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a b s t r a c t

We propose a novel approach for credit card fraud detection, which combines evidences from current as
well as past behavior. The fraud detection system (FDS) consists of four components, namely, rule-based
filter, Dempster–Shafer adder, transaction history database and Bayesian learner. In the rule-based com-
ponent, we determine the suspicion level of each incoming transaction based on the extent of its devia-
tion from good pattern. Dempster–Shafer’s theory is used to combine multiple such evidences and an
initial belief is computed. The transaction is classified as normal, abnormal or suspicious depending on
this initial belief. Once a transaction is found to be suspicious, belief is further strengthened or weakened
according to its similarity with fraudulent or genuine transaction history using Bayesian learning. Exten-
sive simulation with stochastic models shows that fusion of different evidences has a very high positive
impact on the performance of a credit card fraud detection system as compared to other methods.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In today’s electronic society, e-commerce has become an essen-
tial sales channel for global business. Due to rapid advancement of
e-commerce, use of credit cards for purchases has dramatically in-
creased. Unfortunately, fraudulent use of credit cards has also be-
come an attractive source of revenue for criminals. Occurrence of
credit card fraud is increasing dramatically due to the exposure
of security weaknesses in traditional credit card processing sys-
tems resulting in loss of billions of dollars every year. Fraudsters
now use sophisticated techniques to perpetrate credit card fraud.
The fraudulent activities worldwide present unique challenges to
banks and other financial institutions who issue credit cards. In
case of bank cards (Visa and MasterCard) a study done by American
Bankers Association in 1996 reveals that the estimated gross fraud
loss was $790 million in 1995 [1]. The majority of the loss due to
credit card fraud is suffered by the USA alone. This is not surprising
since 71% of all credit cards are issued in the USA only. In 2005, the
total fraud loss in the USA was reported to be $2.7 billion and it has
gone up to $3.2 billion in 2007 [2]. Another survey of over 160
companies revealed that online fraud (committed over the Web
or phone shopping) is 12 times higher than offline fraud (commit-
ted by using a stolen physical card) [3].
ll rights reserved.
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To address this problem, financial institutions employ various
fraud prevention tools like real-time credit card authorization, ad-
dress verification systems (AVS), card verification codes, rule-
based detection, etc. But fraudsters are adaptive, and given time,
they devise several ways to circumvent such protection mecha-
nisms. Despite the best efforts of the financial institutions, law
enforcement agencies and the government, credit card fraud con-
tinues to rise. In addition to significant financial losses, the main
concern of the law enforcement agencies is that this money is also
used to support other criminal activities worldwide. Thus, once
fraud prevention measures have failed, there is a need for effective
technologies to detect fraud in order to maintain the viability of
the payment system. Fraudsters constitute a very inventive and
fast moving fraternity. As preventive technology changes, so does
the technology of criminals and the way they go about with their
fraudulent activities.

The possibility of enhancing existing operations by introducing
an effective FDS constitutes the objective of our work.
2. Related work

The approaches used in detecting credit card fraud mainly in-
clude neural network, data mining, meta-learning, game theory
and support vector machine.

Artificial neural networks (ANN) have been considered for cred-
it card fraud detection by Ghosh and Reilly [4], Aleskerov et al. [5]
and Dorronsoro et al. [6]. Ghosh and Reilly [4] carried out a
feasibility study for Mellon Bank to determine the effectiveness
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of neural network for credit card fraud detection. The authors con-
cluded that it was possible to achieve a reduction of 20–40% in the
total fraud losses. Aleskerov et al. [5] present CARDWATCH, a neu-
ral network based data mining system for credit card fraud detec-
tion. The system trains a neural network with the past data of a
particular customer, which can then be used to analyze the current
spending behavior of that customer and detect anomalies. They use
three transaction features to represent a customer’s spending pat-
tern – category of purchase, transaction amount and time since last
purchase of the same category. The system was tested with syn-
thetically generated data. Dorronsoro et al. [6] describe the domain
of fraud detection as having two particular characteristics – a very
limited time span for decisions and a large number of credit card
operations to be processed. They have used Fisher’s discriminant
analysis to separate the fraudulent operations from the normal
ones.

More recently, Syeda et al. [7] have suggested the use of parallel
granular neural networks for speeding up the data mining and
knowledge discovery process. Maes et al. [8] have outlined an
automated credit card fraud detection system by ANN as well as
Bayesian belief networks (BBN). They show that BBN gives better
results related to fraud detection and the training period is faster
whereas the actual detection process is substantially faster with
ANN. The neural network based methods are, in general, fast but
not so accurate. Re-training the neural networks is also a major
bottleneck since the training time is quite high.

Chen et al. [9] propose a novel method in which an online ques-
tionnaire is used to collect questionnaire-responded transaction
(QRT) data of users. A support vector machine (SVM) is trained
with this data and the QRT models are used to predict new trans-
actions. Chen et al. [10] have recently presented a personalized ap-
proach for credit card fraud detection that employs both SVM and
ANN. It tries to prevent fraud for users even without any transac-
tion data. However, these systems are not fully automated and de-
pend on the user’s expertise level.

Some researchers have applied data mining for credit card fraud
detection. Chan et al. [11] divide a large set of transactions into
smaller subsets and then apply distributed data mining for build-
ing models of user behavior. The resultant base models are then
combined to generate a meta-classifier for improving detection
accuracy. Brause et al. [12] have explored the possibility of com-
bining advanced data mining techniques and neural networks to
obtain high fraud coverage along with a low false alarm rate. Use
of data mining is also elaborated in the work by Chiu and Tsai
[13]. They consider web services for data exchange among banks.
A fraud pattern mining (FPM) algorithm has been developed for
mining fraud association rules which give information regarding
the features that exist in fraud transactions. Banks enhance their
original fraud detection systems by using the new fraud patterns
to prevent attacks. While data mining techniques are relatively
accurate, they are inherently slow.

