format:

- Dates timestamp of the crime incident
- Category category of the crime incident (only in train.csv). This is the target variable you are going to predict.
- Description detailed description of the crime incident (only in train.csv)
- DayOfWeek the day of the week
- PdDistrict name of the Police Department District
- Resolution how the crime incident was resolved (only in train.csv)
- Address the approximate street address of the crime incident
- X Longitude
- Y Latitude

Crimes in S.F. Dataset

Additional data available from

https://data.sfgov.org/

Taxi cabs & crimes in S.F. Objectives

- Relation between crimes and the taxi drivers' activity
- Basic questions:
 - Do taxi drivers avoid the areas with highest crime rates when driving?
 - What is the relation between crime rates and number of taxi pick-ups / drop-offs?
 - E.g. do people in high-crime areas prefer taxi to other public transport?
 - Are there specific cases of crimes or crime bursts that apparently affected the taxi activity?
 - globally or in the area of interest of the crimes
 - Any other question you deem interesting.

Questions?