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Main data sources

CDR

Who calls, where and when

Call Graph

Who calls whom and when




Wide range of applications

Research Areas

Human dynamics Urban Monitoring Human activity discovery

3 v

-Inference of the user
(frequent and/or preferred)
locations;

Epidemiology and Healthcare The study of the social ties

- Monitoring of the mobility of a city

-Traffic monitoring;

- Prediction of the user habits;

- City dynamics;

- Event monitoring and
recommendation;

- User Profiling;




Applications

Tourism

- Sociometro (Pisa and Cosenza)
- Visits to attractions (Paris)

Mobility
- General laws for human mobility

- D4D (lvory Coast)
- Persons & Places / ISTAT (Pisa)

People and the territory

- Presence of people & special events
— Correlation patterns (Paris)

Economic dimension

- Mobility vs. Social vs. Economic status (Paris)
Social ties

- Link prediction and mobility



Tourism






Mobile phone socio-meters

Analyze individual call habits to
recognize profiles

—Resident
—Commuters /&
—Visitors/Tourists /&' ;4/1\| /
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GSM: People Profiling

...a sociometer for the city
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Top-down analysis

Resident
- C1 - Temporal range: at least 1 call in [19:00 - 6:59] during the weekdays.

C2.1 - Daily presence: at least 2 distinct weekdays per week, that satisfy C1.

C2.2 - Daily presence: at least 1 day in the weekend without temporal range.

- C3 - Weekly presence: at least 3 weeks, in which C1, C2.1 and C2.2 are satisfied.

Commuter
- C1.1 - Temporal range: at least 1 call in [9:00 - 18:59] during the weekdays.

- C1.2 - Temporal range: no calls in [19:00 - 8:59] during the weekdays.

- C2.1 - Daily presence: at least 2 distinct weekdays per week, that satisfy C1.1 and C1.2.

- C2.2 - Daily presence: never during the weekends.

- C3 - Weekly presence: at least 3 weeks, in which C1.1, C1.2, C2.1, C2.2 and C3 are satisfied.

People in Transit
- C1 - Temporal range: calls during at most 1 hour.

— C2 - Dalily presence: at most 1 day in which C1 is satisfied.

- C3 - Weekly presence: at most 1 week, in which C1 and C2 are satisfied.



Call Habit Profiles
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Visitor profile

- Night visitors

Daylight visitors



User profile quantification
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Classification outcome

M Residents
M Commuters
Visitors

B Unclassified




Urban Sociometer indicator: Pisa

Analysing the GSM call habits in Pisa we can
find indicators of social profiles

Classification outcome

B Commuters
Visitors

B Unclassified

Pisa january 2012



Urban Sociometer indicator:
Cosenza — South of ltaly

Quantification of the Categories
- Cosenza -

M Visitors

B Commuters
W Residents
B Unknown

W In transit
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Privacy-Aware socio-meter

Classification outcome

Output: quantification

A G of profiles (safe!!)

Profiles computed on
anonymous data

Possible Attacks on Aggregated call

aggregated calls ™ activities assuring
| anonymity computed

by the Telco Operator

S~ User1 User 2 Usern-1  Usern



GSM data analysis for
tourism application

@ab

Ana-Maria Olteanu, Roberto Trasarti,
Thomas Couronné, Fosca Giannotti,
Zbigniew Smoreda, Mirco Nanni, Cezary
Ziemlicki

Coimbra, ISSDQ 2011



Analyzing tourist data

We extracted the foreign (not French) users arriving and leaving at CDG
airport in order to classifying them and study their behaviors.
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Distribution of visiting time

We are interested on the time spent by the tourists in Paris, thanks
to the selection of CDG users, we can be sure that the information
is complete avoiding disappearances.
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Categorization of tourists
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Point of Interests and Towers

The trajectories jump between towers which do not correspond to the exact position of the POls.
To perform the mapping we defined a mapping between the towers and POls:

Weight associatec
to the cell

Cells associated

f’to POI1

Weight = 1/#neighboring POls




Comparison with Ticketing data

There are differences between the ticketing data and GSM-based density, we discovered that they
are comparable only in the places where the ticket is necessary and the data is not estimated.
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Density map (Short stay)

Having the movements of the users in Paris we can compute a density map of them in space trying
to discover they behavior.

Short stay tourists

visit the very center
of Paris and go back
the airport to leave.




Density map (Medium stay

Medium stay tourists
visit the center of Paris
mostly but Versailles
and Disneyland appear
as new destinations
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Density map (Long stay)

- Long stay tourists
- visit the center of
- Paris, Versailles and
Disneyland as major
destinations, but they
also leave Paris
toward the

. surrounding areas.

