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Hierarchical Clustering

@ Produces a set of nested clusters organized as a
hierarchical tree
@ Can be visualized as a dendrogram

— A tree like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

@ Do not have to assume any particular number of
clusters

— Any desired number of clusters can be obtained by
‘cutting’ the dendrogram at the proper level

® They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)
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Hierarchical Clustering

@ Two main types of hierarchical clustering

— Agglomerative:
+ Start with the points as individual clusters

+ At each step, merge the closest pair of clusters until only one cluster
(or k clusters) left

— Divisive:
¢ Start with one, all-inclusive cluster

+ At each step, split a cluster until each cluster contains an individual
point (or there are k clusters)

e Traditional hierarchical algorithms use a similarity or
distance matrix

— Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

® Most popular hierarchical clustering technique

@ Basic algorithm is straightforward

1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters
5 Update the proximity matrix

6. Until only a single cluster remains

® Key operation is the computation of the proximity of
two clusters

—  Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation

e Start with clusters of individual points and a

proximity matrix
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Intermediate Situation

® After some merging steps, we have some clusters
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Intermediate Situation

® We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.
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After Merging

® The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Distance
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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MIN or Single Link

@ Proximity of two clusters is based on the two
closest points Iin the different clusters

— Determined by one pair of points, i.e., by one link in the
proximity graph

@ Example:

Distance Matrix:
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Hierarchical Clustering: MIN
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Strength of MIN
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Limitations of MIN
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MAX or Complete Linkage

@ Proximity of two clusters is based on the two

most distant points in the different clusters
— Determined by all pairs of points in the two clusters
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Hierarchical Clustering: MAX
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Strength of MAX
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tations of MAX
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Group Average

e® Proximity of two clusters is the average of pairwise proximity

between points in the two clusters.

proximity(Cluster,;, Cluster;) =

> _proximity(p;,p;)

p;cCluster;

p;<Cluster;

| Cluster; | x| Cluster; |

® Need to use average connectivity for scalability since total
proximity favors large clusters
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

® Compromise between Single and Complete
Link

® Strengths
— Less susceptible to noise and outliers

® Limitations
— Biased towards globular clusters
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Cluster Similarity: Ward’s Method

e Similarity of two clusters is based on the increase
In squared error when two clusters are merged

— Similar to group average if distance between points is
distance squared

® Less susceptible to noise and outliers
@ Biased towards globular clusters

@ Hierarchical analogue of K-means
— Can be used to Iinitialize K-means
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Hierarchical Clustering: Comparison
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MST: Divisive Hierarchical Clustering

@ Build MST (Minimum Spanning Tree)

— Start with a tree that consists of any point

— In successive steps, look for the closest pair of points (p, g) such
that one point (p) is in the current tree but the other (q) is not

— Add g to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

® Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

by

repeat
3:  Create a new cluster by breaking the link corresponding to the largest distance
(smallest similarity).

4: until Only singleton clusters remain
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Hierarchical Clustering: Time and Space requirements

® O(N?) space since it uses the proximity matrix.
— N is the number of points.

e O(N3) time in many cases

— There are N steps and at each step the size, N?,
proximity matrix must be updated and searched

— Complexity can be reduced to O(N? log(N) ) time with
some cleverness
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Hierarchical Clustering: Problems and Limitations

® Once a decision Is made to combine two clusters,
It cannot be undone

® No global objective function is directly minimized

@ Different schemes have problems with one or
more of the following:

— Sensitivity to noise and outliers

— Difficulty handling clusters of different sizes and non-
globular shapes

— Breaking large clusters
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