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1. Introduction

Billions of dollars are lost annually due to credit card fraud [12,14].
The 10th annual online fraud report by CyberSource shows that
although the percentage loss of revenues has been a steady 1.4% of
online payments for the last three years (2006 to 2008), the actual
amount has gone up due to growth in online sales [17]. The estimated
loss due to online fraud is $4 billion for 2008, an increase of 11% on the
2007 loss of $3.6 billion [32]. With the growth in credit card
transactions, as a share of the payment system, there has also been
an increase in credit card fraud, and 70% of U.S. consumers are noted
to be significantly concerned about identity fraud [35]. Additionally,
credit card fraud has broader ramifications, as such fraud helps fund
organized crime, international narcotics trafficking, and even terrorist
financing [20,35]. Over the years, along with the evolution of fraud
detection methods, perpetrators of fraud have also been evolving
their fraud practices to avoid detection [3]. Therefore, credit card
fraud detection methods need constant innovation. In this study, we
evaluate two advanced data mining approaches, support vector
machines and random forests, together with the well-known logistic
regression, as part of an attempt to better detect (and thus control and
prosecute) credit card fraud. The study is based on real-life data of
transactions from an international credit card operation.

Statistical fraud detection methods have been divided into two
broad categories: supervised and unsupervised [3]. In supervised fraud
detection methods, models are estimated based on the samples of
fraudulent and legitimate transactions, to classify new transactions as
fraudulent or legitimate. In unsupervised fraud detection, outliers or
unusual transactions are identified as potential cases of fraudulent
transactions. Both these fraud detection methods predict the
probability of fraud in any given transaction.

Predictive models for credit card fraud detection are in active use
in practice [21]. Considering the profusion of data mining techniques
and applications in recent years, however, there have been relatively
few reported studies of data mining for credit card fraud detection.
Among these, most papers have examined neural networks
[1,5,19,22], not surprising, given their popularity in the 1990s. A
summary of these is given in [28], which reviews analytic techniques
for general fraud detection, including credit card fraud. Other
techniques reported for credit card fraud detection include case
based reasoning [48] and more recently, hidden Markov models [45].
A recent paper [49] evaluates several techniques, including support
vector machines and random forests for predicting credit card fraud.
Their study focuses on the impact of aggregating transaction level
data on fraud prediction performance. It examines aggregation over
different time periods on two real-life datasets and finds that
aggregation can be advantageous, with aggregation period length
being an important factor. Aggregation was found to be especially
effective with random forests. Random forests were noted to show
better performance in relation to the other techniques, though logistic
regression and support vector machines also performed well.

Support vector machines and random forests are sophisticated
data mining techniques which have been noted in recent years to
show superior performance across different applications
[30,38,46,49]. The choice of these two techniques, together with
logistic regression, for this study is based on their accessibility for
practitioners, ease of use, and noted performance advantages in the
literature. SVMs are statistical learning techniques, with strong

http://dx.doi.org/10.1016/j.dss.2010.08.008
mailto:sidb@uic.edu
mailto:sanjeev.jha@unh.edu
mailto:ktharakunnel@millikin.edu
mailto:westland@uic.edu
http://dx.doi.org/10.1016/j.dss.2010.08.008
http://www.sciencedirect.com/science/journal/01679236


603S. Bhattacharyya et al. / Decision Support Systems 50 (2011) 602–613
theoretical foundation and successful application in a range of
problems [16]. They are closely related to neural networks, and
through use of kernel functions, can be considered an alternate way to
obtain neural network classifiers. Rather than minimizing empirical
error on training data, SVMs seek to minimize an upper bound on the
generalization error. As compared with techniques like neural
networks which are prone to local minima, overfitting and noise,
SVMs can obtain global solutions with good generalization error. They
are more convenient in application, with model selection built into
the optimization procedure, and have also been found to outperform
neural networks in classification problems [34]. Appropriate param-
eter selection is, however, important to obtain good results with SVM.

Single decision tree models, though popular in data mining
application for their simplicity and ease of use, can have instability
and reliability issues. Ensemble methods provide a way to address
such problems with individual classifiers and obtain good general-
ization performance. Various ensemble techniques have been devel-
oped, including mixture of experts, classifier combination, bagging,
boosting, stacked generalization and stochastic gradient boosting (see
[29] and [40] for a review for these). For decision trees, the random
subspace method considers a subset of attributes at each node to
obtain a set of trees. Random forests [6] combine the random
subspace method with bagging to build an ensemble of decision trees.
They are simple to use, with two easily set parameters, and with
excellent reported performance noted as the ensemble method of
choice for decision trees [18]. They are also computationally efficient
and robust to noise. Various studies have found random forests to
perform favorably in comparison with support vector machine and
other current techniques [10,34].

The third technique included in this study is logistic regression. It
is well-understood, easy to use, and remains one of the most
commonly used for data-mining in practice. It thus provides a useful
baseline for comparing performance of newer methods.

Supervised learning methods for fraud detection face two chal-
lenges. The first is of unbalanced class sizes of legitimate and
fraudulent transactions, with legitimate transactions far outnumber-
ing fraudulent ones. For model development, some form of sampling
among the two classes is typically used to obtain training data with
reasonable class distributions. Various sampling approaches have been
proposed in the literature, with random oversampling of minority
class cases and random undersampling of majority class cases being
the simplest and most common in use; others include directed
sampling, sampling with generation of artificial examples of the
minority class, and cluster-based sampling [13]. A recent experimental
study of various sampling procedures used with different learning
algorithms [25] found performance of sampling techniques to vary
with learning algorithm used, and also with respect to performance
measures. The paper also found that simpler techniques like random
over and undersampling generally perform better, and noted very
good overall performance of random undersampling. Random under-
sampling is preferred to oversampling, especially with large data. The
extent of sampling for best performance needs to be experimentally
determined. In this study,we vary the proportion of fraud to non-fraud
cases in the training data using random undersampling, and examine
its impact in relation to the three learning techniques and considering
different performance measures.

The second problem in developing supervisedmodels for fraud can
arise from potentially undetected fraud transactions, leading to
mislabeled cases in the data to be used for building the model. For
the purpose of this study, fraudulent transactions are those specifi-
cally identified by the institutional auditors as those that caused an
unlawful transfer of funds from the bank sponsoring the credit cards.
These transactions were observed to be fraudulent ex post. Our study
is based on real-life data of transactions from an international credit
card operation. The transaction data is aggregated to create various
derived attributes.
The remainder of the paper is organized as follows. Section 2 proves
some background on credit card fraud. The next section describes the
three data mining techniques employed in this study. In Section 4 we
discuss the dataset source, primary attributes, and creation of derived
attributes using primary attributes. Subsequently, we discuss the
experimental set up and performance measures used in our compar-
ative study. Section6 presents our results and thefinal section contains
a discussion on findings and issues for further research.

