Data Mining

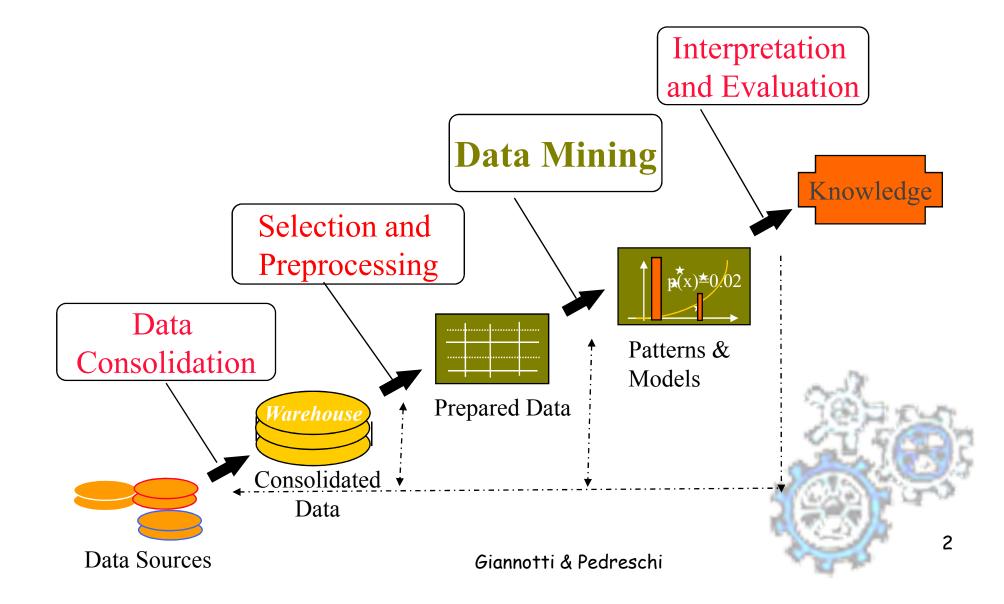
Knowledge Discovery in Databases

Fosca Giannotti and Dino Pedreschi Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://www-kdd.cnuce.cnr.it/

MAINS – Master in Management dell' Innovazione Scuola Superiore S. Anna

KDD Process



Association rules and market basket analysis

Association rules - module outline

- 1. What are association rules (AR) and what are they used for:
 - 1. The paradigmatic application: Market Basket Analysis
 - 2. The single dimensional AR (intra-attribute)

- 2. How to compute AR
 - 1. Basic Apriori Algorithm and its optimizations
 - 2. Multi-Dimension AR (inter-attribute)
 - 3. Quantitative AR
 - 4. Constrained AR
- How to reason on AR and how to evaluate their quality
 - 1. Multiple-level AR
 - 2. Interestingness
 - 3. Correlation vs. Association

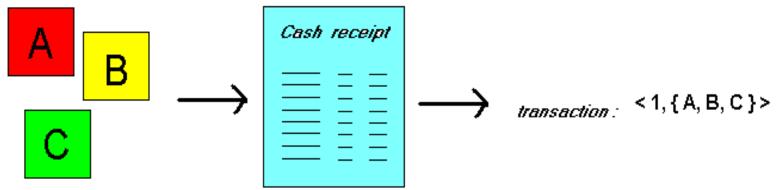
Market Basket Analysis: the context

Customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"

Market Basket Analysis: the context

Given: a database of customer transactions, where each transaction is a set of items

☐ Find groups of items which are frequently purchased together



Goal of MBA

- Extract information on purchasing behavior
- Actionable information: can suggest
 - new store layouts
 - new product assortments
 - which products to put on promotion
- MBA applicable whenever a customer purchases multiple things in proximity
 - credit cards
 - services of telecommunication companies
 - banking services
 - medical treatments

MBA: applicable to many other contexts

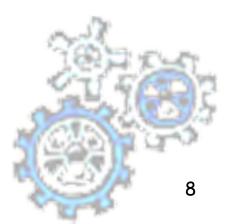
Telecommunication:

Each customer is a transaction containing the set of customer's phone calls

Atmospheric phenomena:

Each time interval (e.g. a day) is a transaction containing the set of observed event (rains, wind, etc.)

Etc.



Association Rules

- Express how product/services relate to each other, and tend to group together
- "if a customer purchases three-way calling, then will also purchase call-waiting"
- simple to understand
- actionable information: bundle three-way calling and call-waiting in a single package
- Examples.
 - Rule form: "Body \rightarrow Head [support, confidence]".
 - buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") ^ takes(x, "DB") → grade(x, "A") [1%, 75%]

Useful, trivial, unexplicable

- Useful: "On Thursdays, grocery store consumers often purchase diapers and beer together".
- Trivial: "Customers who purchase maintenance agreements are very likely to purchase large appliances".
- Unexplicable: "When a new hardaware store opens, one of the most sold items is toilet rings."

Association Rules Road Map

- Single dimension vs. multiple dimensional AR
 - E.g., association on items bought vs. linking on different attributes.
 - Intra-Attribute vs. Inter-Attribute
- Qualitative vs. quantitative AR
 - Association on categorical vs. numerical attributes
- Simple vs. constraint-based AR
 - E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?
- Single level vs. multiple-level AR
 - E.g., what brands of beers are associated with what brands of diapers?
- Association vs. correlation analysis.
 - Association does not necessarily imply correlation.

Association rules - module outline

- What are association rules (AR) and what are they used for:
 - The paradigmatic application: Market Basket Analysis
 - ☐ The single dimensional AR (intra-attribute)
- How to compute AR
 - Basic Apriori Algorithm and its optimizations
 - Multi-Dimension AR (inter-attribute)
 - Quantitative AR
 - Constrained AR
- How to reason on AR and how to evaluate their quality
 - Multiple-level AR
 - Interestingness
 - Correlation vs. Association

Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining by Tan, Steinbach, Kumar

