Network Analysis

Dino Pedreschi, Fosca Giannotti Pisa KDD Lab, ISTI-CNR & Univ. Pisa http://www-kdd.isti.cnr.it/

Master MAINS 2018

SUMMARY

- Network everywhere
- Discoverying the fabric of networks: communities
 - Discoverying Mobility Borders
 - Estimating active services of skype
- Forms of information spreading & Innovators

MODULE Outline

Lesson 4 Complex network

- Community Discovey Homophily with Demon
- Innovators and forms of spreading of innovation
- Economic Complexity
- Measuring Success in sport
- The BigData ICT scenario
- SoBigData

Complex

[adj., v. kuh m-pleks, kom-pleks; n. kompleks]

-adjective

1.

composed of many interconnected parts; compound; composite: a complex highway system.

2.

characterized by a very complicated or involved arrangement of parts, units, etc.: complex machinery.

3.

so complicated or intricate as to be hard to understand or deal with: a complex problem.

Source: Dictionary.com

Complexity, a **scientific theory** which asserts that some systems display behavioral phenomena that are completely inexplicable by any conventional analysis of the systems' constituent parts. These phenomena, commonly referred to as emergent behaviour, seem to occur in many complex systems involving living organisms, such as a stock market or the human brain.

Source: John L. Casti, Encyclopædia Britannica

Behind each complex system there is a **network**, that defines the interactions between the component.

STRUCTURE OF AN ORGANIZATION

- : departments
- : consultants
- : external experts

BUSINESS TIES IN US BIOTECH-INDUSTRY

http://ecclectic.ss.uci.edu/~drwhite/Movie

Links:

Collaborations

Financial

R&D

INTERNET

Society

Nodes: individuals

Links: social relationship (family/work/friendship/etc.)

S. Milgram (1967) John Guare Six Degrees of Separation

Social networks: Many <u>individuals</u> with <u>diverse</u> social interactions between them.

HUMAN DISEASE NETWORK

Ingredient-Flavor Bipartite Network

Flavor compounds

1-penten-3-ol 2-hexenal 2-isobutyl thiazole 2,3-diethylpyrazine 2,4-nonadienal 3-hexen-1-ol 4-hydroxy-5-methyl ... 4-methylpentanoic acid acetylpyrazine allyl 2-furoate alpha-terpineol beta-cyclodextrin cis-3-hexenal dihydroxyacetone dimethyl succinate ethyl propionate hexyl alcohol isoamyl alcohol isobutyl acetate isobutyl alcohol lauric acid limonene (d-, l-, and dl-) I-malic acid methyl butyrate methyl hexanoate methyl propyl trisulfide nonanoic acid phenethyl alcohol propenyl propyl disulfide propionaldehyde propyl disulfide p-mentha-1,3-diene p-menth-1-ene-9-al terpinyl acetate tetrahydrofurfuryl alcohol trans, trans-2,4-hexadienal

B Flavor network

Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási Flavor network and the principles of food pairing, Scientific Reports 196, (2011).

<u>Undirected network</u> N=2,018 proteins as nodes L=2,930 binding interactions as links. Average degree <k>=2.90.

Not connected: 185 components the largest (giant component) 1,647 nodes

$$d_{max} = 14$$

<d>=5.61

ŝ

INFORMATION DIFFUSION IN SOCIAL NETWORK

Mapping Organizations

connecting knowledge

SOCIAL NETWORK MINING COMMUNITY DISCOVERY

How to highlight the modular structure of a network?

Skype Data: a first glance

Semantic rich dataset:

Social Graph

(built upon users contact lists ~billions of nodes)

Users Geographic presence

(city, nation...)

Users Monthly Activity

(individual's days of Audio\Video\Chat products usage)

Problem: Service Usage

Given an online platform we often we need to estimate how its services (i.e., Skype Audio\Video call) are used by the registered users. In particular we can be asked to answer the following questions:

Q1: Can Service Usage be described as a function of the Network Data?

Q2: If so, at which scale should we analyze the network in order to perform a descriptive analysis?

Observation Scale?