Meta-learning is a general strategy that provides a means for
combining and integrating a number of separately learned classifi-
ers or models. A meta-learning system allows financial institutions
to share their models of fraudulent transactions by exchanging
classifier agents. Stolfo et al. [14] suggest a meta-learning tech-
nique to learn patterns of fraudulent credit card transactions. They
apply four base classifiers, namely, ID3, CART, Bayes and RIPPER
and use the class-combiner strategy [15] to select the best classi-
fier for meta-learning. It has been shown that meta-learning with
Bayes gives good accuracy. Prodromidis and Stolfo [16] describe
an artificial intelligence based approach that combines inductive
learning algorithms and meta-learning methods to build accurate
classification models for electronic fraud detection. The field of
game theory has also been explored for credit card fraud detection.
Liu and Li [17] suggest a game-theoretic approach for prediction of
attacks on IDS protected systems and a specific prediction model
for credit card fraud. Vatsa et al. [18] have modeled the interaction
between an attacker and an FDS as a repeated game between two
players, each trying to maximize its payoff. Such game-theoretic
models make a number of assumptions, like availability of strate-
gies, actions and payoffs to both the players, which are not often
valid in practice. For example, it is quite unusual for a bank to
advertise its strategies for fraud detection.

Some survey papers have been published which categorize,
compare and summarize articles in the area of fraud detection.
Phua et al. [19] did an extensive survey of data mining based FDSs
and presented a comprehensive report. Kou et al. [20] have re-
viewed the various fraud detection techniques including credit
card fraud, telecommunication fraud as well as computer intrusion
detection. Bolton and Hand [21] describe the tools available for sta-
tistical fraud detection and areas in which fraud detection technol-
ogies are most commonly used.

Majority of the FDSs as described above show a lot of variation
in their accuracy. The main challenge identified by most of them is
that the bulk of the transactions flagged as fraudulent by the FDSs
are in fact genuine. A substantial amount of time and money is
spent by bankers in investigating a large number of legitimate
cases. It also causes customer inconvenience and potential dissat-
isfaction. In credit card application, since occurrence of fraud is
sparse, it involves detecting a relatively rare event from a very
large collection of routine transactions. Axelsson [22] has pointed
out that due to the base-rate fallacy problem, the factor limiting
the performance of an intrusion detection system is not the ability
to identify intrusive behavior correctly but its ability to minimize
false alarms. While failure to detect a fraud causes direct loss to
the company, follow up actions needed to pursue false alarms also
tend to be costly. Any design choice that attempts to improve the
rate of correct detection of fraud, usually causes a rise in the false
alarms as well. One of the motivations of our current research is to
address this challenge.

It is well known that every cardholder has a certain shopping
behavior, which establishes an activity profile for him. Almost all
the existing fraud detection techniques try to capture these behav-
ioral patterns as rules and check for any violation in subsequent
transactions. However, these rules are largely static in nature. As
a result, they become ineffective when the cardholder develops
new patterns of behavior that are not yet known to the FDS. The
goal of a reliable detection system is to learn the behavior of users
dynamically so as to minimize its own loss. Thus, systems that can-
not evolve or ‘‘learn”, may soon become outdated resulting in large
number of false alarms. A fraudster can also attempt new types of
attacks which should still get detected by the FDS. For example, a
fraudster may aim at deriving maximum benefit either by making
a few high value purchases or a large number of low value pur-
chases in order to evade detection. Thus, there is a need for devel-
oping fraud detection systems which can integrate multiple
evidences including patterns of genuine cardholders as well as that
of fraudsters.

We propose a credit card fraud detection system that com-
bines different types of evidences using Dempster–Shafer theory.
The purpose of aggregation is to meaningfully summarize and
simplify bulk data which might be coming from a single source
or multiple sources. Familiar examples of aggregation techniques
include arithmetic, geometric and harmonic averages, maximum
and minimum functions, etc. [23]. Cremer et al. [24] have shown
that sensor fusion improves detection rate and reduces false
alarms over single sensor solutions. They use different sensor
data fusion techniques, namely, Dempster–Shafer, Bayes and fuz-
zy logic for the detection of anti-personnel land mines. By testing
on synthetic data set, they have shown that Dempster–Shafer and
Bayes approach outperform the fuzzy technique. Comparing the
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receiver operator characteristics (ROC) curves (detection rate
plotted against false alarm rate) for Dempster–Shafer and Bayes,
they found that Dempster–Shafer has a slight advantage over
Bayes. Besides combining evidences, we also incorporate learning
in our system through application of prior knowledge and ob-
served data on suspicious cards. Bayesian learning is used, which
is a probabilistic approach to inferencing and provides a frame-
work for building intelligent learning systems. It gives a formal
and consistent way of reasoning in presence of uncertainty and
optimal decisions can be made on the quantities of interest.
Moreover, Bayesian methods match human intuition very closely
and provide a promising model for neurological processes. The
mathematical foundation of Bayesian reasoning is quite mature
and widely used in many areas of science and engineering. To
the best of our knowledge, this is the first ever attempt to devel-
op a credit card fraud detection system using information fusion
and Bayesian learning.

The rest of the paper is organized as follows. We present the
components of our credit card fraud detection system in Section
3 along with a description of the methodology and the details
of implementation. In Section 4, we discuss the results obtained
from simulation studies. Finally, we conclude in Section 5 of the
paper.

3. Proposed fraud detection system

The proposed FDS may be abstractly represented as a 6-tuple
hSystem, C, P, w, hLT, hUTi, where:

1. System refers to the target system that is being attacked.
2. C = {C1,C2, . . . , Cn} is the set of credit cards on which fraud detec-

tion is performed.
3. P = {P(C1), P(C2), . . . , P(Cn)} is the set of profiles, where each

P(Ck) corresponds to the profile of the owner of the card Ck.
The profile of a cardholder is a set of patterns containing infor-
mation like card number, transaction amount and time since
last purchase.

4. wðTCk
j;qÞ is the suspicion score of the jth transaction TCk

j;q on card Ck

and q is the time gap from the previous transaction on the same
card.