2. Credit card fraud

Credit card fraud is essentially of two types: application and
behavioral fraud [3]. Application fraud is where fraudsters obtaining
new cards from issuing companies using false information or other
people's information. Behavioral fraud can be of four types: mail theft,
stolen/lost card, counterfeit card and ‘card holder not present’ fraud.
Mail theft fraud occurs when fraudsters intercept credit cards in mail
before they reach cardholders or pilfer personal information from
bank and credit card statements [8]. Stolen/lost card fraud happens
when fraudsters get hold of credit cards through theft of purse/wallet
or gain access to lost cards. However, with the increase in usage of
online transactions, there has been a significant rise in counterfeit
card and ‘card holder not present’ fraud. In both of these two types of
fraud, credit card details are obtained without the knowledge of card
holders and then either counterfeit cards are made or the information
is used to conduct ‘card holder not present’ transactions, i.e. through
mail, phone, or the Internet. Card holders information is obtained
through a variety of ways, such as employees stealing information
through unauthorized ‘swipers’, ‘phishing’ scams, or through intru-
sion into company computer networks. In the case of ‘card holder not
present’ fraud, credit cards details are used remotely to conduct
fraudulent transactions.

The evolution of credit card fraud over the years is chronicled in
[50]. In the 1970s, stolen cards and forgery were the most prevalent
type of credit card fraud, where physical cards were stolen and used.
Later, mail-order/phone-order became common in the '80s and '90s.
Online fraud has transferred more recently to the Internet, which
provides the anonymity, reach, and speed to commit fraud across the
world. It is no longer the case of a lone perpetrator taking advantage of
technology, but of well-developed organized perpetrator communi-
ties constantly evolving their techniques.

Boltan and Hand [4] note a dearth of published literature on credit
card fraud detection, which makes exchange of ideas difficult and
holds back potential innovation in fraud detection. On one hand
academicians have difficulty in getting credit card transactions
datasets, thereby impeding research, while on the other hand, not
much of the detection techniques get discussed in public lest
fraudsters gain knowledge and evade detection. A good discussion
on the issues and challenges in fraud detection research is provided in
[4] and [42].

Credit card transaction databases usually have a mix of numerical
and categorical attributes. Transaction amount is the typical numerical
attribute, and categorical attributes are those like merchant code,
merchant name, date of transaction etc. Some of these categorical
variables can, depending on the dataset, have hundreds and thousands
of categories. This mix of few numerical and large categorical attributes
have spawned the use of a variety of statistical, machine learning, and
datamining tools [4].We faced the challengeofmaking intelligentuse of
numerical and categorical attributes in this study. Several newattributes
were created by aggregating information in card holders' transactions
over specific time periods. We discuss the creation of such derived
attributes in more detail in Section 4 of this paper.

Another issue, as noted by Provost [42], is that the value of fraud
detection is a function of time. The quicker a fraud gets detected, the
greater the avoidable loss. However, most fraud detection techniques
need history of card holders' behavior for estimating models. Past
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research suggests that fraudsters try to maximize spending within
short periods before frauds get detected and cards are withdrawn [4].
Keeping this issue in mind we created ‘derived’ attributes by
aggregating transactions over different time periods to help capture
change in spending behavior.

3. Data-mining techniques

As stated above, we investigated the performance of three
techniques in predicting fraud: Logistic Regression (LR), Support Vector
Machines (SVM), and Random Forest (RF). In the paragraphs below, we
briefly describe the three techniques employed in this study.

3.1. Logistic regression

Qualitative response models are appropriate when dependent
variable is categorical [36]. In this study, our dependent variable fraud
is binary, and logistic regression is a widely used technique in such
problems [24]. Binary choice models have been used in studying
fraud. For example, [26] used binary choice models in the case of
insurance frauds to predict the likelihood of a claim being fraudulent.
In case of insurance fraud, investigators use the estimated probabil-
ities to flag individuals that are more likely to submit a fraudulent
claim.

Prior work in related areas has estimated logit models of
fraudulent claims in insurance, food stamp programs, and so forth
[2,7,23,41]. It has been argued that identifying fraudulent claims is
similar in nature to several other problems in real life including
medical and epidemiological problems [11].

3.2. Support vector machines

Support vector machines (SVMs) are statistical learning techni-
ques [47] that have been found to be very successful in a variety of
classification tasks. Several unique features of these algorithms make
them especially suitable for binary classification problems like fraud
detection. SVMs are linear classifiers that work in a high-dimensional
feature space that is a non-linear mapping of the input space of the
problem at hand. An advantage of working in a high-dimensional
feature space is that, in many problems the non-linear classification
task in the original input space becomes a linear classification task in
the high-dimensional feature space. SVMs work in the high-
dimensional feature space without incorporating any additional
computational complexity. The simplicity of a linear classifier and
the capability to work in a feature-rich spacemake SVMs attractive for
fraud detection tasks where highly unbalanced nature of the data
(fraud and non-fraud cases) make extraction of meaningful features
critical to the detection of fraudulent transactions is difficult to
achieve. Applications of SVMs include bioinformatics, machine vision,
text categorization, and time series analysis [16].

The strength of SVMs comes from two important properties they
possess — kernel representation and margin optimization. In SVMs,
mapping to a high-dimensional feature space and learning the
classification task in that space without any additional computational
complexity are achieved by the use of a kernel function. A kernel
function [44] can represent the dot product of projections of two data
points in a high-dimensional feature space. The high-dimensional
space used depends on the selection of a specific kernel function. The
classification function used in SVMs can be written in terms of the dot
products of the input data points. Thus, using a kernel function, the
classification function can be expressed in terms of dot products of
projections of input data points in a high-dimensional feature space.
With kernel functions, no explicit mapping of data points to the
higher-dimensional space happens while they give the SVMs the
advantage of learning the classification task in that higher-dimen-
sional space. The second property of SVMs is the way the best
classification function is arrived at. SVMs minimize the risk of
overfitting the training data by determining the classification function
(a hyper-plane) with maximal margin of separation between the two
classes. This property provides SVMs very powerful generalization
capability in classification.

In SVMs, the classification function is a hyper-plane separating the
different classes of data.

hw; xi + b = 0 ð1Þ

The notation hw; xi represents the dot product of the coefficient
vector w and the vector variable x.