Problem:

Given the size of the dataset (several hundred millions of users) an individual level analysis can be redundant;

Idea:

Homophily has been proven to hold on several social context:

Identifying tight groups of "similar" users we can reduce the problem space

Community Discovery

Communities

Lost in the crowd

Reducing the complexity

Real Networks are Complex Objects

Can we make them "simpler"?

Ego-Networks

networks built upon a focal node , the "ego", and the nodes to whom ego is directly connected to, including the ties, if any, among the alters

DEMON Algorithm

□ For each node n:

- 1. Extract the Ego Network of n
- 2. Remove **n** from the Ego Network
- 3. Perform a Label Propagation¹
- 4. Insert **n** in each community found
- 5. Update the raw community set C

Democratic Estimate of the Modular Dreanization of a Network

DEMO

\Box For each raw community c in C

1. Merge with "similar" ones in the set (given a threshold) (i.e. merge iff at most the ε % of the smaller one is not included in the bigger one)

DEMON A Local-first Discovery Method For Overlapping Communities, Giulio Rossetti1,2 ,Michele Coscia3, Fosca Giannotti2, Dino Pedreschi1,2

¹ Usha N. Raghavan, R eka Albert, and Soundar Kumara. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E

DEMON Algorithm

Discovers Overlapping communities

Microscopic

High homophily

People belonging to the same social context often show some degree of homopily (i.e. same age, level of education)

Classifying communities of users

Classification through Stochastic Gradient Descent

Discriminate between High and Low active communities

STRUCTURAL FEATURES		
N	number of nodes	
M	number of edges	
D	density	
CC	global clustering	
CC_{avg}	average clustering	
A_{deg}	degree assortativity	
deg^C_{max}	max degree (commu- nity links)	
deg^{C}_{avg}	avg degree (community links)	
deg^{all}_{max}	max degree (all links)	
deg^{all}_{avg}	avg degree (all links)	
T	closed triads	
Topen	open triads	
O_v	neighborhood nodes	
O_e	outgoing edges	
E_{dist}	num. edges with dis-	
	tance	
d	approx. diameter	
r	approx. radius	
g	conductance	

COMMUNITY FORMATION FEATURES

T_f	first user arrival time
IT_{avg}	avg user inter-arrival time
IT_{std}	std of user inter-arrival time
$IT_{l,f}$	last-first inter-arrival time

GEOGRAPHIC FEATURES

N_s	number of countries
E_s	country entropy
S_{max}	percentage of most rep-
	resented country
N_t	number of cities
E_t	city entropy
$dist_{avg}$	avg geographic dis-
_	tance
$dist_{max}$	max geographic dis-
	tance

ACTIVITY FEATURES

Video	mean number of days of video
Chat	mean number of days of chat

Target Class (for each service)

The target class identify the Service Activity Level (High/Low)

Two scenarios:

- Low/High activity is identified by the median of the distribution
- 2. High activity communities are the one above the 75th percentile

"Social Engagement" : Skype social graph

Audio: HDemon25

100

0.5

Problem:

Given the Skype social graph and its user information (i.e., location...) predict average level of community activity for the Audio \Video services.

Main Results:

- Smaller and denser communities are easier to classify correctly
- Topological, Temporal and Geographical features of communities are valuable activity level predictors

Median: 7.00

HDemon25: Audio engagement distribution

0.10

G. Rossetti, L. Pappalardo, R. Kikas, F. Giannotti, D. Pedreschi, M. Dumas Community-centric analysis of service en- gagement in Skype social networks. IEEE ASONAM 2015, France (Accepted)

Community Description

Looking at the weight assigned to each feature we can identify some common characteristics of Highly active communities

(e.g., for Audio\Chat, low clustering coefficient, reduced size, geographical compactness)

Mining Geographical Mobility Networks

S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, D. Pedreschi, F. Giannotti

Discovering the Geographical Borders of Human Mobility. KI - Künstliche Intelligenz, 2012.

Step 1: spatial regions

Step 2: evaluate flows among regions

Step 3: forget geography

Step 4: perform community detection

Step 4: perform community detection

Step 5: map back to geography

Step 6: draw borders

Final result

Final result vs. municipality borders

BREATH AND ASK

