Density-based clustering

Used in many applications

- Mainly for its efficiency, resistance to noise and ability to deal with arbitrary shaped clusters

Main idea: divide noise from objects to clusters

- Objects to cluster = dense points
- Noise = low-density points
DBSCAN

DBSCAN is a density-based algorithm.

- Density = number of points within a specified radius (Eps)

- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster

- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point

- A noise point is any point that is not a core point or a border point.
DBSCAN: Core, Border, and Noise Points
DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

Algorithm 8.4 DBSCAN algorithm.

1: Label all points as core, border, or noise points.
2: Eliminate noise points.
3: Put an edge between all core points that are within Eps of each other.
4: Make each group of connected core points into a separate cluster.
5: Assign each border point to one of the clusters of its associated core points.

Border points can be neighbors of several core points/clusters → arbitrarily choose one!
DBSCAN

Step 1: label points as core (dense), border and noise

- Based on thresholds R (radius of neighborhood) and min_pts (min number of neighbors)
Step 2: connect core objects that are neighbors, and put them in the same cluster.
Step 3: associate border objects to (one of) their core(s), and remove noise
DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4
When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes
When DBSCAN Does NOT Work Well

- Varying densities
- High-dimensional data

Original Points

(MinPts=4, Eps=9.92)

(MinPts=4, Eps=9.75)
DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their k^{th} nearest neighbors are at roughly the same distance.
- Noise points have the k^{th} nearest neighbor at farther distance.
- So, plot sorted distance of every point to its k^{th} nearest neighbor.
Sul seguente dataset:

A) Si utilizzi l'algoritmo di clustering density-based DBSCAN, con raggio (ε) pari a 1.9, e minPts pari a 4 (=3 vicini + il punto di cui si calcola la densità). Si richiede di (1) indicare il numero di cluster che si ottengono; (2) per ogni punto indicare il cluster di appartenenza; (3) per ogni punto dire se si tratta di un *core point*, *border point* o *rumore*.

(8 punti)

B) Si disegni il dendogramma ottenuto con un algoritmo di clustering agglomerativo MIN-link (o *Single linkage*).

(4 punti)
Exercises

Solution:
Exercises

Sul seguente dataset:

A) Si utilizzi l'algoritmo di clustering density-based DBSCAN, con raggio (ε) pari a 1.9, e minPts pari a 4 (=3 vicini + il punto di cui si calcola la densità).

1) per ogni punto dire se si tratta di un core point, border point o rumore;
2) indicare la composizione dei cluster ottenuti. (5 punti)

B) Simulare l'esecuzione dell'algoritmo k-means sullo stesso insieme di punti, con k=2 e centri iniziali $c_1=(3,7)$ e $c_2=(8,2)$. (5 punti)
Exercises

Solution:
Exercises

Execute single-linkage and complete-linkage HAC on the following similarity matrix, and draw the corresponding dendograms:

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1.00</td>
<td>0.10</td>
<td>0.41</td>
<td>0.55</td>
<td>0.35</td>
</tr>
<tr>
<td>p2</td>
<td>0.10</td>
<td>1.00</td>
<td>0.64</td>
<td>0.47</td>
<td>0.98</td>
</tr>
<tr>
<td>p3</td>
<td>0.41</td>
<td>0.64</td>
<td>1.00</td>
<td>0.44</td>
<td>0.85</td>
</tr>
<tr>
<td>p4</td>
<td>0.55</td>
<td>0.47</td>
<td>0.44</td>
<td>1.00</td>
<td>0.76</td>
</tr>
<tr>
<td>p5</td>
<td>0.35</td>
<td>0.98</td>
<td>0.85</td>
<td>0.76</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Exercises

Solution:

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1.00</td>
<td>0.10</td>
<td>0.41</td>
<td>0.55</td>
<td>0.35</td>
</tr>
<tr>
<td>p2</td>
<td>0.10</td>
<td>1.00</td>
<td>0.64</td>
<td>0.47</td>
<td>0.98</td>
</tr>
<tr>
<td>p3</td>
<td>0.41</td>
<td>0.64</td>
<td>1.00</td>
<td>0.44</td>
<td>0.85</td>
</tr>
<tr>
<td>p4</td>
<td>0.55</td>
<td>0.47</td>
<td>0.44</td>
<td>1.00</td>
<td>0.76</td>
</tr>
<tr>
<td>p5</td>
<td>0.35</td>
<td>0.98</td>
<td>0.85</td>
<td>0.76</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(a) Single link.

(b) Complete link.