5. hLT is the lower threshold, where 0 6 hLT 6 1.
6. hUT is the upper threshold, where 0 6 hUT 6 1 and hLT 6 hUT.
3.1. FDS components

In the proposed FDS, a number of rules are used to analyze the
deviation of each incoming transaction from the normal profile of
the cardholder by assigning initial beliefs to it. The initial belief
values are combined to obtain an overall belief by applying Demp-
ster–Shafer theory. The overall belief is further strengthened or
weakened according to its similarity with fraudulent or genuine
transaction history using Bayesian learning. In order to meet this
functionality, the proposed FDS is designed with the following four
major components:

(1) Rule-based filter.
(2) Dempster–Shafer adder.
(3) Transaction history database.
(4) Bayesian learner.
3.1.1. Rule-based filter (RBF)
The RBF consists of generic as well as customer-specific rules

which classify an incoming transaction as fraudulent with a certain
probability. It measures the extent to which the transaction’s
behavior deviates from the normal profile of the cardholder. This
layer can have rules like average daily/monthly spending of a cus-
tomer, shipping address being different from billing address, etc.
We briefly discuss two of the rules here.

3.1.1.1. Address mismatch. The most basic check performed by var-
ious credit card companies is ‘‘billing address and shipping address
mismatch”. Orders could be shipped to an address different from
the billing address. This check does not help us in declaring a trans-
action as fraudulent with complete certainty since a genuine card-
holder could gift some items to his friend. However, a transaction
that clears this check can be classified as genuine with very high
probability (except for the cases where the fraudster’s aim is only
to harass the cardholder). The transactions that violate this check
are labeled as suspect.

3.1.1.2. Outlier detection. A customer usually carries out similar
types of transactions in terms of amount, which can be visualized
as part of a cluster. Since a fraudster is likely to deviate from the
customer’s profile, his transactions can be detected as exceptions
to the cluster – a process known as outlier detection. It has impor-
tant applications in the field of fraud detection and has been used
for quite some time to detect anomalous behavior. Hodge and Aus-
tin [25] have done an extensive survey of outlier detection tech-
niques and given a comparative review of the different
methodologies.

DBSCAN (density based spatial clustering of applications with
noise) is a density based clustering algorithm [26] which can be
used to filter out outliers and discover clusters of arbitrary shapes.
Formally, let C0 = {c1, . . . ,cn} denote the clusters in a database D for
a particular card Ck and A = {a1,a2, . . . ,an} be the set of attributes
used to generate these clusters. For any credit card transaction,
the possible attributes are transaction amount, billing address,
shipping address and inter-transaction time gap. A transaction
TCk

j;q is detected as an outlier if it does not belong to any cluster
in the set C0. Such an observation gives evidence that the transac-
tion could be fraudulent. We measure the extent of deviation of an
incoming transaction by its degree of outlierness. If the average
distance of the amount p of an outlier transaction TCk

j;q from the
set of existing clusters in C0 is mavg, then its degree of outlierness

doutlier is given by:

doutlier ¼
1� e

mavg
if jNeðpÞj < MinPts

0 otherwise

(
ð1Þ

where

MinPts: Minimum number of points required in the e-neighbor-
hood of each point to form a cluster.
e: Maximum radius of the neighborhood Ne(p) = {q 2 D|
dist(p,q) 6 e}.

The key idea of the DBSCAN algorithm is that for each point p in
a cluster ci, there are at least a minimum number of points (MinPts)
in the e-neighborhood of that point p denoted as Ne(p) i.e., the den-
sity in the e-neighborhood has to exceed some threshold. The val-
ues of the parameters e and MinPts are determined using an
effective heuristic given by Ester et al. [26]. The larger the e-neigh-
borhood, the less is the number of clusters formed. In the limit,
there will be only one large cluster. Also, the higher the value of
MinPts, less is the number of clusters formed. If it is set too high,
there will be no cluster since the MinPts condition is not satisfied.
However, if both the parameters are small, there can be a lot of
clusters. If MinPts is set to 1, then each point in the database is trea-
ted as a separate cluster and even noise gets identified as a sepa-
rate cluster. The clusters can be formed by using different
attributes, although in the current work, we use ‘transaction
amount’ as the attribute for generating outliers. Here, transaction
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amount refers to the total value of a transaction. The algorithm can
be extended to include other attributes as well.

Usually, an FDS is subjected to a large number of transactions
for authorization, a high percentage of them being genuine. The
RBF is essential since it separates out most of the easily recogniz-
able genuine transactions from the rest.

For convenience, we refer to the ‘‘Address Mismatch” rule as R1

and the ‘‘Outlier Detection” rule as R2.

3.1.2. Dempster–Shafer adder (DSA)
The role of the DSA is to combine evidences from the rules R1

and R2 and compute an overall belief value for each transaction.
It may be noted that some attempts have been made to apply
Dempster–Shafer theory (DST) to computer security. Wang et al.
[27] present a distributed intrusion detection system, which uses
DST to combine evidences from distributed sensors. They show
that multi-sensor data fusion scheme gives better performance
than a single sensor. Chen and Venkataramanan [28] have applied
Dempster–Shafer approach to distributed intrusion detection in ad
hoc networks. Data from multiple nodes are combined to estimate
the likelihood of intrusion. A good application of DST is covered in
the work of Yi et al. [29]. They have introduced a novel way of
using the conflict value in DST for a given sensor model and exper-
imentally shown considerable improvement in performance.

For the credit card fraud detection problem, DST is more rele-
vant as compared to other fusion methods since it introduces a
third alternative: ‘‘unknown”, along with the measure of confi-
dence in each of the alternatives. It provides a rule for computing
the confidence measures of three states of knowledge: fraud, fraud
and suspicious (unknown) based on data from new as well as old
evidence. Furthermore, in DST, evidence can be associated with
multiple possible events unlike traditional probability theory
where evidence is associated with only one event. As a result, evi-
dence can be more meaningful at a higher level of abstraction.
Hence, we use Dempster–Shafer theory for combining evidences
for this problem. However, one of the shortcomings of DST is that,
for evidences with a high degree of conflict, the modeling may not
be accurate. An extension of DST has recently been suggested to
overcome this problem [30].