The solution to a classification problem is then specified by the
coefficient vector w. It can be shown that w is a linear combination of
data points xi⋅ i=1,2, ⋅⋅⋅,m i.e., w=∑i ai xi, ai≥0. The data points xi
with non-zero αi are called the support vectors.

A kernel function k can be defined as k x1; x2ð Þ = hΦ x1ð Þ;Φ x2ð Þi
where Φ :X→H is a mapping of points in the input space X into a
higher-dimensional space H. As can be seen, the kernel function
implicitly maps the input data points into a higher-dimensional space
and return the dot product without actually performing the mapping
or computing the dot product. There are several kernel functions
suggested for SVMs. Some of thewidely used kernel functions include,
linear function, kðx1; x2Þ = hx1; x2i; Gaussian radial basis function
(RBF ) , kðx1; x2Þ = e−σtx1−x2t2 a n d po l ynom i a l f u n c t i on ,
kðx1; x2Þ = hx1; x2id. The selection of a specific kernel function for an
application depends on the nature of the classification task and the
input data set. As can be inferred, the performance of SVMs is greatly
depended on the specific kernel function used.

The classification function (1) has a dual representation as follows,
where yi are the classification labels of the input data points.

∑
i
aiγihxi; xi + b = 0

Using a kernel function k, the dual classification function above in
the high-dimensional space H can be written as

∑
i
aiγi kðx1; xÞ + b = 0

Asmentioned earlier, in SVMs, the best classification function is the
hyper-plane that has themaximummargin separating the classes. The
problem of finding the maximal margin hyper-plane can be formulat-
ed as a quadratic programming problem.With the dual representation
of the classification function above in the high-dimensional space H,
the coefficients ai of the best classification function are found by
solving the following (dual) quadratic programming problem.

maximize

WðαÞ = ∑m
i = 1αi−

1
2
∑m

i;j = 1αiαjγiγjkðxi; xjÞ

subject to

0≤αi≤
c
m

ði = 1; ⋅⋅⋅;mÞ

∑m
i = 1αiγi = 0

Theparameter C in the above formulation is called the cost parameter
of the classification problem. The cost parameter represents the penalty
value used in SVMs formisclassifying an input data point. A high valueof
C will result in a complex classification function with minimum
misclassification of input data whereas a low value of C produces a
classification function that is simpler. Thus, setting an appropriate value
for C is critical to the performance of SVMs. The solution of the above
quadratic programming problem is a computationally intensive task,
which can be a limiting factor in using SVM with very large data.
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However, iterative approaches like SMO [39] that can scale well to very
large problems are used in SVM implementations.

3.3. Random forests

The popularity of decision tree models in data mining arises from
their ease of use, flexibility in terms of handling various data attribute
types, and interpretability. Single tree models, however, can be
unstable and overly sensitive to specific training data. Ensemble
methods seek to address this problem by developing a set of models
and aggregating their predictions in determining the class label for a
data point. A random forest [6] model is an ensemble of classification
(or regression) trees. Ensembles perform well when individual
members are dissimilar, and random forests obtain variation among
individual trees using two sources for randomness: first, each tree is
built on separate bootstrapped samples of the training data; secondly,
only a randomly selected subset of data attributes is considered at
each node in building the individual trees. Random forests thus
combine the concepts of bagging, where individual models in an
ensemble are developed through samplingwith replacement from the
training data, and the random subspacemethod, where each tree in an
ensemble is built from a random subset of attributes.

Given a training data set of N cases described by B attributes, each
tree in the ensemble is developed as follows:

- Obtain a bootstrap sample of N cases
- At each node, randomly select a subset of bbB attributes.
Determine the best split at the node from this reduced set of b
attributes

- Grow the full tree without pruning

Random forests are computationally efficient since each tree is built
independentlyof theothers.With largenumberof trees in theensemble,
they are also noted to be robust to overfitting and noise in the data. The
number of attributes, b, used at a node and total number of trees T in the
ensemble are user-defined parameters. The error rate for a random
forest has been noted to depend on the correlation between trees and
the strength of each tree in the ensemble, with lower correlation and
higher strength giving lower error. Lower values of b correspond to
lower correlation, but also lead to lower strength of individual trees. An
optimal value for b canbe experimentally determined. Following [6] and
as found to be a generally good setting for b in [27], we set b=√B.
Attribute selection at a node is based on the Gini index, though other
selection measures may also be used. Predictions for new cases are
obtained by aggregating the outputs from individual trees in the
ensemble. For classification, majority voting can be used to determine
the predicted class for a presented case.

Random forests have been popular in application in recent years.
They are easy to use, with only two adjustable parameters, the number
of trees (T) in the ensemble and the attribute subset size (b), with
robust performance noted for typical parameter values [6]. They have
been found to perform favorably in comparison with support vector
machine and other current techniques [6,34]. Other studies comparing
the performance of different learning algorithms over multiple
datasets have found random forest to show good overall performance
[9,10,27,31]. Random forests have been applied in recent years across
varied domains from predicting customer churn [51], image classifi-
cation, to various bio-medical problems.Whilemany papers note their
excellent classification performance in comparison with other tech-
niques including SVM, a recent study [46] finds SVM to outperform
random forests for gene expressionmicro-array data classification. The
application of random forests to fraud detection is relatively new, with
few reported studies. A recent paper [49] finds random forests to show
superior performance in credit card fraud detection. Random forests
have also been successfully applied to network intrusion detection
[52], a problem that bears similarities to fraud detection.
4. Data

This section describes the real-life data on credit card transactions
and how it is used in our study. It also describes the primary attributes
in the data and the derived attributes created.

4.1. Datasets

In this study we use the dataset of [37], which was obtained from
an international credit card operation. The study in [37] used Artificial
Neural Networks (ANN) tuned by Genetic Algorithms (GAs) to detect
fraud. This dataset has 13 months, from January 2006 to January 2007,
of about 50 million (49,858,600 transactions) credit card transactions
on about one million (1,167,757 credit cards) credit cards from a
single country. For the purpose of this study, we call this dataset of all
transactions, dataset U (Fig. 1). A much smaller subset of this large
dataset is dataset A, which has 2420 known fraudulent transactions
with 506 credit cards.