13

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

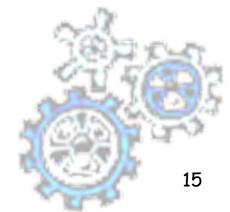
```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - ✓ Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke



Definition: Association Rule

- Association Rule
 - An implication expression of the form X → Y, where X and Y are itemsets
 - Example: {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

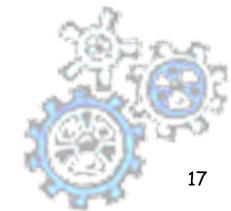
 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!



Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Basic Apriori Algorithm

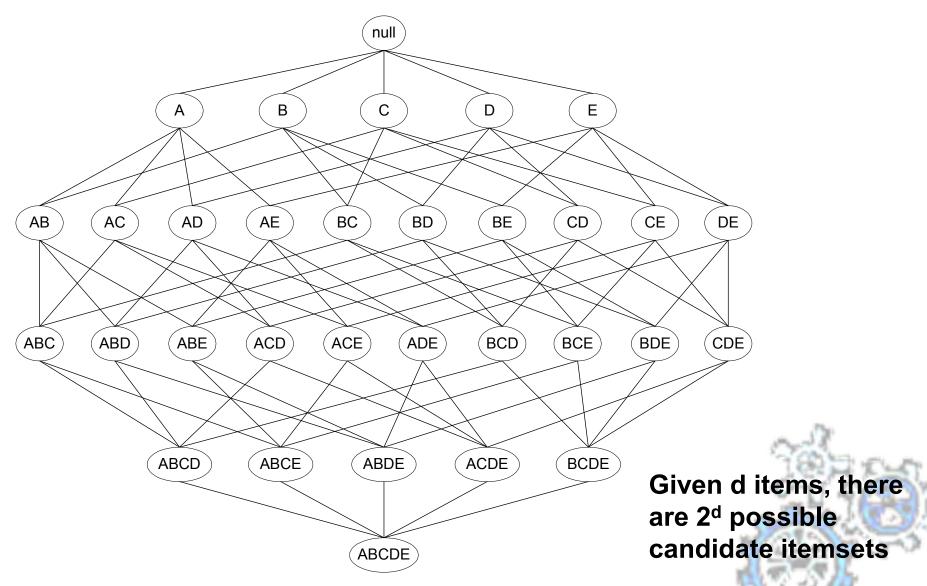
Problem Decomposition

- Find the frequent itemsets: the sets of items that satisfy the support constraint
 - A subset of a frequent itemset is also a frequent itemset,
 i.e., if {A,B} is a frequent itemset, both {A} and {B} should
 be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Use the frequent itemsets to generate association rules.

Frequent Itemset Mining Problem

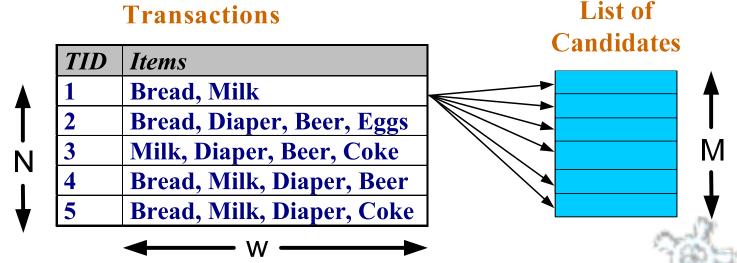
- $I=\{x_1, ..., x_n\}$ set of distinct literals (called items)
- $X \subseteq I$, $X \neq \emptyset$, |X| = k, X is called k-itemset
- A transaction is a couple ⟨tID, X⟩ where X is an itemset
- A transaction database TDB is a set of transactions
- An itemset X is contained in a transaction (tID, Y) if X⊆Y
- Given a TDB the subset of transactions of TDB in which X is contained is named TDB[X].
- The support of an itemset X, written supp_{TDB}(X) is the cardinality of TDB[X].
- Given a user-defined min_sup threshold an itemset X is frequent in TDB if its support is no less than min_sup.
- Given a user-defined min_sup and a transaction database TDB, the Frequent Itemset Mining Problem requires to compute all frequent itensets in TDB w.r.t min_sup.

Frequent Itemset Generation



Frequent Itemset Generation

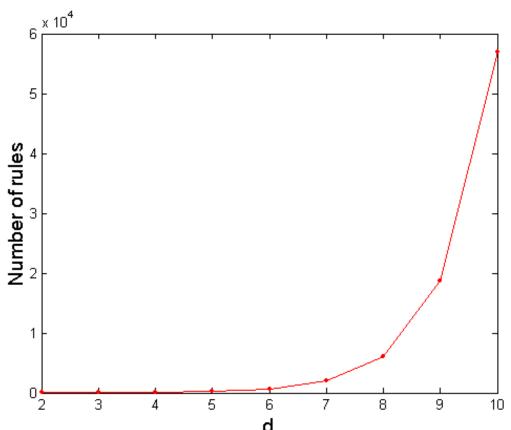
- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database



- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Master MAINS, Marzo

Giannotti & Pedreschi

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

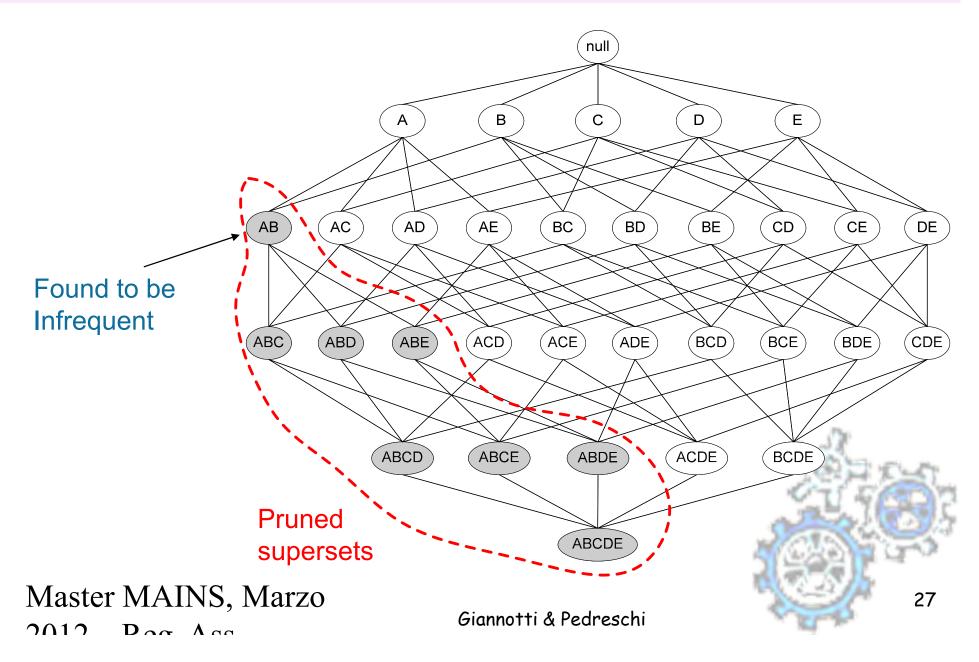
Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle



Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

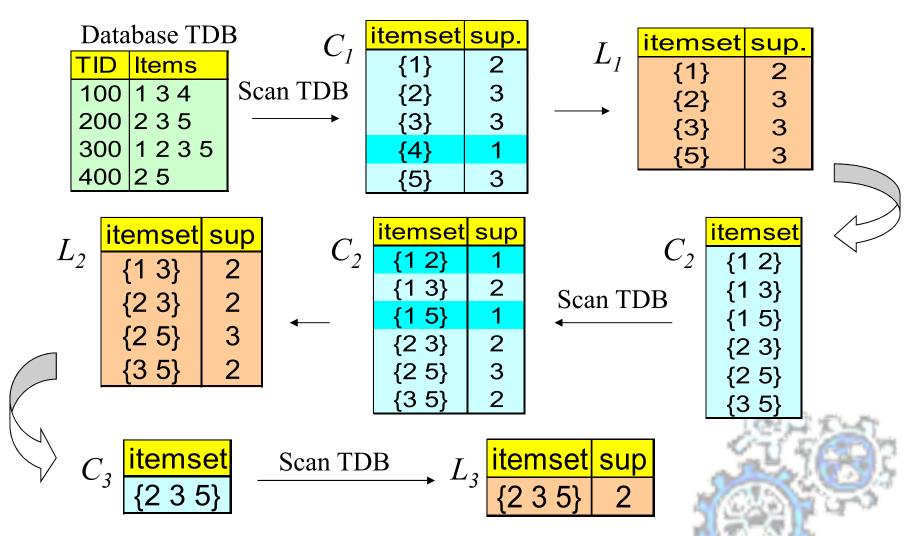
Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Execution Example (min_sup = 2)



Master MAINS, Marzo

Giannotti & Pedreschi

The Apriori Algorithm

- Join Step: C_k is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:

```
C_k: Candidate itemset of size k

L_k: frequent itemset of size k

L_1 = {frequent items};

for (k=1; L_k!=\emptyset; k++) do begin

C_{k+1} = candidates generated from L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1}

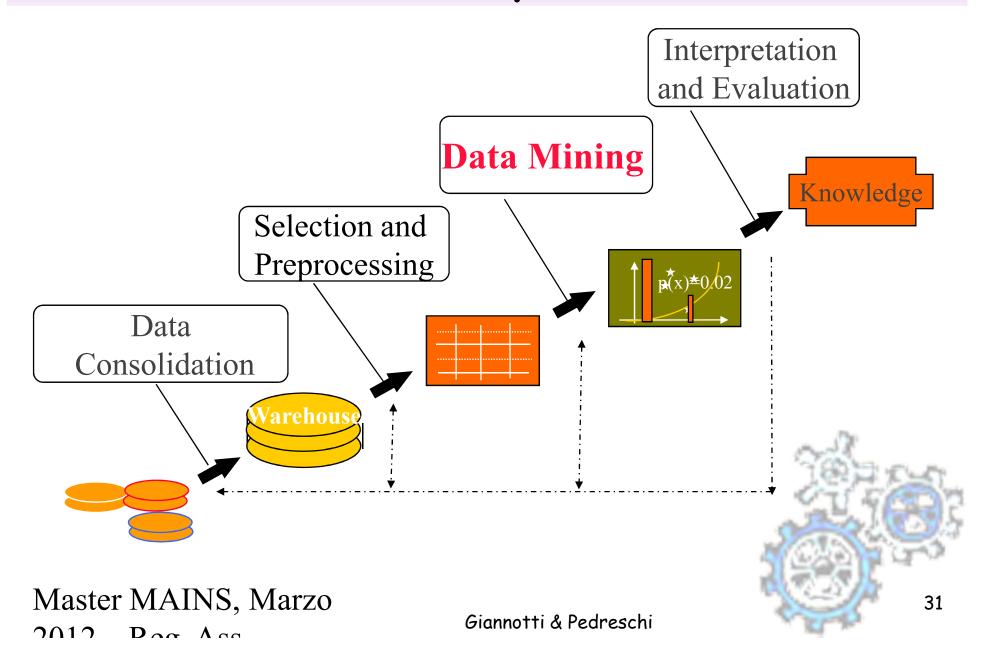
that are contained in t

L_{k+1} = candidates in C_{k+1} with min_support end

return \bigcup_k L_k;
```

30

The KDD process



Generating Association Rules from Frequent Itemsets

- Only strong association rules are generated
- Frequent itemsets satisfy minimum support threshold
- Strong rules are those the support(A) minimum support(A)

```
For each frequent itemset, f, generate all non-empty subsets of f
For every non-empty subset s of f do
    if support(f)/support(s) ≥ min_confidence then
    output rule s ==> (f-s)
end
```

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L f$ satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

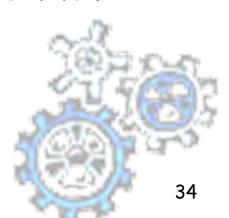
$$ABC \rightarrow D$$
, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$, $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$, $AB \rightarrow CD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$, $BD \rightarrow AC$, $CD \rightarrow AB$,

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

33

Association rules - module outline

- What are association rules (AR) and what are they used for:
 - ☐ The paradigmatic application: Market Basket Analysis
 - ☐ The single dimensional AR (intra-attribute)
- How to compute AR
 - Basic Apriori Algorithm and its optimizations
 - Multi-Dimension AR (inter-attribute)
 - Quantitative AR
 - Constrained AR
- How to reason on AR and how to evaluate their quality
 - Multiple-level AR
 - Interestingness
 - Correlation vs. Association



Multidimensional AR

Associations between values of different attributes:

CID	nationality	age	income
1	Italian	50	low
2	French	40	high
3	French	30	high
4	Italian	50	medium
5	Italian	45	high
6	French	35	high

RULES:

```
nationality = French \Rightarrow income = high [50%, 100%]
income = high \Rightarrow nationality = French [50%, 75%]
age = 50 \Rightarrow nationality = Italian [33%, 100%]
```

Single-dimensional vs multi-dimensional AR

Single-dimensional (Intra-attribute)

The events are: items A, B and C belong to the same transaction

Occurrence of events: transactions

Multi-dimensional (Inter-attribute)

The events are: attribute A assumes value a, attribute B assumes value b and attribute C assumes value c.

Occurrence of events: tuples

Single-dimensional vs Multi-dimensional AR

Multi-dimensional

<1, Italian, 50, low>

<2, French, 45, high>

Single-dimensional

<1, {nat/Ita, age/50, inc/low}>

<2, {nat/Fre, age/45, inc/high}>

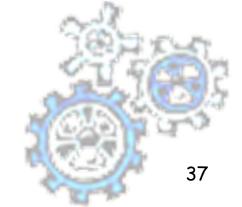
Schema: <ID, a?, b?, c?, d?>

<1, yes, yes, no, no>

<2, yes, no, yes, no>

<1, {a, b}>

<2, {a, c}>



Quantitative Attributes

- Quantitative attributes (e.g. age, income)
- Categorical attributes (e.g. color of car)

CID	height	weight	income
1	168	75,4	30,5
2	175	80,0	20,3
3	174	75,4 80,0 70,3	30,5 20,3 25,8
4	170	65,2	27,0

Problem: too many distinct values

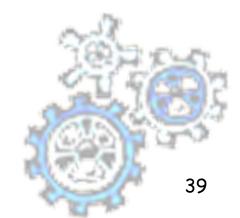
Solution: transform quantitative attributes in categorical ones via discretization.

Quantitative Association Rules

CID	Age	Married	NumCars
1	23	No	1
2	25	Yes	1
3	29	No	0
4	34	Yes	2
5	38	Yes	2

[Age: 30..39] and [Married: Yes] \Rightarrow [NumCars:2]

support = 40% confidence = 100%



Discretization of quantitative attributes

Solution: each value is replaced by the interval to which it belongs.

height: 0-150cm, 151-170cm, 171-180cm, >180cm

weight: 0-40kg, 41-60kg, 60-80kg, >80kg

income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

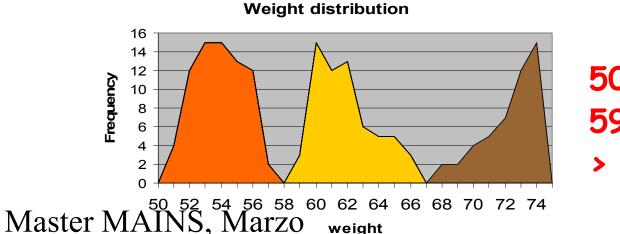
Problem: the discretization may be useless (see weight).

How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
- 2. Interval size is defined by some domain dependent criterion

Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML

3. Interval size determined by analyzing data, studying the distribution or using clustering



50 - 58 kg 59-67 kg > 68 kg

Giannotti & Pedreschi

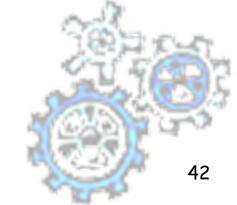
Discretization of quantitative attributes

- 1. Quantitative attributes are statically discretized by using predefined concept hierarchies:
 - elementary use of background knowledge

Loose interaction between Apriori and discretizer

- Quantitative attributes are dynamically discretized
 - into "bins" based on the distribution of the data.
 - considering the distance between data points.

Tighter interaction between Apriori and discretizer



Quantitative Association Rules

	RecordID	Age	Married	NumCars
	100	23	No	1
l	200	25	Yes	1
	300	29	No	0
$\ $	400	34	Yes	2
	500	38	Yes	2

1	Sample Rules		Confidence
	<age:3039> and <married: yes=""> ==> <numcars:2></numcars:2></married:></age:3039>	40%	100%
	<numcars: 01=""> ==> <married: no=""></married:></numcars:>	40%	66.70%

Handling quantitative rules may require mapping of the continuous variables into Boolean

Mapping Quantitative to Boolean

- One possible solution is to map the problem to the Boolean association rules:
 - discretize a non-categorical attribute to intervals, e.g., Age [20,29], [30,39],...
 - categorical attributes: each value becomes one item
 - non-categorical attributes: each interval becomes one item
- Problems with the mapping

too few intervals: lost inf

too low support: too η any rule

RecordID	Age	Married	NoCars
100	23	No	1
500	38	Yes	2

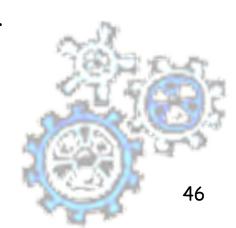
RecID	Age:	Age:	Married:	Married:	Cars:	Cars:	Cars:
	2029	3039	Yes	No	0	1	2
100	1	0	0	1	0	1	0
500	0	1	1	0	0	0	1

Constraints and AR

- Preprocessing: use constraints to focus on a subset of transactions
 - Example: find association rules where the prices of all items are at most 200 Euro
- Optimizations: use constraints to optimize Apriori algorithm
 - Anti-monotonicity: when a set violates the constraint, so does any of its supersets.
 - Apriori algorithm uses this property for pruning
- Push constraints as deep as possible inside the frequent set computation

Constraint-based AR

- What kinds of constraints can be used in mining?
 - Data constraints:
 - √ SQL-like queries
 - Find product pairs sold together in Vancouver in Dec. '98.
 - ✓ OLAP-like queries (Dimension/level)
 - in relevance to region, price, brand, customer category.
 - Rule constraints:
 - ✓ specify the form or property of rules to be mined.
 - ✓ Constraint-based AR



Rule Constraints

- Two kind of constraints:
 - Rule form constraints: meta-rule guided mining.
 - \checkmark P(x, y) $^$ Q(x, w) \rightarrow takes(x, "database systems").