Green = Disneyland Pa
Red = Versailles
Blue = Highway/Train to Mante la jolie
Black = Highway to South-West
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The Challenge

* I[ncompleteness issue

- Call Detail Records describe the location of users
only during activity (calls, messages)

— Most individual mobility might be invisible

* Lack of semantics
- No information about activities and purpose

* Spatial uncertainty issue

- Location described in terms of cells having
dynamic and sometimes large extent



The approach (summary)

* Analyze raw GSM data to
- Infer systematic mobility of individuals

* Build origin-destination matrices
— Describe (expected) flows between areas

* Build a transportation model

— Assigns O/D matrix to OSM road network through
OmniTRANS system



Systematic mobility

* A single trace of an individual can be poorly
informative about his/her movements

time



Systematic mobility

* Yet, several daily traces of the same individual
might allow to identify regular places
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Systematic mobility

* Yet, several daily traces of the same individual
might allow to identify regular places

® A w c_ @
® w #
@ B ®
A w ® .
® wow ON




Systematic mobility

* Yet, several daily traces of the same individual
might allow to identify regular places and trips




Systematic mobility

* The whole individual mobility is then
summarized by its systematic movements

ANjtelrrioen) roLjine

Wlorslisie] foLftis)e

* They will be used as typical daily schedule of the
individual



Systematic O/D matrix

Combine the ten 2-weeks datasets into one
For each user, extract significant L1 — L2

Aggregate (individual) systematic movements
into (collective) systematic flows

Examples:
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Figure 12: Mobile phone movements in lvory Coast and Abidjan.

Mirco Nanni, Roberto Trasarti, et al.:
MP4-A Project: Mobility Planning for Africa. “Data for Development” Orange challenge, 2013



Building the transport model

* Traffic assignment omniTRANS | Q

Transport Planning Software

- Based on OmniTRANS V6 software

* Simulation assumptions

- Assign each phone tower to the closest
road

- Use OSM information on speed limits
- Adopt an all-or-nothing assignment



Grand-Bassam

TRANS

Transport Planning Software
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Territory



Measuring exceptional events
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Extraordinary events

Somma di nr. Chiamate

Distribuzione oraria giornaliera delle chiamate
settimana 23 - 27 Gennaio 2012
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in chiesa commenti
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Correlations/dependencies
between areas

Discovering urban and country dynamics from
mobile phone data with spatial correlation patterns

kdd.isti. cnr.g

Roberto Trasarti Ana-Maria Olteanu-Raimond
Mirco Nanni Thomas Couronné
Barbara Furletti, Fosca Giannotti Zbigniew Smoreda, Cezary Ziemlicki

Riva del Garda, August 30th, 2013
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General objective

_-—-—/

Focus: observe the way the population density behaves in
different areas of the city/region

Objective: spot statistically significant, yet potentially hidden,
collective regularities

Approach: discover groups of regions that consistently behave
in a coordinated way, suggesting the existence of some kind of
connection among them
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Examples/1
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Set of events frequently happening at same time

* Regions that are tightly connected or all react to some
(external) factor

* E.g.: people might tend to concentrate in specific areas during
leisure time whenever the weather conditions are
exceptionally good
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Examples/2
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* Sequence of events that frequently happen in a specific order

* Existence of a reaction chain or external factors answered
with different reaction times

* E.g. (a chain of events): a large increase of people at a
central train station frequently followed by an increase in an
other station within a few hours
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Analysis process
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1. Extract events related to population density from raw data

* Density peaks & valleys might be not meaningful because
physiologic to the region

* E.g., rush hours, crowded stations, etc.

* Focus on deviations w.r.t. typical population density levels in
each region

2. Search frequent combinations of events across different
regions

- &




Step 1: estimate density of population

_-—-—/

Use Call Detail Records to measure population

* Alternative: heuristics to identify stops

Each GSM tower associated to estimated coverage




Step 2: compute density over a space-time gri

Divide the dataset into days, and days into 24h

* ST grid = GSM cells x Hours ,

ﬂn—wk

0 1 2 3 4 5 6 7 8 9 10 1 12 13 1 15 6 7 18 19 0 21 2 2




Step 3: detect events / 1
_-—-—/

Split the dataset into temporal segments

* Baseline segment: compute average density values for each
hour of each day of the week

* Event detection segment: compare values against baseline
to detect events

time

baseline event detection




Step 3: detect events / 2
_-—-—/

Event = significant deviation from average

* Deviations are discretized into bins (e.g., 5% bins)

* Deviations smaller than a threshold are neglected
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Step 3: detect events / 3
_-—-—/

Output: dataset of event sequences:

Day 1:  {(Cell13,+20%),(Cell5,-15%)}., . — {(Cell8,-20%)}

2AM.

Day 2:  {(Cell3,-30%)}., . — {(Cell16,+20%)}

5A.M.

Day N:  {(Cell270,-10%)} . — {(Cell71,+20%),(Cell5,-10%)}

4AM.
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Step 4: correlation patterns/1

_-—-—/

* Extract frequent sequential patterns of events

* Frequent itemsets model relations between events that happen at
the same time (co-occurrence)

* Sequential patterns extend that by including ordered sequences of
events (chain of events)

* Filter frequent patterns based on a correlation index:

* Comparison against a simplified null model

supp(D)

c—index(D) = . HdEDi supp(d)
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Example:

Step 4: correlation patterns/2

{(Cell27,+35%)} — {(Cell7,+15%),(Cell5,+10%)} — {(Cell13,+5%)} I



National level example (departments)

Focus on Seine-
Saint-Denis
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