One of the categorical attributes, transaction type, label transac-
tions based on the kind of transaction, such as retail purchase, cash
advance, transfer, etc. Suspecting fraud to be prevalent in only a few
transaction types, we compared transaction types in the dataset A of
observed fraudulent transactions with that in the full dataset U. We
found that near 95% of observed fraudulent transactions (dataset A)
were of retail purchase compared to less than 49% in dataset U
(Table 1). Compared to dataset U, observed fraudulent transactions fell
into only a few categories: retail types, non-directed payments, and
check-item. Therefore,we partitioned the dataset U to include only the
transaction types found in fraud dataset A. The reduced dataset U had
31,671,185 transactions and we call this reduced dataset as dataset V.

To compare credit card fraud prediction using different techniques,
we needed sets of transactions of both known fraudulent and
undetected or observed legitimate transactions. Dataset A has cases
of known fraudulent transactions, but we needed a comparable set of
observed legitimate transactions. We decided to create a random
sample of supposedly legitimate transactions from dataset V,
excluding all transactions with the 506 fraudulent credit cards.
Therefore, using dataset A and dataset V, we first created dataset B,
which has all transactions in dataset V with these 506 credit cards.
Dataset B has 37,280 transactions, of which the 2420 transactions in
dataset A are the known fraudulent transactions. Next, we created
dataset C, a random sample of observed legitimate transactions from
dataset V minus the transactions in dataset B. The dataset C, observed
legitimate transactions, has all transactions from 9645 randomly
chosen credit cards. Dataset C has 340,589 credit card transactions.

The “Experimental Setup” section below details the creation of
training and testing datasets using dataset A (observed fraudulent
transactions) and dataset C (observed legitimate transactions).

4.2. Primary attributes

Primary attributes are attributes of credit card transactions available
in the above datasets. We present these attributes in Table 2. Posting
date attribute is the date of posting of transactions to the accounts.
Account number attribute is the 16 digit credit card number of each
transaction. Transaction type attribute categorizes transactions into
types of transactions like cash advance, retail purchase, etc. Currency
attribute provides the short code for the currency used to perform a
transaction. Merchant code is the category code for the merchant for a
given transaction. Foreign currency transaction, a binary attribute, flags
a given transaction into whether a transaction is in foreign currency or
not. Transaction date attribute is the date of a transaction. Merchant
name, merchant city, and merchant country attributes describe the
merchants of respective transactions. The acquirer reference code is a
unique code for each transaction. E-commerce flag is a binary variable
indicating if a transaction was an e-commerce transaction.



Dataset U: All transactions 49,858,600 transactions 
Dataset A: Fraud Dataset 2,420 transactions
Dataset B: All transactions with Fraudulent Credit  Cards 37,280 transactions
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Dataset C: Random sample of transactions from dataset V-B 340,589 transactions
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Fig. 1. Dataset description.

Table 2
Primary attributes in datasets.

Attribute name Description
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There are two quantitative attributes of credit card transactions in
the dataset: foreign and local currency amount. Foreign currency
amount is the amount of transaction made with a foreign merchant.
Local currency amount is the amount of transaction in the local
currency of the country where the card was issued.

Wemake a note here that although the dataset has transaction and
posting dates of each transaction, there is no time stamp attribute
available. In other words, in a given business day, we have no way to
know the sequence of each transaction on a credit card. This is one of
the limitations of the study andwediscuss this again in sections below.

4.3. Derived attributes

As noted in [49], the high dimensionality and heterogeneity in credit
card transactionsmake it impractical to use data on all transactions for a
fraud detection system. They advocate employing a transaction
aggregation strategy as a way to capture consumer spending behavior
in the recent past. In this research, we employed a similar approach and
created derived attributes from the primary attributes discussed in the
previous section. The derived attributes provide aggregations on the
transaction data. As mentioned in the above section, we have only two
numerical attributes in our dataset: foreign currency amount and local
currency amount. The other attributes were categorical. Hence, similar
to [37], we created derived attributes for each transaction in the dataset
to put each credit card transaction into the historical context of past
shopping behavior. In essence, derived attributes provide information
on card holders' buying behavior in the immediate past. For example,
the practitioner literature suggests that consumer electronics category
experience the highest fraud rate because it is easy to sell these products
in electronic markets like eBay [32]. One of our derived attributes
(Number merchant type over month) computes the number of transac-
tions with a specific merchant type over a month prior to a given
transaction with a specific credit card. Now, for a given credit card
Table 1
Percentage of credit card transactions by transaction types.

Transaction types Dataset U Dataset A

Retail purchase 48.65 94.67
Disputed transaction 15.58 0.00
Non-directed payment 14.15 0.50
Retail payment 8.85 0.00
Miscellaneous fees 4.11 0.00
Transaction code 3.91 0.00
Cash-Write-Off-Debt 1.30 0.00
Cash-Adv-Per-Fee 0.62 0.00
Check-Item 0.63 4.54
Retail-Adjust 0.01 0.00
Others 2.19 0.29
Total 100.00 100.00
transaction, if there are a number of transactions with merchants in the
consumer electronics category during the past month, then one may
expect a higher likelihood of this transaction being fraudulent (based on
practitioner literature), if it is to purchase consumer electronics.
Similarly, we created other derived attributes for each transaction to
aggregate immediate history of card holders' buyingbehavior. However,
asmentioned above, since the data did not have specific time stamps for
transactions, beyond the date of a transaction, the sequence of
transactions with a credit card in a given day could not be determined.
Hence, the derived attributes carried the same value for some of the
attributes for transactions on a given day. For example, if a credit card
has two transactions on a certain day, then without information on the
sequence of these transactions, the derived attributes will have same
value for both transactions since we do not know which of them took
place first. Non-availability of time stamp datamakes derived attributes
less precise and this is a limitation of our study. Table 3 lists the 16
derived attributes created and these are briefly described below:

Txn amount over month: average spending per transaction over a
30-day period on all transactions till this transaction. We
computed the total amount spent with a credit card during the
past 30 days prior to a transaction and divided it by the number of
transactions to get the average amount spent.
Average over 3 months: average amount spent over the course of
1 week during the past 3 months. For this attribute, we computed
the total amount spent with a credit card during the past 90 days
prior to a transaction, and then divided it by 12 to get the average
weekly spent over three months.
Posting date Date when transaction was posted to the accounts
Account number Credit Card number
Transaction type Transaction types, such as cash advance and retail purchase
Currency Short code of the currency the transaction was originally

performed in
Merchant code Merchant Category Code
Foreign Txn Flagging whether this is a foreign currency transaction
Transaction date Date when the transaction was actually performed
Merchant name Name of merchant
Merchant city City of merchant
Merchant country Country of merchant
Acquirer reference The reference code for the transactions
E-commerce Flag if this was an Internet transaction
Foreign Txn Amt Foreign currency amount, the amount when transaction was

made with a foreign merchant
Local Txn Amt The amount in the local currency of the country where the

card is issued



Table 3
Derived attributes used in models.