 - Rule content constraint: constraint-based query optimization (Ng, et al., SIGMOD'98).
 - √ sum(LHS) < 100 ^ min(LHS) > 20 ^ sum(RHS) > 1000
- 1-variable vs. 2-variable constraints (Lakshmanan, et al. SIGMOD'99):
 - 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
 - 2-var: A constraint confining both sides (L and R).

 \checkmark sum(LHS) \checkmark min(RHS) $^{\circ}$ max(RHS) \checkmark 5* sum(LHS)

Master MAINS, Marzo

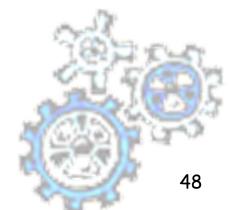
Mining Association Rules with Constraints

Postprocessing

A naïve solution: apply Apriori for finding all frequent sets, and then to test them for constraint satisfaction one by one.

Optimization

Han approach: comprehensive analysis of the properties of constraints and try to push them as deeply as possible inside the frequent set computation.



Association rules - module outline

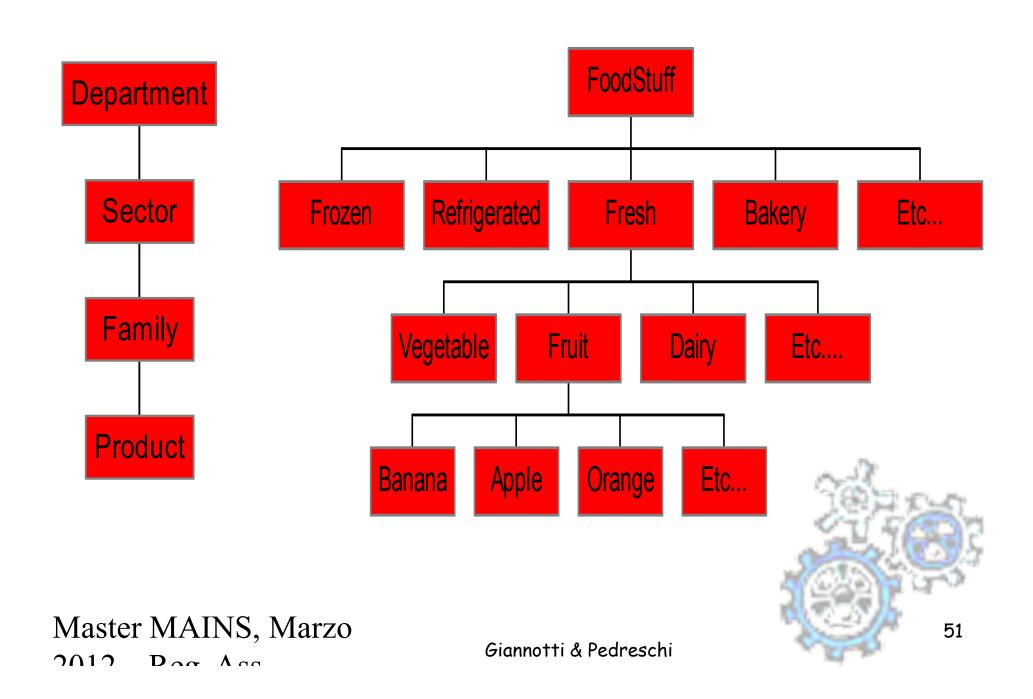
- What are association rules (AR) and what are they used for:
 - The paradigmatic application: Market Basket Analysis
 - ☐ The single dimensional AR (intra-attribute)
- How to compute AR
 - Basic Apriori Algorithm and its optimizations
 - Multi-Dimension AR (inter-attribute)
 - Quantitative AR
 - Constrained AR
- How to reason on AR and how to evaluate their quality
 - Multiple-level AR
 - Interestingness
 - Correlation vs. Association

Master MAINS, Marzo

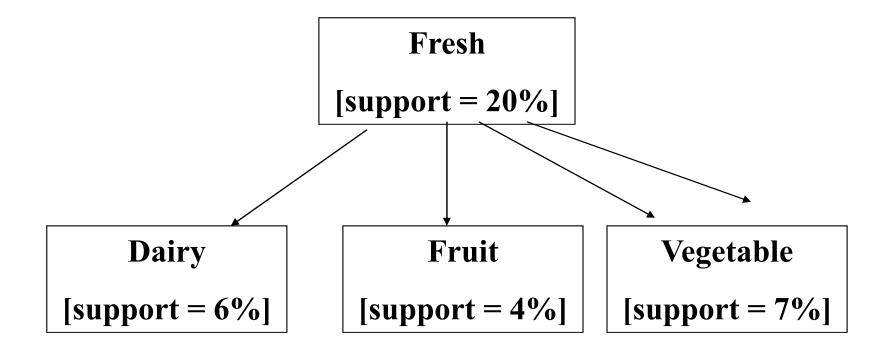
Multilevel AR

- Is difficult to find interesting patterns at a too primitive level
 - high support = too few rules
 - low support = too many rules, most uninteresting
- Approach: reason at suitable level of abstraction
- A common form of background knowledge is that an attribute may be generalized or specialized according to a hierarchy of concepts
- Dimensions and levels can be efficiently encoded in transactions
- Multilevel Association Rules: rules which combine associations with hierarchy of concepts

mierarchy of concepts



Multilevel AR



Fresh \Rightarrow Bakery [20%, 60%]

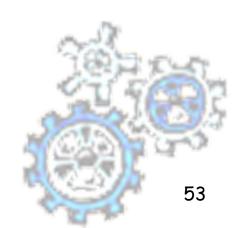
Dairy \Rightarrow Bread [6%, 50%]

Fruit \Rightarrow Bread [1%, 50%] is not valid

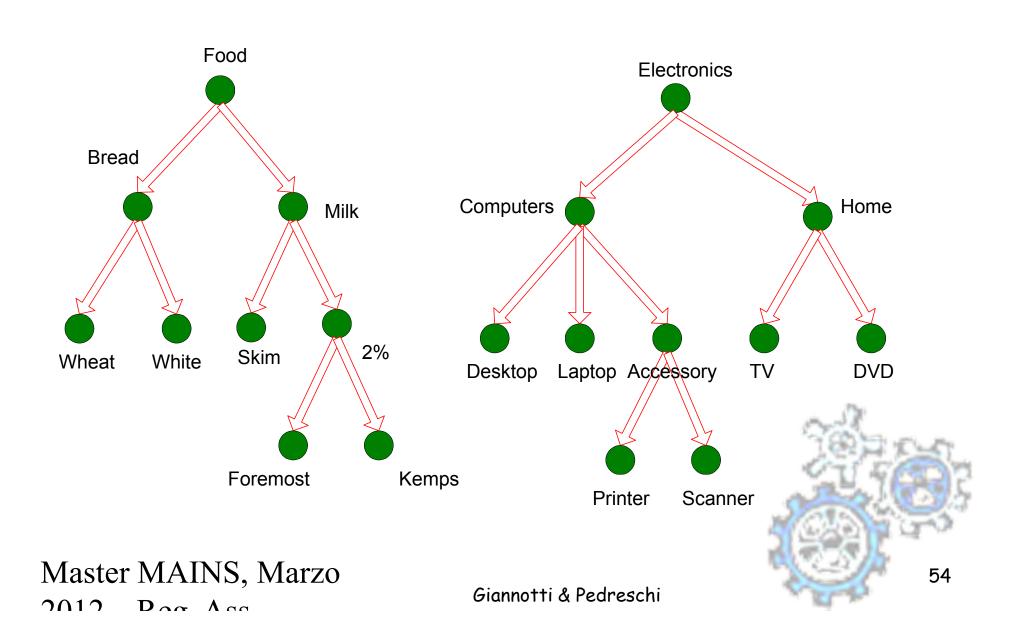
52

Support and Confidence of Multilevel AR

- from specialized to general: support of rules increases (new rules may become valid)
- from general to specialized: support of rules decreases (rules may become not valid, their support falls under the threshold)
- Confidence is not affected



Multi-level Association Rules



Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ✓ e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc.
 - are indicative of association between milk and bread

Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$
 - If $\sigma(X1 \cup Y1) \ge minsup$, and X is parent of X1, Y is parent of Y1 then $\sigma(X \cup Y1) \ge minsup$, $\sigma(X1 \cup Y) \ge minsup$ $\sigma(X \cup Y) \ge minsup$
 - If $conf(X1 \Rightarrow Y1) \ge minconf$, then $conf(X1 \Rightarrow Y) \ge minconf$

Reasoning with Multilevel AR

■ Too low level => too many rules and too primitive.

Example: Apple Melinda \Rightarrow Colgate Tooth-paste

It is a curiosity not a behavior

- Too high level => uninteresting rules Example: Foodstuff ⇒ Varia
- Redundancy => some rules may be redundant due to "ancestor" relationships between items.
 - A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.
- Example (milk has 4 subclasses)
 - milk ⇒ wheat bread, [support = 8%, confidence = 70%]
 - 2%-milk ⇒ wheat bread, [support = 2%, confidence = 72%]

Mining Multilevel AR

- Calculate frequent itemsets at each concept level, until no more frequent itemsets can be found
- For each level use Apriori
- A top_down, progressive deepening approach:
 - First find high-level strong rules:

fresh \rightarrow bakery [20%, 60%].

Then find their lower-level "weaker" rules: fruit → bread [6%, 50%].

- Variations at mining multiple-level association rules.
 - Level-crossed association rules:

fruit \rightarrow wheat bread

Association rules with multiple, alternative hierarchies:

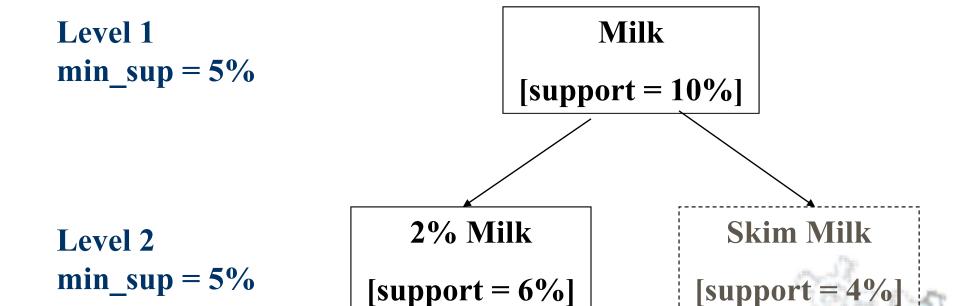
fruit → Wonder bread

Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - If support threshold
 - too high \Rightarrow miss low level associations.
 - too low \Rightarrow generate too many high level associations.
- Reduced Support: reduced minimum support at lower levels - different strategies possible

Uniform Support

Multi-level mining with uniform support



Master MAINS, Marzo

Giannotti & Pedreschi

Reduced Support

Multi-level mining with reduced support

Level 1 min_sup = 5%

Level 2 min sup = 3%

Milk
[support = 10%]

2% Milk

[support = 6%]

Skim Milk

[support = 4%]

Master MAINS, Marzo

Giannotti & Pedreschi

Reasoning with AR

Significance:

```
Example: <1, {a, b}>
<2, {a} >
<3, {a, b, c}>
<4, {b, d}>
```

 $\{b\} \Rightarrow \{a\}$ has confidence (66%), but is not significant as support($\{a\}$) = 75%.

Beyond Support and Confidence

Example 1: (Aggarwal & Yu, PODS98)

	coffee	not coffee	sum(row)
tea	20	5	25
not tea	70	5	75
sum(col.)	90	10	100

- {tea} => {coffee} has high support (20%) and confidence (80%)
- However, a priori probability that a customer buys coffee is 90%
 - A customer who is known to buy tea is less likely to buy coffee (by 10%)
 - There is a negative correlation between buying tea and buying coffee
 - {~tea} => {coffee} has higher confidence(93%)

Correlation and Interest

- Two events are independent if $P(A \land B) = P(A)*P(B)$, otherwise are correlated.
- Interest = $P(A \land B) / P(B)*P(A)$
- Interest expresses measure of correlation
 - \blacksquare = 1 \Rightarrow A and B are independent events
 - less than $1 \Rightarrow A$ and B negatively correlated,
 - greater than $1 \Rightarrow A$ and B positively correlated.
 - In our example, I(buy tea ∧ buy coffee)=0.89 i.e. they are negatively correlated.

Computing Interestingness Measure

 \blacksquare Given a rule $X \to Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	У	A	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f _{oo}	f _{o+}
	f ₊₁	f +0	Ε

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Master MAINS, Marzo

Example: Lift/Interest

	Coffe e	Coffe e	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift & Interest

	У	À	
×	10	0	10
X	0	90	90
	10	90	100

	У	Ż	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

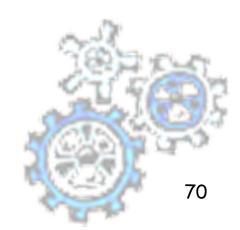
Statistical independence:

If
$$P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$$

	#	Measure	Formula
There are lots of	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
measures proposed	3	Odds ratio (α)	$2-\max_{j}P(A_{j})-\max_{k}P(B_{k})$ $P(A,B)P(\overline{A},\overline{B})$
in the literature		` ′	$\overline{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})+P(A,B)P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})}+\sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
Some measures are good for certain	6	Kappa (κ)	$\frac{\stackrel{\bullet}{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}}{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}}$
applications, but not	7	Mutual Information (M)	$\frac{\sum_i \sum_j P(A_i, B_j) \log \frac{1}{P(A_i)P(B_j)}}{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
for others	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right)$
101 0111010			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^3 + P(\overline{B} A)^3] + P(\overline{A})[P(B \overline{A})^3 + P(\overline{B} \overline{A})^3] \right)$
What criteria should	"	Gill index (4)	
we use to determine			$-P(B)^2-P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure			$-P(A)^2 - P(\overline{A})^2$
is good or bad?	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
What about Apriori-	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
style support based	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
pruning? How does	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
it affect these	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
measures?	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
Master MAINS,	Ma	$1 \stackrel{\text{Laccard}}{\text{ZO}} (\zeta)$ $\text{Klosgen} (K)$	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
2012 Dog Agg	21	Klosgen (K) Gio	P(A,B) = P(B A) - P(B), P(A B) - P(A)

Domain dependent measures

- Together with support, confidence, interest, ..., use also (in post-processing) domain-dependent measures
- E.g., use rule constraints on rules
- Example: take only rules which are significant with respect their economic value
- sum(LHS)+ sum(RHS) > 100



MBA in Web Usage Mining

- Association Rules in Web Transactions
 - discover affinities among sets of Web page references across user sessions

Examples

- 60% of clients who accessed /products/, also accessed /products/software/webminer.htm
- 30% of clients who accessed /special-offer.html, placed an online order in /products/software/
- Actual Example from IBM official Olympics Site:

```
√{Badminton, Diving} ==> {Table Tennis}
[conf = 69.7%, sup = 0.35%]
```

Applications

- Use rules to serve dynamic, customized contents to users
- prefetch files that are most likely to be accessed
- determine the best way to structure the Web site (site

Master Matinization 20

71

2012 Diargetéd electronic advertishté andrincreasing cross sales

Atherosclerosis prevention study

2nd Department of Medicine, 1st Faculty of Medicine of Charles University and Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M. Aschermann, MD, SDr, FESC)

Atherosclerosis prevention study:

The STULONG 1 data set is a real database that keeps information about the study of the development of atherosclerosis risk factors in a population of middle aged men.

Used for Discovery Challenge at PKDD 00-02-03-04

Atherosclerosis prevention study:

- Study on 1400 middle-aged men at Czech hospitals
 - Measurements concern development of cardiovascular disease and other health data in a series of exams
- The aim of this analysis is to look for associations between medical characteristics of patients and death causes.
- Four tables
 - Entry and subsequent exams, questionnaire responses, deaths

The input data

Data from Entry and Exams				
General characteristics	Examinations	habits		
Marital status	Chest pain	Alcohol		
Transport to a job	Breathlesness	Liquors		
Physical activity in a job	Cholesterol	Beer 10		
Activity after a job	Urine	Beer 12		
Education	Subscapular	Wine		
Responsibility	Triceps	Smoking		
Age		Former smoker		
Weight		Duration of smoking		
Height		Tea		
		Sugar		
		Coffee		

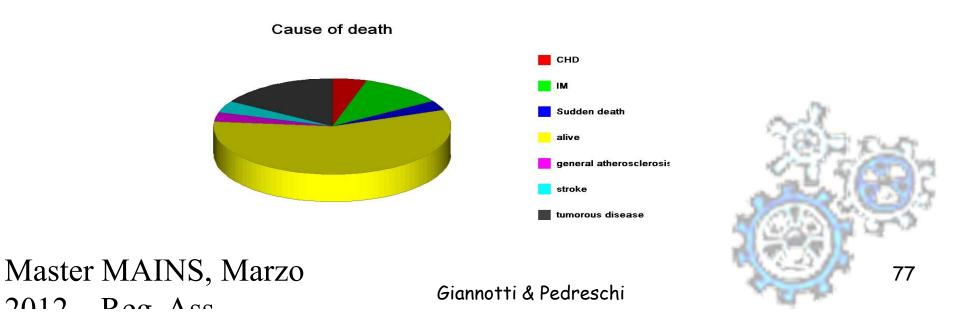
The input data

DEATH CAUSE	PATIENTS	%
myocardial infarction	80	20.6
coronary heart disease	33	8.5
stroke	30	7.7
other causes	79	20.3
sudden death	23	5.9
unknown	8	2.0
tumorous disease	114	29.3
general atherosclerosis	22	5.7
TOTAL	389	100.0

Master MAINS, Marzo

Data selection

- When joining "Entry" and "Death" tables we implicitely create a new attribute "Cause of death", which is set to "alive" for subjects present in the "Entry" table but not in the "Death" table.
- We have only 389 subjects in death table.



The prepared data

Patient	General character	istics	Examinati	ons	Habits	Cause of
	Activity after work	Education	Chest pain		Alcohol	 death
1	moderate activity	university	not present		no	Stroke
2	great activity		not ischaemic		occasionally	myocardial infarction
3	he mainly sits		other pains		regularly	tumorous disease
						 alive
389	he mainly sits		other pains		regularly	tumorous disease

Master MAINS, Marzo

Descriptive Analysis/ Subgroup Discovery / Association Rules

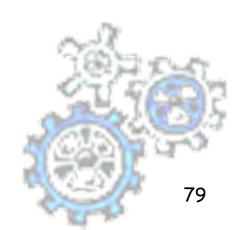
Are there strong relations concerning death cause?

General characteristics $(?) \Rightarrow$ Death cause (?)

Examinations (?) \Rightarrow Death cause (?)

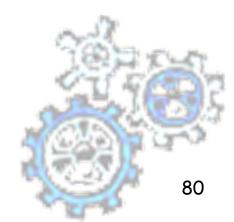
Habits $(?) \Rightarrow$ Death cause (?)

Combinations $(?) \Rightarrow Death cause (?)$



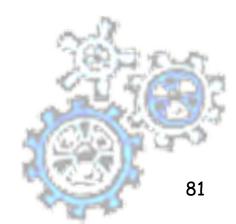
Example of extracted rules

- Education(university) & Height<176-180> ⇒Death cause (tumouros disease), 16; 0.62
- It means that on tumorous disease have died 16, i.e. 62% of patients with university education and with height 176-180 cm.



Example of extracted rules

- Physical activity in work(he mainly sits) & Height<176-180> ⇒ Death cause (tumouros disease), 24; 0.52
- It means that on tumorous disease have died 24 i.e. 52% of patients that mainly sit in the work and whose height is 176-180 cm.



Example of extracted rules

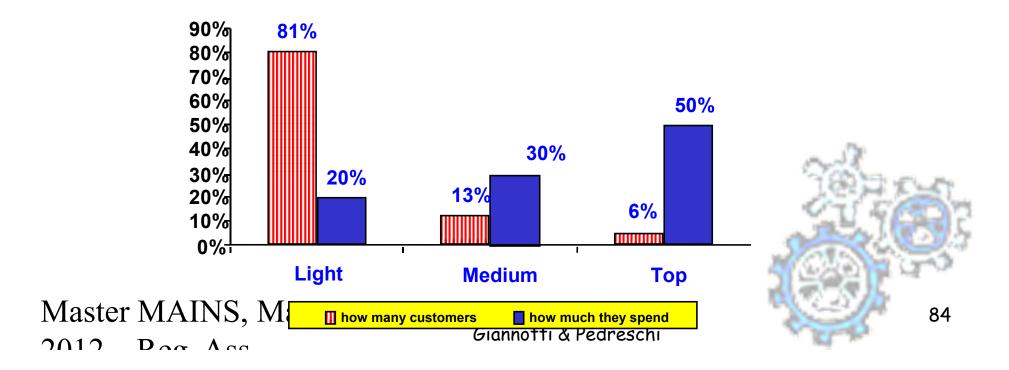
- Education(university) & Height<176-180> ⇒Death cause (tumouros disease), 16; 0.62; +1.1;
- the relative frequency of patients who died on tumorous disease among patients with university education and with height 176-180 cm is 110 per cent higher than the relative frequency of patients who died on tumorous disease among all the 389 observed patients

Conclusions

- Association rule mining
 - probably the most significant contribution from the database community to KDD
 - A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction
 - Association analysis in other types of data: spatial data, multimedia data, time series data, etc.

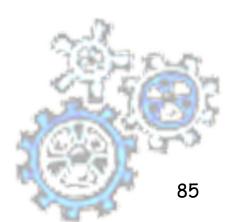
Conclusion (2)

- MBA is a key factor of success in the competition of supermarket retailers.
- Knowledge of customers and their purchasing behavior brings potentially huge added value.



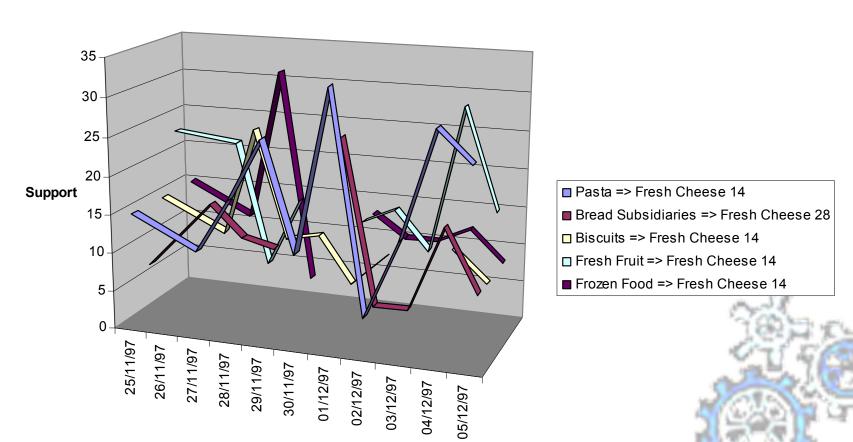
Which tools for market basket analysis?

- Association rule are needed but insufficient
- Market analysts ask for business rules:
 - Is supermarket assortment adequate for the company's target class of customers?
 - Is a promotional campaign effective in establishing a desired purchasing habit?



Business rules: temporal reasoning on AR

- Which rules are established by a promotion?
- How do rules change along time?



Master MAINS, Marzo

Giannotti & Pedreschi

Sequential Patterns

Master MAINS,

Sequential / Navigational Patterns

- Sequential patterns add an extra dimension to frequent itemsets and association rules time.
 - Items can appear before, after, or at the same time as each other.
 - General form: "x% of the time, when A appears in a transaction, B appears within z transactions."
 - ✓ note that other items may appear between A and B, so sequential patterns do not necessarily imply consecutive appearances of items (in terms of time)

Examples

- Renting "Star Wars", then "Empire Strikes Back", then "Return of the Jedi" in that order
- Collection of ordered events within an interval
- Most sequential pattern discovery algorithms are based on extensions of the Apriori algorithm for discovering itemsets

Navigational Patterns

- they can be viewed as a special form of sequential patterns which capture navigational patterns among users of a site
- in this case a session is a consecutive sequence of pageview references for a user over a specified period of time

Mining Sequences - Example

Customer-sequence

CustId	Video sequence
1	$\{(C), (H)\}$
2	$\{(AB), (C), (DFG)\}$
3	$\{(CEG)\}$
4	$\{(C), (DG), (H)\}$
5	$\{(H)\}$

Sequential patterns with support > 0.25 $\{(C), (H)\}\$ $\{(C), (DG)\}\$

89

Intuizione

Obiettivo: personalizzare ed ottimizzare le offerte di vendita ai clienti in base agli acquisti fatti da ciascun cliente in precedenza.

Analisi: studiare il comportamento nel tempo degli acquisti dei clienti!

Metodo: "il 5% dei clienti ha acquistato prima X, poi Y e poi Z"

Requisiti: mantenere traccia degli acquisti dei singoli clienti (nome, fidelity cards, carte di credito, bancomat, e-mail, codice fiscale)

Dominii: vendite al dettaglio, vendite per corrispondenza, vendite su internet, vendite di prodotti finanziari/bancari, analisi mediche