DST is a mathematical theory of evidence based on belief func-
tions and plausible reasoning. It assumes a Universe of Discourse
U, also called the Frame of discernment, which is a set of mutually
exclusive and exhaustive possibilities [31]. For every incoming
transaction TCk

j;q, the rules R1 and R2 contribute their independent
observations about the behavior of the transaction. The part of DST
that is of direct relevance is Dempster’s rule for combination [32].
It gives us a numerical procedure for fusing together observations
from the rule-based filter to compute an overall belief for a transac-
tion. Two basic probability assignments m1(h) and m2(h) are com-
bined into a third basic probability assignment m(h) as follows:

mðhÞ ¼ m1ðhÞ �m2ðhÞ ¼
P

x\y¼hm1ðxÞ �m2ðyÞ
1�

P
x\y¼/m1ðxÞ �m2ðyÞ

ð2Þ

For the credit card fraud detection problem, the frame of discernment
U consists of two possible values for any suspected transaction TCk

j;q
which is given as U = {fraud, fraud}. For this U, the power set has three
possible elements: hypothesis h = {fraud} implying that TCk

j;q is fraud-
ulent, hypothesis �h ¼ f:fraudg that it is not, and universe hypothesis
U that TCk

j;q is suspicious. The basic probability assignments (BPAs) for
the two rules R1 and R2 can now be given as follows:

� BPA for R1: We assume that if address mismatch occurs then
there is a high probability that it is a fraud transaction and
low probability that it is a genuine transaction. We consider
the following basic probability assignments:
m1ðhÞ ¼ 0:6

m1ð�hÞ ¼ 0

m1ðUÞ ¼ 0:4 ð3Þ

It may be noted that, if m1(h) is set too high, the probability that
a transaction is detected as fraudulent will go up. As a result,
although the detection rate improves, it also raises the number
of false alarms. Similarly, if m1(U) is set high, the number of sus-
picious transactions goes up, which increases the number of
misses (fraudulent transactions are allowed to go through).
The values 0.6 and 0.4 have been chosen to maintain a balance
between these two requirements.

� BPA for R2: For a transaction detected as an outlier, we make the

following basic probability assignments using the degree of outli-

erness given in Eq. (1) of Section 3.1.1:

m2ðhÞ ¼ 1� e
mavg

m2ð�hÞ ¼ 0

m2ðUÞ ¼ 1� 1� e
mavg

� �
ð4Þ

Here the zero in the basic probability assignment of �h does not
imply impossibility. It means that neither of the rules R1 and R2

give any support to the belief that transaction TCk
j;q is genuine. Fol-

lowing Eq. (2), the combined belief of R1 and R2 in h is derived as:

PðhÞ ¼ m1ðhÞ �m2ðhÞ ð5Þ
Based on this belief value P(h), the transaction on a particular
card can be initially classified as normal, abnormal or suspicious.
Since P(h) and Pð�hÞ add to unity, Pð�hÞ ¼ 1� PðhÞ.

3.1.3. Transaction history database (THD)
THD is the transaction repository component of the proposed

FDS. History records of both fraudulent and genuine transactions
are used to construct models which allow us to extract character-
istic information of the two classes from available data. For accom-
plishing this, we have built a good transactions history (GTH) for
individual customers from their past behavior and a generic fraud
transactions history (FTH) from different types of past fraud data.
We represent each history transaction by a set of attributes con-
taining information like card number, transaction amount and
time since last purchase. While observing the current spending
behavior on a credit card by rule R2, we also accumulate and ana-
lyze past spending behavior in terms of the frequency of transac-
tions on that card. The transaction amount information in the
THD is required for detecting outliers. The expected behavior of a
fraudster is to maximize his benefit from a stolen card [33]. This
can be achieved by carrying out high value transactions frequently.
However, to avoid detection, the fraudsters can make either high
value purchases at longer time gaps or small value purchases at
shorter time gaps. Contrary to such usual behavior, a fraudster
may also carry out low value purchases at longer time gaps. This
would be difficult for the FDS to detect if it resembles the genuine
cardholder’s profile. However, in such cases, the total loss incurred
by the credit card company will also be quite low.

To capture the frequency of card use, we consider the time gap
between successive transactions on the same card. The transac-
tion gap is divided into four mutually exclusive and exhaustive
events – D1, D2, D3 and D4. Occurrence of each event depends
on the time since last purchase (transaction gap) on any particu-
lar card. The event D1 is defined as the occurrence of a transaction
on the same card Ck within 8 h of the last transaction which can
be represented as:

D1 ¼ Truejf9TCk
j;q ^ ð0 < q 6 8Þg ð6Þ
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Similarly, the events D2, D3 and D4 can be expressed as:

D2 ¼ Truejf9TCk
j;q ^ ð8 < q 6 16Þg ð7Þ

D3 ¼ Truejf9TCk
j;q ^ ð16 < q 6 24Þg ð8Þ

D4 ¼ Truejf9TCk
j;q ^ ðq > 24Þg ð9Þ

The event D is the union of all the four events D1, D2, D3 and D4 such
that:

PðDÞ ¼
X4

i¼1

PðDiÞ ¼ 1 ð10Þ

It may be noted that, we chose the above definitions of Di’s to han-
dle frequent as well as infrequent transactions during experimenta-
tion. Other values could be similarly defined. Card-specific
definitions of Di’s also can be derived by clustering transaction gaps
for each cardholder.