Short Name Description

Txn amount over
month

Average amount spent per transaction over a month on
all transactions up to this transaction

Average over 3 months Average amount spent over the course of 1 week during
past 3 months

Average daily over
month

Average amount spent per day over the past 30 days

Amount merchant type
over month

Average amount per day spent over a 30 day period on all
transactions up to this one on the same merchant type as
this transaction

Number merchant type
over month

Total number of transactions with same merchant during
past 30 days

Amount merchant type
over 3 months

Average amount spent over the course of 1 week during
the past 3 months on same merchant type as this
transaction

Amount same day Total amount spent on the same day up to this
transaction

Number same day Total number of transactions on the same day up to this
transaction

Amount same
merchant

Average amount per day spent over a 30 day period on all
transactions up to this one on the same merchant as this
transaction

Number same
merchant

Total number of transactions with the same merchant
during last month

Amount currency type
over month

Average amount per day spent over a 30 day period on all
transactions up to this one on the same currency type as
this transaction

Number currency type
over month

Total number of transactions in the same currency during
the past 30 days

Amount same country
over month

Average amount spent over a 30 day period on all
transactions up to this one on the same country as this
transaction

Number same country
over month

Total number of transactions in the same country during
the past 30 days before this transaction

Amount merchant over
3 months

Average amount spent over the course of 1 week during
the past 3 months on same merchant as this transaction

Number merchant over
3 months

Total number of transactions with the same merchant
during the past 3 months
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Average daily over month: average spending per day over the past
30 days before this transaction. We calculated the total amount
spent with a credit card during the past 30 days prior to a
transaction and divided it by 30 to compute the average daily
spent over a month prior to a transaction.
Amount merchant type over month: average spending per day on a
merchant type over a 30-day period for each transaction. In this
case, we first computed the total amount spent with a credit card
on a specific merchant type during the past 30 days prior to a
transaction and then divided this sum by 30 to get the average
money spent with a specific merchant type over a month prior to a
transaction.
Number merchant type over month: total number of transactions
with the same merchant over a period of 30 days before a given
transaction. For this attribute, we computed the total number of
transactions with a credit card with a specific merchant type
during the past 30 days prior to a transaction.
Amount merchant type over 3months: average weekly spending on
a merchant type during the past 3 months before a given
transaction. For this attribute, we computed the total amount
spent with a credit card on a specific merchant type during the
past 90 days prior to a transaction, and then divided it by 12 to get
the average weekly amount spent over three months on that
merchant type.
Amount same day: total amount spent with a credit card on the day
of a given transaction. Here, for each transaction we computed the
total amount spent in a day with that credit card.
Number same day: total number of transactions on the day of a
given transaction. For this attribute, we computed the total
number of transactions in a day with that credit card.
Amount same merchant: average amount per day spent over a
30 day period on all transactions up to this one on the same
merchant as this transaction. In this case, we computed the total
amount spent on the same merchant in the day of a given
transaction with that credit card.
Number same merchant: total number of transactions with the
same merchant during the last month. For this attribute, we
computed the total number of transactions with the same
merchant in the day of a given transaction with that credit card.
Amount currency type over month: average amount spent over a 30-
day period on all transactions up to this transaction with the same
currency. For this attribute, we first computed the total amount
spent with a credit card on a specific currency type during past
30 days prior to a transaction and then divided this sum by 30 to
get the average money spent with a specific currency type over a
month prior to a transaction.
Number currency type over month: total number of transactions
with the same currency type during the past 30 days. For this
attribute, we computed the total number of transactions with a
credit card with a specific currency type during the past 30 days
prior to a transaction.
Amount same country over month: average amount spent over a 30-
day period on all transactions up to this transaction in the same
country. For this attribute, we first computed the total amount
spent with a credit card in a specific country during the past
30 days prior to a transaction and then divided this sum by 30 to
get the average money spent in a specific country over a month
prior to a transaction.
Number same country over month: total number of transactions in
the same country during past 30 days before this transaction. In
this case, we computed the total number of transactions with a
credit card in a specific country during past 30 days prior to a
transaction.
Amount merchant over 3 months: average amount spent over the
course of 1 week during the past 3 months on the same merchant
as this transaction. For this attribute, we computed the total
amount spent with a credit card on a specific merchant during the
past 90 days prior to a transaction, and then divided it by 12 to get
the average weekly amount spent over three months on that
merchant.
Number merchant over 3months: total number of transactions with
the samemerchant during the past 3 months. For this attribute, we
computed the total number of transactions with a credit card with
a specific merchant during the past 90 days prior to a transaction.

5. Experimental setup

The objective of this study is to examine the performance of two
advanced data mining techniques, random forests and support vector
machines, together with the well-known logistic regression, for credit
card fraud identification. We also want to compare the effect of extent
of data undersampling on the performance of these techniques. This
section describes the data used for training and testing themodels and
performance measures used.

For our comparative evaluation, parameters for the techniques
were set from what has been found generally useful in the literature
and as determined from the preliminary tests on our data. No further
fine tuning of parameters was conducted. While fine tuning of



Table 4
Training and testing datasets.

Training data Test data

Dataset DF1 Dataset DF2 Dataset DF3 Dataset DF4 Dataset T

Fraud 1237 1237 1237 1237 1183
Legitimate 6927 11,306 21,676 59,082 241,112
Total 8164 12,543 22,913 60,319 242,295
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parameters to specific datasets can be beneficial, consideration of
generally accepted settings is more typical in practice. The need for
significant effort and time for parameter fine tuning can often be a
deterrent to practical use, and can also lead to issues of overfitting to
specific data.

For SVM, we use Gaussian radial basis function as the kernel
function which is a general-purpose kernel with good performance
results. The cost parameter C and the kernel parameter σ were set to
values 10 and 0.1 respectively. These values were selected after
experimenting with different combinations of these values. For
Random Forests, we set the number of attributes considered at a
node, b=√B, where B is the total attributes in the data, and number of
trees T=200. Using T=500 was found to result in slightly better
performance, but at greater computationally cost.

