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What is Cluster Analysis?
Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

•Inter-cluster 
distances are 

maximized
•Intra-cluster 
distances are 

minimized



Applications of Cluster Analysis

Understanding

� Group related documents 
for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations

Summarization

� Reduce the size of large 
data sets

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

•Clustering 
precipitation in 

Australia



What is not Cluster Analysis?

Supervised classification
� Have class label information

Simple segmentation
� Dividing students into different registration groups 

alphabetically, by last name

Results of a query
� Groupings are a result of an external specification

Graph partitioning
� Some mutual relevance and synergy, but areas are not 

identical



Notion of a Cluster can be 
Ambiguous

•How many clusters?

•Four Clusters•Two Clusters

•Six Clusters



Similarity and Dissimilarity
Similarity

� Numerical measure of how alike two data objects are.

� Is higher when objects are more alike.

� Often falls in the range [0,1]

Dissimilarity

� Numerical measure of how different are two data objects

� Lower when objects are more alike

� Minimum dissimilarity is often 0

� Upper limit varies

Proximity refers to a similarity or dissimilarity



Euclidean Distance

Euclidean Distance

Where n is the number of dimensions (attributes) and pk and 
qk are, respectively, the kth attributes (components) or data 
objects p and q.

Standardization is necessary, if scales differ.
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Euclidean Distance
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point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

•Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0



Similarity Between Binary 
Vectors

Common situation is that objects, p and q, 
have only binary attributes

Compute similarities using the following 
quantities
M01 = the number of attributes where p was 0 and q was 1

M10 = the number of attributes where p was 1 and q was 0

M00 = the number of attributes where p was 0 and q was 0

M11 = the number of attributes where p was 1 and q was 1

Jaccard Coefficient 

J = number of 11 matches / number of not-both-zero attributes 
values

= (M11) / (M01 + M10 + M11) 



Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    

q =  0 0 0 0 0 0 1 0 0 1

M01 = 2   (the number of attributes where p was 0 and q was 1)

M10 = 1   (the number of attributes where p was 1 and q was 0)

M00 = 7   (the number of attributes where p was 0 and q was 0)

M11 = 0   (the number of attributes where p was 1 and q was 1)

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0



Types of Clusterings

A clustering is a set of clusters

Important distinction between 
hierarchical and partitional sets of 
clusters 

Partitional Clustering
� A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset

Hierarchical clustering
� A set of nested clusters organized as a hierarchical tree 



Partitional Clustering

•Original Points •A Partitional  Clustering



Hierarchical Clustering

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

•Traditional Hierarchical 
Clustering

•Non-traditional Hierarchical 
Clustering

•Non-traditional Dendrogram

•Traditional Dendrogram



Types of Clusters

Well-separated clusters

Center-based clusters

Contiguous clusters

Density-based clusters

Property or Conceptual



Types of Clusters: Well-Separated

Well-Separated Clusters: 
� A cluster is a set of points such that any point in a cluster is 

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster. 

•3 well-separated clusters



Types of Clusters: Center-Based

Center-based
� A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster  

� The center of a cluster is often a centroid, the average of all 
the points in the cluster, or a medoid, the most 
“representative” point of a cluster 

•4 center-based clusters



Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or 
Transitive)
� A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster.

•8 contiguous clusters



Types of Clusters: Density-Based

Density-based
� A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. 

� Used when the clusters are irregular or intertwined, and when 
noise and outliers are present. 

•6 density-based clusters



Characteristics of the Input Data Are Important

Type of proximity or density measure
� This is a derived measure, but central to clustering  

Sparseness
� Dictates type of similarity

� Adds to efficiency

Attribute type
� Dictates type of similarity

Type of Data
� Dictates type of similarity

� Other characteristics, e.g., autocorrelation

Dimensionality

Noise and Outliers

Type of Distribution



Clustering Algorithms

K-means and its variants

Hierarchical clustering

Density-based clustering



K-means Clustering

Partitional clustering approach 

Each cluster is associated with a centroid (center point) 

Each point is assigned to the cluster with the closest 
centroid

Number of clusters, K, must be specified

The basic algorithm is very simple



K-means Clustering – Details

Initial centroids are often chosen randomly.
� Clusters produced vary from one run to another.

The centroid is (typically) the mean of the points in the 
cluster.

‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc.

K-means will converge for common similarity measures 
mentioned above.

Most of the convergence happens in the first few 
iterations.

� Often the stopping condition is changed to ‘Until relatively few 
points change clusters’

Complexity is O( n * K * I * d )
� n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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10 Clusters Example
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•Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example
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•Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

•Starting with some pairs of clusters having three initial centroids, while 
other have only one.
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10 Clusters Example

•Starting with some pairs of clusters having three initial centroids, while 
other have only one.
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Limitations of K-means

K-means has problems when clusters 
are of differing 

� Sizes

� Densities

� Non-globular shapes

K-means has problems when the data 
contains outliers.