We next compute P(Di|h) and PðDij�hÞ from the FTH and the GTH,
respectively. P(Di|h) measures the probability of occurrence of Di

given that a transaction is originating from a fraudster and
PðDij�hÞ measures the probability of occurrence of Di given that it
is genuine. The likelihood functions P(Di|h) and PðDij�hÞ are given
by the following equations:

PðDijhÞ ¼
#ðOccurrences of Di in FTHÞ

#ðTransactions in FTHÞ ð11Þ

PðDij�hÞ ¼
#ðOccurrences of Di on Ck in GTHÞ

#ðTransactions on Ck in GTHÞ ð12Þ

We have created two look-up tables FFT (fraud frequency table) and
GFT (good frequency table) to maintain the values of P(Di|h) and
PðDij�hÞ.

Using Eqs. (11) and (12), P(Di) can be computed as follows:

PðDiÞ ¼ PðDijhÞ � PðhÞ þ PðDij�hÞ � Pð�hÞ ð13Þ

The initial belief P(h) of Eq. (5) can be updated by using Bayes rule
after getting the new information Di from the THD. We update the
THD frequently in order to retain the accuracy of the FDS, thus
reducing the number of false alarms. THD update is an offline
procedure.

3.1.4. Bayesian learner (BL)
Bayesian learning is a tool to measure evidences supporting

alternative hypotheses and arrive at optimal decisions. The general
idea of belief revision is that, whenever new information becomes
available, it may require updating of prior beliefs. Bayes rule gives
the mathematical formula for belief revision, which can be ex-
pressed as follows:

PðhjDiÞ ¼
PðDijhÞ � PðhÞ

PðDiÞ
ð14Þ

By substituting Eq. (13) in Eq. (14) we get:

PðhjDiÞ ¼
PðDijhÞ � PðhÞ

PðDijhÞ � PðhÞ þ PðDij�hÞ � Pð�hÞ
ð15Þ

We use Bayesian learning to update the suspicion score (W) of a
transaction in the light of the new evidence Di from the THD. W is
the probability that the current transaction is fraudulent. The goal
of Bayesian learning is to find the most probable hypothesis hmap gi-
ven the training data. This is known as the maximum a posteriori
hypothesis (MAP Hypothesis) which can be written as:

hmap ¼ max
h2H

PðhjDiÞ ð16Þ
Thus, for each hypothesis h in the hypothesis space H, we calculate
the posterior probability PðhjDiÞ and Pð�hjDiÞ by using Bayes rule and
then output the hypothesis with the highest posterior probability as
hmap. The credit card fraud detection problem has the following two
hypotheses: h:fraud and �h : :fraud. By substituting the values ob-
tained from Eqs. (5), (11) and (12) in Eq. (15), the posterior proba-
bility for hypothesis h:fraud is given as:

PðfraudjDiÞ ¼
PðDijfraudÞ � PðfraudÞ

PðDijfraudÞ � PðfraudÞ þ PðDij:fraudÞ � Pð:fraudÞ
ð17Þ

Similarly, the posterior probability for hypothesis �h : :fraud is given
as:

Pð:fraudjDiÞ ¼
PðDij:fraudÞ � Pð:fraudÞ

PðDij:fraudÞ � Pð:fraudÞ þ PðDijfraudÞ � PðfraudÞ
ð18Þ

Depending on which of the two posterior values is greater, future
actions are decided by the FDS.

3.2. Methodology

The working principle of the proposed FDS is presented in Algo-
rithm 1. It takes the transaction parameters – card number (Ck),
transaction amount (Tamount), billing address (Baddr), shipping ad-
dress (Saddr) and transaction gap (q) as well as the design parame-
ters – e, MinPts, hLT and hUT as input. hLT and hUT can be chosen by
observing the performance of the FDS over a large number of trans-
actions. In Section 4.2.1, we will show the impact of these settings
on the system accuracy.

An incoming transaction is first handled by the rule-based
component of the system. Basic probability values BPA_R1 and
BPA_R2 from the RBF are combined using the DSA to get the
initial belief P(h) for the transaction. If P(h) < hLT, the transaction
is considered to be genuine and is approved. On the other hand,
if P(h) > hUT then the transaction is declared to be fraudulent
and manual confirmation is made with the cardholder. In case
hLT 6 PðhÞ 6 hUT, the transaction is allowed but the card Ck is la-
beled as suspicious. If this is the first suspicious transaction on
this card, then the card number is inserted into a suspect table.
The FDS then waits until the next transaction occurs on the
same card number.

When the next transaction occurs on the same card Ck, it is
also passed to the FDS. The rule-based component of the FDS
again assigns a belief to the transaction. In case the transaction
is found to be suspicious, it is inserted in the suspect table. Since
each transaction is time stamped, from the time gap q between
the current and the last transaction, the FDS determines which
event E has occurred out of the four Di’s and retrieves the cor-
responding P(E|h) and PðEj�hÞ values from the tables FFT and GFT,
respectively. The posterior beliefs P(h|E) and Pð�hjEÞ are next
computed using Eqs. (17) and (18) and MAP hypothesis is
applied.

PðhjEÞ and Pð�hjEÞare the updated beliefs about the last transac-
tion on card Ck based on the evidence from THD and previous
round suspicion score W (last round). Since for the second suspi-
cious transaction on a card, there is no W (last round), the P(h) va-
lue of the first round is itself taken as W (last round) and posterior
beliefs are computed based on this value. If PðhjEÞP Pð�hjEÞ, then
the FDS applies the D–S rule of combination to get the suspicion
score W (current round) by combining P(h|E) and current round
P(h). The current round W value is inserted into the suspect table
at the end of each round unless the suspicious score fall below
hLT. The flow of events in the FDS has been depicted in the block
diagram of Fig. 1.
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Algorithm 1

Input: Ck, Tamount, Baddr, Saddr, e, MinPts, hLT, hUT, q
PR1[ ] = BPA_R1(Baddr, Saddr) // Using Eq. (3)
PR2[ ] = BPA_R2(Tamount, e, MinPts) // Using Eq. (4)
Ph = ds_add(PR1[], PR2[]) // Using Eq. (5) // PR1[] and PR2[]

are arrays of size 3
if (Ph < hLT) then

Output(‘‘Genuine”) // The transaction is approved
else if (Ph > hUT) then

Output(‘‘Fraudulent”) // Check with customer
if (transaction verified to be fraudulent) then