5.1. Training and test data

Given the highly imbalanced data that is typical in such
applications, data from the two classes are sampled at different
rates to obtain training data with reasonable proportion of fraud to
non-fraud cases. As noted earlier, random undersampling of the
majority class has been found to be generally better than other
sampling approaches [25]. We use random undersampling to obtain
training datasets with varying proportions of fraud cases.We examine
the performance of the different algorithms on four training datasets
having 15%, 10%, 5% and 2% fraudulent transactions. These are labeled
DF1, DF2, DF3, and DF4 in the results. Performance is observed on a
separate Test dataset having 0.5% fraudulent transactions.

As described in the data section, dataset A has 2420 observed
fraudulent transactions. We divided dataset A into two subsets of
1237 (51%) and 1183 (49%) transactions. We used the first set of 1237
fraudulent transactions in populating the four modeling datasets
(DF1, DF2, DF3, and DF4) with fraudulent transactions and similarly
the second set of 1183 transactions for populating the test dataset. We
sampled legitimate transactions from dataset C to create varying fraud
rates in the modeling and test datasets. In other words, we kept the
same number of fraudulent transactions in the four modeling
datasets, but varied the number of legitimate transactions from
dataset C to create varying fraud rates. In Table 4, we show the
composition of the modeling and test datasets. As shown in Table 4,
the actual fraud rates in the four modeling datasets DF1, DF2, DF3, and
DF4 were approximately 15%, 10%, 5%, and 2% respectively. Similarly,
the actual fraud rates in the test dataset is 0.5%.

5.2. Performance measures

We use several measures of classification performance commonly
noted in the literature. Overall accuracy is inadequate as a perfor-
mance indicator where there is significant class imbalance in the data,
since a default prediction of all cases into the majority class will show
a high performance value. Sensitivity and specificity measure the
accuracy on the positive (fraud) and negative (non-fraud) cases. A
tradeoff between these true positives and true negatives is typically
sought. The F-measure giving the harmonic mean of precision and
recall, G-mean giving the geometric mean of fraud and non-fraud
accuracies, and weighted-Accuracy provide summary performance
indicators of such tradeoffs. The various performance measures are
defined with respect to the confusion matrix below, where Positive
corresponds to Fraud cases and Negative corresponds to non-fraud
cases.
Predicted positive
 Predicted negative
Actual positive
 True positives
 False negatives

Actual negative
 False positives
 True negatives
Accuracy (TP+TN)/(TP+FP+TN+FN)
Sensitivity (or recall) TP/(TP+FN) gives the accuracy on the fraud

cases.
Specificity TN/(FP+TN) gives the accuracy on the non-fraud cases.
Precision TP/(TP+FP) gives the accuracy on cases predicted as

fraud.
F-measure 2 Precision Recall/(Precision+Recall).
G-mean (Sensitivity Specificity)0.5.
wtdAcc w Sensitivity+(1−w) Specificity; we use w=0.7 to

indicate higher weights for accuracy on the fraud cases.

The above measures arising from the confusion matrix are based
on a certain cutoff value for class-labeling, by default generally taken
at 0.5. We also consider the AUC performance measure, which is often
considered a better measure of overall performance [33]. AUC
measures the area under the ROC curve, and is independent of
specific classification cutoff values.

The traditional measures of classification performance, however,
may not adequately address performance requirements of specific
applications. In fraud detection, cases predicted as potential fraud are
taken up for investigation or some further action, which involves a
cost. Accurate identification of fraud cases helps avoid costs arising
from fraudulent activity, which are generally larger than the cost of
investigating a potential fraudulent transaction. Such costs from
undetected fraudwill however be incurred for fraud cases that are not
captured by the model. Fraud detection applications thus carry
differential costs for false positives and false negatives. Performance
measures like AUC, however, give equal consideration to false
positives and false negatives and thus do not provide a practical
performance measure for fraud detection [43]. Where cost informa-
tion is available, these can be incorporated into a cost function to help
assess performance of different models [49].

We report on the multiple measures described above to help
provide a broad perspective on performance, and since the impact of
sampling can vary by technique and across performance measures
[25]. Accuracy and AUC are among the most widely reported for
classifier performance, though as noted above, not well suited for
problems like fraud detection where significant class imbalance exists
in the data. In evaluating credit card fraud detection, where non-fraud
cases tend to dominate in the data, a high accuracy on the (minority
class) fraud cases is typically sought. Accuracies on fraud and non-
fraud cases are shown through sensitivity and specificity, and these,
together with precision can indicate desired performance character-
istics. The three summary measures indicate different tradeoffs
amongst fraud and non-fraud accuracy. In implementation, a fraud
detection model will be used to score transactions, with scores
indicating a likelihood of fraud. Scored cases can be sorted in
decreasing order, such that cases ranked towards the top have higher
fraud likelihood. A well performing model here is one that ranks most
fraud cases towards the top. With a predominance of non-fraud cases
in the data, false positives are only to be expected. Model performance
can be assessed by the prevalence of fraudulent cases among the cases
ranked towards the top. The traditional measures described above do
not directly address such performance concerns that are important in
fraud management practice. We thus also consider the proportion of

Fraud rate 15.2% 9.9% 5.4% 2.1% 0.5%



Table 5
Cross-validation performance of different techniques (training data M2 with 10% fraud rate).

acc Sensitivity Specificity Precision F AUC wtdAcc G-mean

LR 0.947 (0.004) 0.654 (0.053) 0.979 (0.004) 0.778 (0.027) 0.709 (0.029) 0.942 (0.014) 0.772 (0.039) 0.8 (0.032)
SVM 0.938 (0.005) 0.524 (0.07) 0.984 (0.003) 0.782 (0.015) 0.624 (0.052) 0.908 (0.011) 0.678 (0.051) 0.716 (0.049)
RF 0.962 (0.005) 0.727 (0.052) 0.987 (0.002) 0.86 (0.029) 0.787 (0.038) 0.953 (0.012) 0.818 (0.036) 0.847 (0.03)

All differences significant (pb0.01) except for precision (LR, SVM), F(LR, SVM) and AUC (RF, SVM).

609S. Bhattacharyya et al. / Decision Support Systems 50 (2011) 602–613
fraud cases among the top 1%, 5%, 10% and 30% of the total data set
size. Results report the proportion of fraud cases among the top-K
cases as ranked by the model scores, where K is the number of fraud
cases in the data — a perfect model would find all fraud cases among
the top-K cases as ranked by model scores.

6. Results

This section presents results from our experiments comparing the
performance of Logistic regression (LR), Random Forests (RF) and
Support Vector Machines (SVM) model developed from training data
carrying varying levels of fraud cases.

