Data Mining A.A. 2013/14

Final projects

List of projects

- Market basket context
 - Entropy and sequentiality
 Promotions
- Mobility context
 - 3. Taxi cabs in San Francisco
 - 4. Big events analysis with Twitter data

Project assignment

- Form groups of 1-3 students and send names to the instructors
- One of the 4 projects that follow will be assigned to each group
 - Detailed description of the project and the needed data will be sent back to you shortly after
- Write a report on the analyses performed and the results obtained and send it before the final exam
 - Final exam will include a presentation with slides
 - 15min total for each group/project

Entropy and sequentiality Dataset

- Real data describing customers and transactions
 - Single department store belonging to the category "Supermarket"
 - Purchases performed over 6 months
 - Includes product details, customer ID
- SSET_ART_CORSODM
 - textual description of the products (in Italian)
- SSET_CLIENTE_CORSODM
 - basic information about customers (in Italian)
- SSET_DATA_CORSODM
 - translation table for date coding
- SSET_MKT_CORSODM
 - marketing hierarchy of products (in Italian)
- SSET_VEN_CORSODM
 - transactions, a line for each product sold

Key table

- Data Exploration:
 - Examine data values and distributions
 - Understand what data can be useful
 - Identify significant issues or anomalies.

- Purchases entropy vs. visits entropy
 - Purchases entropy: based on frequency of purchases of all products / product categories (you choose category level)
 - Visits entropy: based on frequency of visits to the store in days of week and/or hours of day (you choose time partitioning)
 - Study relations between the two entropies, through:
 - Visual inspection
 - Clustering

Purchases entropy vs. visits entropy

- Sequentiality index
 - Step 1: consider sequence of purchases of each customer and compute sequential patterns
 - Step 2: consider *flattened input sequences*, and *flattened sequential patterns*, e.g.:

 $\{p1,\,p2\} \rightarrow \{p1,\,p3\} \rightarrow \{p1,\,p2,\,p4\} \quad = > \quad \{p1,p2,p3,p4\}$

- Step 3:

Seq_index = support(SP) / support(flat SP)

- Sequentiality index
 - Step 4: Compute top 20 sequential patterns with highest Seq. Index value
 - Step 5: give **interpretation** of the index, and discuss some possible **business exploitation**

Promotions Dataset

- Real data describing customers and transactions
 - Single department store belonging to the category "Supermarket"
 - Purchases performed over 6 months
 - Includes product details, customer ID and active promotions
- SSET_ART_CORSODM
 - textual description of the products (in Italian)
- SSET_CLIENTE_CORSODM
 - basic information about customers (in Italian)
- ... (as before)
- PROMOZIONI
 - description of promotions, linked by single purchases (see table SSET_VEN_CORSODM)

Promotions Objective 1

- Data Exploration:
 - Examine data values and distributions
 - Understand what data can be useful
 - Identify significant issues or anomalies.

Promotions Objective 2

- Sales forecasting under promotion
 - Focus on promotions that began in 3rd and 4th month of our dataset

- Build a model to predict the amount of sales that will take place in the first 4 weeks of promotion:
 - **bad** (sales decrease >10% w.r.t. previous 4 weeks)
 - **neutral** (sales between -10% and +10%)
 - weak (sales between +10% and +30%)
 - **strong** (sales larger than +30%)

Promotions Objective 3

- Behaviour analysis of sales under promotion
 - Build time series of weekly sells for the first 8 weeks of promotion
 - Discover clusters of promotions that show similar temporal evolutions of sells
 - Provide interpretation/characterization of clusters

Taxi cabs in S.F. Dataset

- GPS traces of ~500 taxis over 30 days
- Each San Francisco based Yellow Cab vehicle is currently outfitted with a GPS tracking device
- The data is transmitted from each cab to a central receiving station, and then delivered in real-time to dispatch computers via a central server
- This system broadcasts the cab number, location and whether currently has a fare

Taxi cabs in S.F. Dataset

- Raw dataset: ~500 files, one per cab, containing
 - <Latitude, Longitude, Passenger?, Unix Timestamp>
 - E.g.:
 - 37.80246 -122.40186 0 1213034473
 - 37.8024 -122.40185 0 1213034409
 - 37.80245 -122.40166 0 1213034351
 - 37.80243 -122.40189 0 1213034287
 - •
- Processed dataset:
 - Reconstructed trajectories (trips)
 - Separate trips with passengers
 from those without

Taxi cabs in S.F. Objective 1

- Density of pick-ups
 - Evaluate the density of locations in S.F. Where taxis take passengers on-board
 - Which are the main pick-up areas?

Taxi cabs in S.F. Objective 2

- Wandering patterns
 - How do taxis move when they have no passengers on-board?
 - Exploit (at least) T-Patterns

Taxi cabs in S.F. Objective 3

- Comparative O/D
 - Compute a grid over the area
 - Compute two Origin-Destination matrices:
 - That relative to trips with passengers on-board
 - That relative to trips of empty taxis
 - Provide qualitative comparison

Taxi cabs in S.F. Analysis tool

M-Atlas platform

A tool kit to extract, store, combine different kinds of models to build mobility knowledge discovery processes.

... detailed description in next lessons!

Big events analysis with Twitter data Dataset

- Tweets generated in Barcelona along 3 weeks
- Contains the "Mobile Week Congress 2012"
- Tweets of the same user linked by same ID
- Geo-referenced

Big events analysis with Twitter data Objective 1

- Analysis of presence:
 - Which are the most active areas?
 - Does presence vary during the conference?
 - Which are the spots with higher peaks & variations?

Big events analysis with Twitter data Objective 2

- Access path analysis
 - Detect the most likely area of the conference
 - Which are the main origin locations and access paths of people who joined the conference?

Big events analysis with Twitter data Objective 3

- O/D analysis
 - Divide the territory into cells (e.g. a grid)
 - Compute Origin-Destination matrix
 - Which are the main flows?

Questions?