Block_Card(Ck)
end if

else
if (exists(Ck) = = false) then // Returns false if Ck is not in
suspect table

W = Ph

Insert_Suspect_Table(Ck, W) // Enter Ck in suspect table
Wait for the next transaction on the card Ck

else
E ¼ find eventðqÞ // Using Eqs. (6)–(9)
Eh ¼ compute event probhðEÞ // Using Eq. (11)
E�h ¼ compute event prob�hðEÞ // Using Eq. (12)
Posteriorh ¼ compute posterior beliefhðw;1� w; Eh; E�hÞ
// Using Eq. (17)
Posterior�h ¼ compute posterior belief�hðw;1� w; Eh; E�hÞ
// Using Eq. (18)
if ðPosteriorh > Posterior�hÞ then // Using Eq. (16)

A1[0] = Ph, A1[1] = 0, A2[2] = 1 - Ph // A1[] and A2[] are arrays
of size 3

A2[0] = Posteriorh, A2[1] = 0, A2[2] = 1- Posteriorh

W = ds_add(A1[], A2[]) // Using Eq. (5)
Insert_Suspect_Table(Ck, W)
if (W < hLT) then

Output(‘‘Genuine”)
Delete_Suspect_Table(Ck) // Remove Ck from suspect

table
else if (W > hUT) then

Output(‘‘Fraudulent”) // Check with customer
if (transaction verified to be fraudulent) then

Block_Card(Ck)
end if
else

Wait for the next transaction on the card Ck

end if
end if

end if
end if

Whenever a transaction is found to be anomalous and the fraudu-
lent behavior is conformed from the cardholder, the corresponding
card number and associated transactions are moved from the GTH
to the FTH in order to maintain the consistency of the THD and to
build the FTH.
3.3. Sample run

In Table 1, we show sample results over two rounds using the
proposed methodology. Let us consider: hLT = 0.3 and hUT = 0.7.

Suppose initial belief P(h) = 0.55 which is obtained by combin-
ing the evidences from rules R1 and R2. Since hLT 6 0:55 6 hUT,
the transaction is labeled as suspicious. We assume that it is
the first suspicious transaction on this card and hence, the card
number is entered into the suspect table. Suppose the next trans-
action occurs on the same card number within 8–16 h. It is
passed to the RBF and let us assume that we get P(h) = 0.62.
The transaction is again found to be suspicious. From the trans-
action gap, we determine that the event D2 has occurred and re-
trieve the corresponding P(D2|h) and PðD2j�hÞ values from FFT and
GFT, respectively. Let P(D2|h) = 0.245 and PðD2j�hÞ ¼ 0:289. By
applying Eqs. (17) and (18), we get P(h|D2) = 0.51 and
Pð�hjD2Þ ¼ 0:49. Since PðhjD2ÞP Pð�hjD2Þ, we compute suspicion
score of the current round by D–S combination (Eq. (5)) of cur-
rent round P(h) = 0.62 and the posterior belief P(h|D2) = 0.51.
We get W = 0.81 which is greater than hUT. Hence the transaction
is declared to be fraudulent and manual confirmation is made
with the cardholder. The interesting observation is that although
the card is not found to be strictly fraudulent in the two trans-
actions individually, due to Bayesian learning, it is detected as
fraudulent by belief update.

It may be noted that suspicion score may sometimes go up for a
genuine cardholder. This would represent a situation in which he
carries out a number of unusual transactions. Similarly, suspicion
score may also come down for a fraudster, which represents a sce-
nario in which the fraudster’s behavior matches exactly with the
actual cardholder. However, we will show in Section 4 that the sys-
tem is robust enough to handle deviations from expected patterns
to a large extent.

3.4. Implementation environment

The implementation of our FDS has been done in MS-SQL Server
2000. The database consists of a number of tables, the important
ones being the customer table, transaction table, master table, sus-
pect table, fraud frequency table, good frequency table and the
caught table. The customer table is used to store the credit card de-
tails of genuine cardholders. Transactions are submitted to the
transaction table and passed to the RBF. The initial belief of each
transaction is computed by D–S combination of BPAs of R1 and
R2. The transactions along with their initial beliefs are logged in
the master table by a trigger associated with the transaction table.
Transactions suspected to be fraudulent are logged in the suspect
table. The belief is updated with each new transaction on a partic-
ular card number and whenever W > hUT, the transactions are
logged in the caught table.

Stored procedures and triggers were written to facilitate the
functioning of this setup. These were used to check the deviation
of each transaction from the customer’s normal profile, D–S combi-
nation of BPAs of rules R1 and R2, belief updating, logging transac-
tions into different tables upon insert, implement the THD and the
flow of events as given in Algorithm 1.

4. Simulation and results

We demonstrate the effectiveness and usefulness of our FDS by
testing it with large scale data. Due to unavailability of real life
credit card data or benchmark data set for testing, we developed
a simulator to generate synthetic transactions that represent the
behavior of genuine cardholders as well as that of fraudsters.

It may be noted that Aleskerov et al. [5] tested the performance
of their CARDWATCH system on sets of synthetic data based on
Gaussian distribution only. Chan et al. [11] have used skewed dis-
tribution to generate a training set of labeled transactions. They
have done experiments to determine the most effective training
distribution. Li and Zhang [34] have modeled a customer’s pay-
ment by a Poisson process which can only capture the time gap be-
tween two transactions. It is seen that, none of them combine
appropriate distributions for generating both the transaction
amount and the time gap.



Table 1
Sample result of Algorithm 1 over various rounds.

Round P(h) P(h|Di) w

1 0.55 – 0.55
2 0.62 0.51 0.81
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Fig. 1. Block diagram of the proposed fraud detection system.
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In contrast, our simulator has been designed to handle various
real life scenarios that would be normally experienced in a credit
card transaction processing application. Firstly, any actual credit
card database contains fraudulent transactions interspersed with
genuine transactions. Secondly, the genuine transactions are
mostly similar for a given customer profile. Thirdly, the genuine
transactions and fraudulent transactions are independent events
and they have separate arrival rates. We capture these practical sit-
uations using a Markov modulated poisson process (MMPP) and
two Gaussian distribution functions.