We first present cross-validation results of the tree techniques on a
training dataset having 10% fraud cases (DF2). Results are shown in
Table 5 for the traditional measures of classification performance. All
differences are found to be significant (pb0.01) except for Precision
and F between LR and SVM, and for AUC between LR and RF. We find
that RF shows overall better performance. LR does better than SVM on
all measures other than specificity, precision and F. While these
results help establish a basic and general comparison between the
techniques, it is important to note that developed models in practice
are to be applied to data with typically far lower fraud rates. We this
next examine the performance of models developed using the
different techniques on the separate test dataset.

The performance of LR, SVM and RF on traditional measures is
shown in Table 6a,6b,6c respectively. For each technique, results are
given for the four training datasets carrying different proportions of
fraud. It is seen that Logistic Regression performs competitively with
the more advanced techniques on certain measures, especially in
comparison with SVM and where the class imbalance in training data
is not large. It shows better performance than SVM on sensitivity
except where the class imbalance in the training data becomes large
(for DF4, with 2% fraud). The precision, F, G-mean and wtdAcc
Table 6a
Performance of logistic regression across different fraud rates in training data.

LR acc Sensitivity Specificity Precision F WtdAcc G-Mean AUC

DF1: 15% fraud 0.966 0.740 0.967 0.100 0.177 0.808 0.846 0.925
DF2: 10% fraud 0.980 0.660 0.981 0.147 0.241 0.756 0.805 0.928
DF3: 5% fraud 0.987 0.527 0.989 0.188 0.277 0.666 0.722 0.928
DF4: 2% fraud 0.994 0.246 0.998 0.366 0.294 0.472 0.495 0.924

Table 6b
Performance of SVM across different fraud rates in training data.

SVM acc Sensitivity Specificity Precision F WtdAcc G-Mean AUC

DF1: 15% fraud 0.955 0.687 0.957 0.072 0.131 0.768 0.811 0.922
DF2: 10% fraud 0.980 0.593 0.982 0.139 0.226 0.710 0.763 0.922
DF3: 5% fraud 0.989 0.448 0.991 0.199 0.276 0.611 0.666 0.886
DF4: 2% fraud 0.996 0.430 0.998 0.567 0.489 0.601 0.655 0.818

able 6c
erformance of random forest across different fraud rates in training data.

RF acc Sensitivity Specificity Precision F WtdAcc G-Mean AUC

DF1: 15% fraud 0.978 0.812 0.979 0.157 0.264 0.862 0.892 0.932
DF2: 10% fraud 0.987 0.747 0.988 0.233 0.355 0.819 0.859 0.934
DF3: 5% fraud 0.992 0.653 0.994 0.342 0.449 0.755 0.805 0.909
DF4: 2% fraud 0.996 0.423 0.999 0.613 0.500 0.595 0.650 0.838
T
P

measures show a similar comparison between LR and SVM. LR is also
seen to exhibit consistent performance on AUC across the different
training datasets. Random Forests show overall better performance
than the other techniques on all performance measures.

The graphs in Fig. 2 highlight the comparison between the
techniques across different training datasets, on various performance
measures. Accuracy on the non-fraud cases, as given by specificity, is
high, with RF showing an overall better performance. As may be
expected, specificity increases with lower fraud rates in the training
data, as more and more cases get classified into the majority class. As
noted earlier, accuracy on the fraud cases is of greater importance for
fraud detection applications, and sensitivity here is seen to decrease
with lower fraud rates in the training data for all techniques; logistic
regression, however, shows particularly low accuracy when the fraud
rate in the training data is at the lowest level (DF4, 2% fraud). RF again
shows the best performance, followed by LR and then SVM; for the
training dataset with lowest fraud rate, however, SVM surpasses LR
and performs comparably with RF. This pattern, with SVM matching
the performance of RF when trained with the lowest proportion of
fraud cases in the data, is also seen for the other measures. Precision
increases with lower fraud rates in the training data; with fewer cases
bring classified as fraud, the accuracy of such fraud predictions
improve. Here, again, RF shows highest performance; SVM and LR are
similar, except for DF4, where SVM's performance approaches that of
RF. On the F-measure, which incorporates a tradeoff between accuracy
on fraud cases and precision in predicting fraud, RF shows markedly
better performance; with the lowest fraud rate in the training data
(DF4), SVM performs comparably with RF, with LR far lower.
Performance on both the G-mean and wtdAcc measures, which take
a combined consideration of accuracy on fraud and non-fraud cases, is
similar to that for sensitivity.

The performance of LR is noteworthy on the AUC measure; while
both RF and SVM show decreasing AUC with lower fraud rates in the



Fig. 2. Performance across different fraud rates in training data.

Table 7a
Proportion of fraud captured (logistic regression) in upper file depths.

LR top-K 1% depth 5% depth 10% depth 30% depth

M1: 15% fraud 0.298 0.456 0.806 0.886 0.964
M2: 10% fraud 0.313 0.473 0.804 0.880 0.975
M3: 5% fraud 0.305 0.464 0.798 0.883 0.977
M4: 2% fraud 0.308 0.461 0.798 0.876 0.967
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training data, LR is noticed to maintain a consistently good
performance. AUC, unlike the other performance measures here, is
independent of the classification threshold. Thus, where this
threshold is irrelevant, LR models from different training data show
similar AUC performance. Note that fraud cases across the different
training datasets are the same, with only the non-fraud cases being
sampled differentially in order to get different fraud rates in the
training data. A consistently high value of AUC for LR across the
training datasets indicates that the LR models maintain a similar
ranking of cases, irrespective of the level of undersampling of non-
fraud cases in the training data. This is also borne out by the fraud
capture performance of LR given in Table 7a,7b,7c.
Table 7a,7b report performance with respect to the proportion of
fraud cases captured at different data depths. Fig. 3 shows the
proportion of fraud cases captured at 1%, 5%, 10% and 30% depths for



Table 7b
Proportion of fraud captured (SVM) in upper file depths.

SVM top-K 1% depth 5% depth 10% depth 30% depth

M1: 15% fraud 0.244 0.363 0.697 0.855 0.970
M2: 10% fraud 0.269 0.437 0.802 0.857 0.970
M3: 5% fraud 0.326 0.439 0.620 0.771 0.930
M4: 2% fraud 0.474 0.606 0.786 0.795 0.810

Fig. 3. Proportion of fraud cases captures at different file depths (DF2 training data).
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models trained on the DF2 dataset (having 10% fraud rate). RF is seen
to capture more of the fraud cases, with SVM and LR showing similar
performance. With all techniques detecting greater number of fraud
cases with increasing depth, the difference between RF and the other
techniques gradually decreases. RF identifies around90% of fraud cases
in the test data at the 5% depth, while SVM and LR identify 80%. At 30%
depth, most of the fraud cases are captured by all the techniques.