Limitations of K-means: Differing Sizes

•Original Points •K-means (3 Clusters)



Limitations of K-means: Differing Density

•Original Points •K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

•Original Points •K-means (2 Clusters)



Overcoming K-means Limitations

•Original Points K-means Clusters

•One solution is to use many clusters.

•Find parts of clusters, but need to put together.



Overcoming K-means Limitations

•Original Points K-means Clusters



Overcoming K-means Limitations

•Original Points K-means Clusters



Hierarchical Clustering 
Produces a set of nested clusters 
organized as a hierarchical tree

Can be visualized as a dendrogram

� A tree like diagram that records the 
sequences of merges or splits
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Strengths of Hierarchical 
Clustering

Do not have to assume any particular 
number of clusters
� Any desired number of clusters can be 

obtained by ‘cutting’ the dendogram at the 
proper level

They may correspond to meaningful 
taxonomies
� Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …)



Hierarchical Clustering

Two main types of hierarchical clustering

� Agglomerative:  

� Start with the points as individual clusters

� At each step, merge the closest pair of clusters until only one 
cluster (or k clusters) left

� Divisive:  

� Start with one, all-inclusive cluster 

� At each step, split a cluster until each cluster contains a point 
(or there are k clusters)

Traditional hierarchical algorithms use a similarity or 
distance matrix

� Merge or split one cluster at a time



Algorithm

More popular hierarchical clustering technique

Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

Key operation is the computation of the proximity of 
two clusters

� Different approaches to defining the distance between 
clusters distinguish the different algorithms



Starting Situation 
Start with clusters of individual points 
and a proximity matrix

•p1

•p3

•p5

•p4

•p2

•p1 •p2 •p3 •p4 •p5 •. . .

•.

•.

•.



Intermediate Situation
After some merging steps, we have some clusters 

•C
1
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4

•C
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5

•C
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•C1

•C3

•C5

•C4

•C2

•C3 •C4 •C5



Intermediate Situation

We want to merge the two closest clusters (C2 and C5)  
and update the proximity matrix. 
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How to Define Inter-Cluster Similarity
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•Similarity?

� MIN

� MAX

� Group Average

� Distance Between Centroids

� Other methods driven by an objective 
function

– Ward’s Method uses squared error

•Proximity Matrix
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

•p
1

•p
3

•p
5

•p
4

•p
2

•p
1

•p
2

•p
3

•p
4

•p
5

•. . 
.

•.

•.

•.
•Proximity Matrix

� MIN

� MAX

� Group Average

� Distance Between Centroids

� Other methods driven by an objective 
function

– Ward’s Method uses squared error

•× •×



Hierarchical Clustering:  Problems and 
Limitations

Once a decision is made to combine two 
clusters, it cannot be undone

No objective function is directly minimized

Different schemes have problems with one or 
more of the following:

� Sensitivity to noise and outliers

� Difficulty handling different sized clusters and 
convex shapes

� Breaking large clusters



DBSCAN

DBSCAN is a density-based algorithm.
� Density = number of points within a specified radius (Eps)

� A point is a core point if it has more than a specified number 

of points (MinPts) within Eps

� These are points that are at the interior of a 
cluster

� A border point has fewer than MinPts within Eps, but is in 
the neighborhood of a core point

� A noise point is any point that is not a core point or a border 
point. 



DBSCAN: Core, Border, and Noise Points



DBSCAN: Core, Border and Noise Points

•Original Points •Point types: core, 
border and noise

•Eps = 10, MinPts = 4



When DBSCAN Works Well

•Original Points •Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

•Original Points

•(MinPts=4, Eps=9.75).

• (MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data



Cluster Validity 

For supervised classification we have a variety of 
measures to evaluate how good our model is
� Accuracy, precision, recall

For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters?

But “clusters are in the eye of the beholder”! 

Then why do we want to evaluate them?
� To avoid finding patterns in noise
� To compare clustering algorithms
� To compare two sets of clusters
� To compare two clusters



Clusters found in Random Data
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Two matrices 
� Proximity Matrix

� “Incidence” Matrix

� One row and one column for each data point

� An entry is 1 if the associated pair of points belong to the same cluster

� An entry is 0 if the associated pair of points belongs to different clusters

Compute the correlation between the two matrices
� Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

High correlation indicates that points that belong to the 
same cluster are close to each other. 

Not a good measure for some density or contiguity based 
clusters.

Measuring Cluster Validity Via Correlation



Measuring Cluster Validity Via Correlation

Correlation of incidence and proximity matrices for 
the K-means clusterings of the following two data 
sets. 
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Order the similarity matrix with respect to cluster 
labels and inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp
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Clusters in random data are not so crisp

•K-means

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y



Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp
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