In this section, we first discuss the components of our transac-
tion simulator. Then, we describe the choice of parameters of the
proposed FDS in Section 4.2.1 and finally study the performance
of the FDS in Section 4.2.2.

4.1. Description of the Simulator

Our simulator has the following three components as shown in
Fig. 2:

� Markov modulated poisson process module (MMPPM): It is a
Poisson arrival process that has its parameter k controlled by
an underlying Markov process. The proposed MMPPM has two
states: good state G and fraud state F with arrival rates kg and
kf, respectively. Transition from G to F takes place with probabil-
ity qgf and from F to G with probability qfg.



S. Panigrahi et al. / Information Fusion 10 (2009) 354–363 361
� Genuine Gaussian distribution module (GGDM): We use Gauss-
ian distribution to generate transaction amounts for genuine
customers since it is the most commonly observed probability
distribution in many natural processes. The simulator can han-
dle different customer profiles by varying mean (l) and stan-
dard deviation (r). We represent the GGDM by a Gaussian
process GPg having mean lg and standard deviation rg in Fig. 2.

� Fraud Gaussian distribution module (FGDM): This component is
used to generate synthetic transaction amounts for fraudsters
and is similar to GGDM. The FGDM is represented by a Gaussian
process GPf with mean lf and standard deviation rf. The simula-
tor can also handle different categories of fraudsters by varying
lf and rf during generation of fraudulent transactions.

Both the history tables GTH and FTH are initially populated with
a large number of transactions. Suppose the number of occurrences
of event Di for a particular card Ck in the GTH is Nk

i , where
i 2 {1,2,3,4} and the total number of transactions in the GTH on
that particular card is N. Nk

i
N gives an estimate of the probability

PðDij�hÞ for Ck. Higher the number of transactions in the GTH, better
is the estimate of this probability. P(Di|h) is also similarly estimated
from the FTH. Variation of the performance of the system with
database size is studied in Section 4.2.2.

4.2. Discussion of results

We use standard metrics to study the performance of the sys-
tem under different test cases. True positives (TP) are the fraudu-
lent transactions caught by the system and false positives (FP)
are the genuine transactions labeled as fraudulent (also called false
alarms). We first perform a set of experiments to determine a good
combination of the design parameters, namely, lower threshold
and upper threshold.

4.2.1. Choice of design parameters
From the discussions in Section 3, it is obvious that the effec-

tiveness of the proposed system depends on hLT and hUT. If hUT is
set too high, then most of the frauds will go undetected whereas
if hUT is set too low then there will be a large number of false
alarms which will lead to serious denial-of-service. Similarly, high
value of hLT will let most of the frauds go through and low value of
hLT will lead to unnecessary investigation of a large number of gen-
uine transactions. Hence, selection of hLT and hUT has an associated
tradeoff. We, therefore, carried out experiments to determine a
good choice of the hLT, hUT combination.

Table 2 shows the simulation parameter settings under which
the system performance was tested. These combinations capture
different groups of fraudsters and genuine users based on the
amount and frequency of transactions. For the first few combina-
tions, genuine and fraudulent profiles are quite different. However,
the two profiles become similar towards the last few rows of the
table.
Table 2
Simulation parameter settings.

Simulator settings Parameter values

kg kf qgf qfg lg lf

SS1 2 8 0.8 0.2 10 50
SS2 4 8 0.8 0.5 20 50
SS3 2 6 0.5 0.2 10 30
SS4 6 8 0.8 0.8 30 50
SS5 4 6 0.5 0.5 20 30
SS6 2 4 0.2 0.8 10 20
SS7 6 4 0.2 0.8 30 20
SS8 6 6 0.5 0.8 30 30
SS9 4 4 0.2 0.5 20 20
In real life situations, it is usually seen that fraudsters often try
to derive maximum benefit from a card by either making high va-
lue purchases with longer time gaps or small value purchases at
smaller time gaps to avoid detection. The adversaries with this
type of spending pattern can be categorized as risk-averse. On
the other hand, those in the risk-loving category perform very fre-
quent high value purchases. Similarly, there could also be various
behavioral profiles of cardholders. We have considered most of
the possible variations that may occur in a real life credit card
transaction processing application by setting various arrival rates
as well as mean value of transaction amounts as shown in Table
2. In our implementation, we express transaction amount in terms
of percentage of credit limit CL(Ck) of a card Ck and the arrival rate
in terms of the number of transactions every 72 h. This ensures
that all the four events of Eqs. (6)–(9) occur during simulation.

In Table 3, we show the variation of TP/FP for different values of
hLT and hUT. The values shown in this table represent average of the
results obtained for the nine simulator settings of Table 2. Further-
more, for every simulator setting (SSi), we computed the average
over 50 independent runs of the simulator consisting of 100 trans-
actions each. Sizes of GTH and FTH were 1000 and 400,
respectively.

From Table 3, it is seen that as hLT increases, TP decreases reach-
ing 78% for hLT = 0.35. The same trend is true for hUT also. TP falls to
77% for hUT = 0.85. FPs also show a similar trend. However, with
hLT = 0.3 and hUT = 0.7, the difference between TP and FP is the
highest. We make this as our choice since it gives a balance be-
tween the number of true positives and false positives. Thus, our
design parameter settings is hLT = 0.3 and hUT = 0.7, which is kept
fixed for the rest of the experiments. If a credit card issuing bank
wants to be conservative, it can select a hLT, hUT combination for
which TP is higher. On the other hand, if the target is to reduce de-
nial-of-service situations, hLT, hUT combination that gives low FP
should be chosen. The effectiveness of the FDS is also dependent
on the two parameters e and MinPts of Eq. (1). As discussed in Sec-
tion 3.1.1, following the heuristic given by Ester et al. [26], we set
the parameter e = 2% of credit limit and MinPts = 9.

