Advanced classification methods

Instance-based classification

Bayesian classification

Instance-Based Classifiers

Set of Stored Cases

Atr1	$\ldots \ldots \ldots$	AtrN	Class
			A
			B
			B
			C
			A
			C
			B

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

$A \operatorname{tr} 1$	$\ldots \ldots \ldots$	$A \operatorname{tr} \mathrm{~N}$

Instance Based Classifiers

- Examples:
- Rote-learner
- Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- Nearest neighbor
- Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

- Basic idea:
- If it walks like a duck, quacks like a duck, then it's probably a duck

Training Records

Nearest-Neighbor Classifiers

- Requires three things
- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
- Euclidean distance

$$
d(p, q)=\sqrt{\sum_{i}\left(p_{i}-q_{i}\right)^{2}}
$$

- Determine the class from nearest neighbor list
- take the majority vote of class labels among the knearest neighbors
- Weigh the vote according to distance
- weight factor, $w=1 / \mathrm{d}^{2}$

Nearest Neighbor Classification...

- Choosing the value of k :
- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Scaling issues
- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
- height of a person may vary from 1.5 m to 1.8 m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from $\$ 10 \mathrm{~K}$ to $\$ 1 \mathrm{M}$

Nearest Neighbor Classification...

- Problem with Euclidean measure:
- High dimensional data
- curse of dimensionality
- Can produce counter-intuitive results

111111111110
011111111111
$d=1.4142$

```
                        100000000000
```

```
                        100000000000
```

000000000001
$d=1.4142$

- Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
- It does not build models explicitly
- Unlike eager learners such as decision tree induction and rule-based systems
- Classifying unknown records are relatively expensive

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost \& Salzberg)
- Works with both continuous and nominal features
- For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
- Each record is assigned a weight factor
- Number of nearest neighbor, $k=1$

Example: PEBLS

| Tid | Refund | Marital
 Status | Taxable
 Income | Cheat |
| :--- | :--- | :--- | :--- | :--- |$|$| 1 | Yes | Single | 125 K | No |
| :--- | :--- | :--- | :--- | :--- |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

Distance between nominal attribute values:
d(Single,Married)
$=|2 / 4-0 / 4|+|2 / 4-4 / 4|=1$
d(Single,Divorced)
$=|2 / 4-1 / 2|+|2 / 4-1 / 2|=0$
d(Married,Divorced)
$=|0 / 4-1 / 2|+|4 / 4-1 / 2|=1$
d(Refund=Yes,Refund=No)

$$
=|0 / 3-3 / 7|+|3 / 3-4 / 7|=6 / 7
$$

Class	Refund	
	Yes	No
Yes	0	3
No	3	4

$$
d\left(V_{1}, V_{2}\right)=\sum_{i}\left|\frac{n_{1 i}}{n_{1}}-\frac{n_{2 i}}{n_{2}}\right|
$$

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
X	Yes	Single	125 K	No
Y	No	Married	100 K	No

Distance between record X and record Y :
where:

$$
\Delta(X, Y)=w_{X} w_{Y} \sum_{i=1}^{d} d\left(X_{i}, Y_{i}\right)^{2}
$$

$$
w_{X}=\frac{\text { Number of times } X \text { is used for prediction }}{\text { Number of times } X \text { predicts correctly }}
$$

$\mathrm{w}_{\mathrm{X}} \cong 1$ if X makes accurate prediction most of the time
$\mathrm{w}_{\mathrm{x}}>1$ if X is not reliable for making predictions