Intra-Transaction (Regole di Associazione) ... e Inter-Transaction (Patterns Sequenziali)

Master MAINS, Marzo

Giannotti & Pedreschi

Sequenze

Insieme di transazioni cliente

$$T = \{ (data_1, c_1, t_1), ..., (data_n, c_n, t_n) \}$$

Sequenza di transazioni per cliente c

$$seq(c) = \langle t_1, ..., t_i ..., t_n \rangle$$

ordinate per data

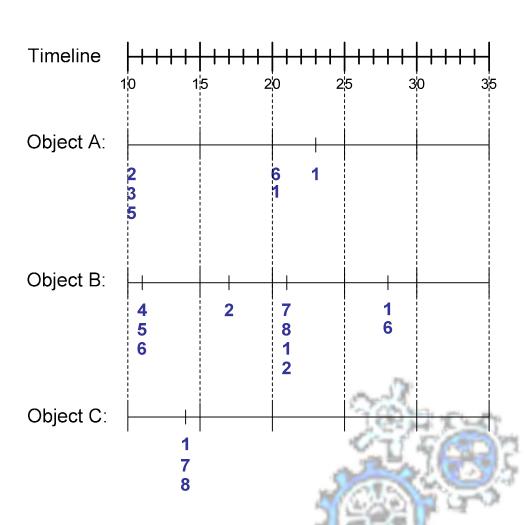
Cliente	Sequenza
1	< {30}, {90} >
2	< {10, 20}, {30}, {40,60,70}>
3	<{10}, {30,50,70}>
4	< {30}, {40,70}, {90} >
5	<{90}>

Libro	Titolo	
10	Star Wars Episode I	
20	La fondazione e l'impero	
30	La seconda fondazione	
40	Database systems	
50	Algoritmi + Strutture Dati =	
60	L'insostenibile leggerezza	
70	Immortalita'	
90	I buchi neri	

Sequence Data

Sequence Database:

Object	Timestamp	Events
Α	10	2, 3, 5
A	20	6, 1
A	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7



92

Master MAINS, Marzo

Giannotti & Pedreschi

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences Eler	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Master MAINS, Marzo

Formal Definition of a Sequence

A sequence is an ordered list of elements (transactions)

$$s = \langle e_1 e_2 e_3 \dots \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

Web sequence:

- < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
 - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

■ A sequence $\langle a_1 a_2 ... a_n \rangle$ is contained in another sequence $\langle b_1 b_2 ... b_m \rangle$ (m \geq n) if there exist integers

 $i_1 < i_2 < ... < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., a_n

⊆Daira sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence Master MAIN subsequence whose support is 2 minsup)

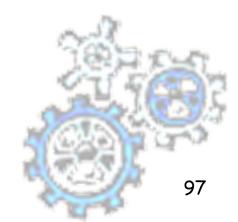
Sequential Pattern Mining: Definition

Given:

- a database of sequences
- a user-specified minimum support threshold, minsup

■ Task:

Find all subsequences with support ≥ minsup



Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:
 <{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.
- How many k-subsequences can be extracted from a given n-sequence?

$$\{a b\} \{c d e\} \{f\} \{g h i\} > n = 9$$

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

$$\langle \{i_1\} \rangle, \langle \{i_2\} \rangle, \langle \{i_3\} \rangle, ..., \langle \{i_n\} \rangle$$

Candidate 2-subsequences:

$$\{i_1, i_2\}$$
, $\{i_1, i_3\}$, ..., $\{i_1\} \{i_1\}$, $\{i_1\}$, $\{i_2\}$, ..., $\{i_{n-1}\} \{i_n\}$

Candidate 3-subsequences:

$$\langle \{i_1, i_2, i_3\} \rangle$$
, $\langle \{i_1, i_2, i_4\} \rangle$, ..., $\langle \{i_1, i_2\} \{i_1\} \rangle$, $\langle \{i_1, i_2\} \{i_2\} \rangle$, ..., $\langle \{i_1\} \{i_1, i_2\} \rangle$, $\langle \{i_1\} \{i_1\} \{i_1\} \{i_2\} \rangle$, ..., $\langle \{i_1\} \{i_1\} \{i_2\} \rangle$, ..., $\langle \{i_2\} \{i_2\} \langle \{i_2\} \{i_2\} \rangle$, ..., $\langle \{i_2\} \{i_2\} \langle \{i_2\} \{i_2\} \rangle$, ..., $\langle \{i_2\} \{i_2\} \langle \{i_2\} \{i_2\} \rangle$, ..., $\langle \{i_2\} \{i_2\} \langle \{i_2\} \{i_2\} \langle \{i_2\} \{i_2\} \rangle$, ..., $\langle \{i_2\} \{i_2\} \langle \{i_2\} \langle \{i_2\} \{i_2\} \langle \{i_2\} \langle \{i_2\} \{i_2\} \langle \{i_2\} \langle$

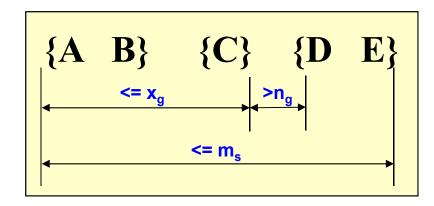
Generalized Sequential Pattern (GSP)

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - ✓ Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - \checkmark Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - ✓ Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - \checkmark Eliminate candidate k-sequences whose actual support is less than minsup

Timing Constraints (I)



x_g: max-gap

n_g: min-gap

m_s: maximum span

x _g = 2, n = 0, m = 4 Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

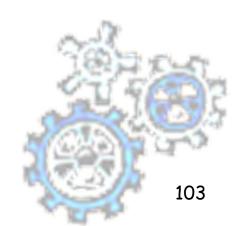
Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - ✓ Does Apriori principle still hold?



Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Suppose:

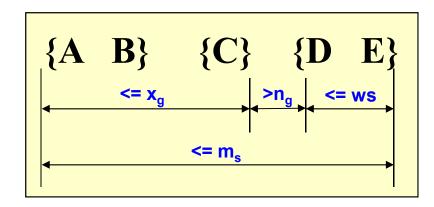
$$x_g = 1 \text{ (max-gap)}$$

 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Timing Constraints



x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8}	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

References - Association rules

- R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93, 207-216, Washington, D.C.
- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94 487–499, Santiago, Chile.
- R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14, Taipei, Taiwan.
- R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle, Washington.
- 5. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97, 265-276, Tucson, Arizona..
- D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating technique. ICDE'96, 106-114, New Orleans, LA..
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96, 13-23, Montreal, Canada.
- E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, 277-288, Tucson, Arizona.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431, Zurich, Switzerland.
- M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. KDD'97, 207-210, Newport Beach, California.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.
- R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. SIGMOD'98, 13-24, Seattle, Washington.
- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.
- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, 175-186, San Jose, CA.
- 5. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association rules. VLDB'98, 368-379, New York, NY.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98, 343-354, Seattle, WA.

References - Association rules

- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95, 432-443, Zurich, Switzerland.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures.
 VLDB'98, 594-605, New York, NY.
- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407-419, Zurich, Switzerland.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96, 1-12, Montreal, Canada.
- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73, Newport Beach, California.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.
- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.
- R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.
- J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. ICDE'99, Sydney, Australia.
- F. Giannotti, G. Manco, D. Pedreschi and F. Turini. Experiences with a logic-based knowledge discovery support environment. In Proc. 1999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (SIGMOD'99 DMKD). Philadelphia, May 1999.
- F. Giannotti, M. Nanni, G. Manco, D. Pedreschi and F. Turini. Integration of Deduction and Induction for Mining Supermarket Sales Data. In Proc. PADD'99, Practical Application of Data Discovery, Int. Conference, London, April 1999.