4.2.2. Comparative performance
Once the design parameters have been set, we next show how

the system performs as the input is changed. For comparison, we
choose the credit card fraud detection system CARDWATCH [5].
Since this system uses features similar to ours, it is the one closest
to the proposed approach among all the methods discussed in Sec-
tion 2. We also study the improvement achieved by using Bayesian
learning over and above Dempster’s rule of combination.

In Fig. 3, we show variation of mean TP and FP with each SSi of
Table 2 for all the three systems as mentioned above. CW denotes
CARDWATCH, PA denotes the proposed approach and DS denotes
use of DST only. It is seen from Fig. 3 that use of DST itself improves
the performance over CARDWATCH by about 15–20% points in TP.
Bayesian learning further improves the TP. CARDWATCH on the
other hand, has lower FP than only DST based approach. Use of
Bayesian learning, however, brings down the FP to values close
to 5%.
Table 3
Variation of mean TP/mean FP (%) with hLT and hUT.

hUT hLT

0.20 0.25 0.30 0.35

0.70 83/8 81/7 81/4 78/4
0.75 82.5/7 80/6.5 79/3.5 76/3
0.80 80/6.5 78/6 78/3 75/2.5
0.85 77/5 75/4 73/3 71/2
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Thus, the improvement achieved in the proposed FDS after
using Bayesian learning is a substantial reduction in false alarms
without compromising the detection rate. It is further observed
in the figure that for the simulator setting in which lf is high com-
pared to lg, TP is high. The reason is that, for these settings the ar-
rival rates of good and bad transactions are quite different. Also, a
large percentage of bad transactions in a given transaction mix
leads to an overall improvement in TP. However, with each succes-
sive SSi, as the genuine behavior becomes similar to fraudster’s
behavior, the effectiveness reduces (TP decreases and FP increases)
for all the three fraud detection systems. Still, the proposed ap-
proach shows graceful degradation in accuracy.

We have also studied the performance of the proposed FDS by
varying the size of GTH as well as FTH as shown in Fig. 4a and b,
respectively. For this set of results, data distribution parameter val-
ues are as follows: kg = 4, kf = 8, qgf = 0.8, qfg = 0.5, lg = 20 and
lf = 50.

It is seen from Fig. 4a that, with increase in the size of the GTH
database, the percentage of FP decreases. The reason is that, as the
size of this database increases over a period of time, the FDS is able
to capture the behavior of a user more consistently. An increase in
the size of GTH, however, does not affect the fraud detection rate
and hence, the percentage of TP almost remains constant. On the
contrary, with an increase in the size of FTH, the FDS is able to cap-
ture different possible types of fraudulent patterns, thus increasing
the percentage of TP as shown in Fig. 4b. The size of FTH does not,
however, affect the genuine transactions due to which the percent-
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age of FP almost remains unchanged. Similar trends were observed
for other data distribution parameter settings also.

We next study the performance of the proposed FDS over vari-
ous rounds as shown in Fig. 5. The data distribution parameters are
the same as in Fig. 4a and b.

The first round commences with the first suspect transaction on
a particular card number. The FDS is able to update the belief val-
ues over successive rounds and the process continues as long as
the suspicion score is within the two threshold limits. It is seen
that with each successive round the percentage of cumulative TP
as well as cumulative FP increases. In the example given in Section
3.3 on sample run, the FDS tracks the transactions on the suspi-
cious card and the belief is updated at each round. Finally, the card
was caught at the end of the second round.

In Figs. 4 and 5, we only show the results of our proposed ap-
proach as these are not relevant for the other two cases.

5. Conclusions

Though most of the fraud detection systems show good results
in detecting fraudulent transactions, they also lead to the genera-
tion of too many false alarms. This assumes significance especially
in the domain of credit card fraud detection where a credit card
company needs to minimize its losses but, at the same time, does
not wish the cardholder to feel restricted too often. We have
proposed a novel credit card fraud detection system based on the
integration of three approaches, namely, rule-based filtering,
Dempster–Shafer theory and Bayesian learning. Dempster’s rule
is applied to combine multiple evidences from the rule-based com-
ponent for computation of initial belief about each incoming trans-
action. The suspicion score is updated by means of Bayesian
learning using history database of both genuine cardholder as well
as fraudster. It should be noted that we do not consider any specific
fraud model to generate FTH. Instead, FTH is built from history data
about past fraudulent behaviors detected by any credit card com-
pany. Any other validated fraud model may also be suitably cho-
sen. Moreover, the FDS architecture has been kept flexible so that
new rules using any other effective technique can also be included
at a later stage to further augment the rule-based component. In
addition, Bayesian learning takes place so that the FDS dynamically
adapts to the changing behavior of genuine customers as well as
fraudsters over time.

We have used stochastic models to generate synthetic transac-
tions for analyzing the performance of the system. The simulation
yielded up to 98% TP and less than 10% FP. Comparative studies
show significant improvement in accuracy. While combining rules
using Dempster–Shafer theory gives good performance, especially
in terms of true positives, Bayesian learning helps to further im-
prove the system accuracy. Based on the results, we conclude that
fusion of multiple evidences and learning are the appropriate ap-
proaches for addressing this type of real world problems where
the patterns of behavior are complex and there may be little or
no knowledge about the semantics of the application domain.
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The system can be further improved by using an extension of
DST as proposed in [30] which is more suited for combining con-
flicting evidences. Possibilities of using other methods for combin-
ing evidences like Bayesian combination network may be explored.
We could also cluster the transaction gaps to determine separate
Di’s for each cardholder. Such card-specific definitions of Di’s can
potentially make it more effective. Since we have given all the de-
tails of our approach in Section 3 and that of the simulator in Sec-
tion 4, the experiments can be repeated by interested readers, thus
reproducing the results. Though we have tackled a specific applica-
tion, we feel that with minor application-specific modifications,
the present approach can be effectively used to counter intrusion
in other database applications as well.
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