The graphs in Fig. 4 depict the proportion of fraud cases in the test
data that are captured in the top-K, 1%, 5% and 30% depths. Recall that
K here corresponds to the total fraud cases in the data; the top-K
performance thus gives the proportion of fraud among the top-K cases
as ranked by model scores. RF is clearly superior on this, capturing
around 50% of the fraud cases in the top-K. The fraud capture
performance in the top-K and top 1% depths shows an increasing
trend for RF and SVM with smaller proportion of fraud in the training
data. SVM, in particular, shows a marked increase in performance
with smaller fraud rates in the training data. For LR, performance is
consistent across the different fraud rates in training data.

At greater depths of 10% and 30%, where a large number of the
fraud cases in the test data are captured, performance differences
between the techniques is smaller. While RF still shows better
performance at the 10% depth, this declines when the training data
contains very low proportion of fraud cases (for DF4). Similar
performance decline is also seen in SVM, for DF3 and DF4 training
data. At the 30% depth, around 97% of the fraud cases are captured by
all techniques; with lower fraud rates in the training data, however,
the performance of RF and SVM decreases. LR, on the other hand,
maintains consistent performance across the different training data,
indicating, as noted above, that the LR models yield similar rankings
among the cases, irrespective of the extent of undersampling of non-
fraud cases in the training data.
7. Discussion

This paper examined the performance of two advanced data
mining techniques, random forests and support vector machines,
together with logistic regression, for credit card fraud detection. A
real-life dataset on credit card transactions from the January 2006–
January 2007 period was used in our evaluation. Random forests and
SVM are two approaches that have gained prominence in recent years
with noted superior performance across a range of applications. Till
date, their use for credit card fraud prediction has been limited. With
the typically very low fraud cases in the data compared to legitimate
transactions, some form of sampling is necessary to obtain a training
dataset carrying an adequate proportion of fraud to non-fraud cases.
We use data undersampling, a simple approach which has been noted
to perform well [25], and examine the performance of the three
Table 7c
Proportion of fraud captured (random forest) in upper file depths.

RF top-K 1% depth 5% depth 10% depth 30% depth

M1: 15% fraud 0.474 0.639 0.892 0.939 0.977
M2: 10% fraud 0.494 0.664 0.904 0.951 0.975
M3: 5% fraud 0.490 0.668 0.908 0.939 0.944
M4: 2% fraud 0.524 0.691 0.780 0.801 0.877
techniques with varying levels of data undersampling. The study
provides a comparison of performance considering various traditional
measures of classification performance and certain measures related
to the implementation of such models in practice. For performance
assessment, we use a test dataset with much lower fraud rate (0.5%)
than in the training datasets with different levels of undersampling.
This helps provide an indication of performance that may be expected
when models are applied for fraud detection where the proportion of
fraudulent transactions are typically low.

Encouragingly, all techniques showed adequate ability to model
fraud in the considered data. Performance with different levels of
undersampling was found to vary by technique and also on different
performance measures. While sensitivity, G-mean and weighted-
accuracy decreased with lower proportions of fraud in the training
data, precision and specificity were found to show an opposite trend;
on the F-measure and AUC, logistic regression maintained similar
performance with varying proportions of fraud in the training data,
while RF and SVM showed an decreasing trend on AUC and an
increasing trend on F. Perhaps more informative from an application
and practical standpoint is the fraud capture rate performance at
different file depths. Here, random forests showed much higher
performance at the upper file depths. They thus capture more fraud
cases, with fewer false positives, at the upper depths, an important
consideration in real-life use of fraud detection models. Logistic
regression maintained similar performance with different levels of
undersampling, while SVM performance at the upper file depths
tended to increase with lower proportion of fraud in the training data.

Random forests demonstrated overall better performance across
performancemeasures. Random forests, being computationally efficient
and with only two adjustable parameter which can be set at commonly
considered default values, are also attractive from a practical usage
standpoint. Logistic regression has over the years been a standard
technique in many real-life data mining applications. In our study, too,
this relatively simple, well-understood and widely available technique
displayed good performance, often surpassing that of the SVM models.
As noted earlier, no deliberate attempts at optimizing the parameters of
the techniques were made in this study. Parameter tuning can be
important for SVM, and balanced sampling has been noted to be
advantageous in using Random Forests on imbalanced data [15]. These
carry the potential for better performance over that reported here and
present useful issues for further investigation.

A factor contributing to the performance of logistic regression is
possibly the carefully derived attributes used. Exploratory data
analysis and variable selection is of course a time consuming step in
the data mining process, and where such effort is in doubt, the
performance of logistic regression may be uncertain. For ease of
comparison, models from all techniques in our study were developed
using the same derived attributes. Random forests and SVM carry
natural variable selection ability and have been noted to performwell
with high dimensional data. Their potential for improved perfor-
mance when used on the wider set of available attributes is an
interesting issue for further investigation.

image of Fig.�3


Fig. 4. Fraud capture rate in upper file depths with different fraud rates in training data.
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Future research can explore possibilities for creating ingenious
derived attributes to help classify transactions more accurately. We
created derived attributes based on past research, but future work can
usefully undertake a broader study of attributes best suited for fraud
modeling, including the issue of transaction aggregation [49]. Another
interesting issue for investigation is how the fraudulent behavior of a
card with multiple fraudulent transactions is different from a card
with few fraudulent transactions. As mentioned above, a limitation in
our data was the non-availability of exact time stamp data beyond the
date of credit card transactions. Future study may focus on the
difference in sequence of fraudulent and legitimate transactions
before a credit card is withdrawn. Future research may also examine
differences in fraudulent behavior among different types of fraud, say
the difference in behavior between stolen and counterfeit cards.

Alternative means for dividing the data into training and test
remains another issue for investigation. The random sampling of data
into training and test as used in this study assumes that fraud
patterns will remain essentially same over the anticipated time
period of application of such patterns. Given the increasingly
sophisticated mechanisms being applied by fraudsters and the
potential for their varying such mechanisms over time to escape
detection, such assumptions of stable patterns over time may not
hold. Consideration of data drift issues can then become important.
To better match how developed models may be used in real
application, training and test data can be set up such that trained
models are tested for their predictive ability in subsequent time
periods.With availability of data covering a longer time period, it will
be useful to examine the extent of concept drift and whether fraud
patterns remain in effect over time.
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