# Data Mining Cluster Analysis: Basic Concepts and Algorithms

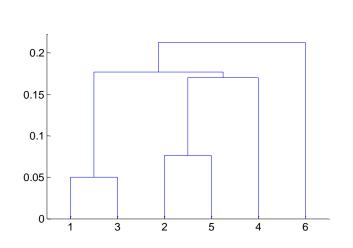
Lecture Notes for Chapter 7

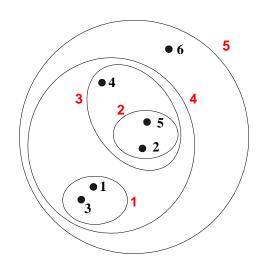
Introduction to Data Mining, 2<sup>nd</sup> Edition by

Tan, Steinbach, Karpatne, Kumar

# **Hierarchical Clustering**

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits





# Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

# **Hierarchical Clustering**

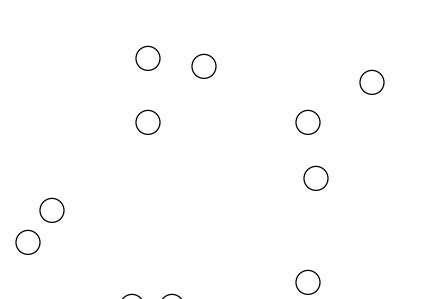
- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

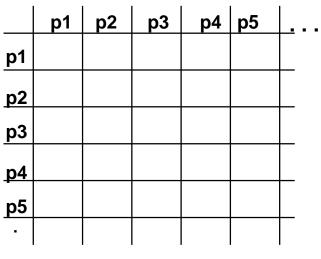
# **Agglomerative Clustering Algorithm**

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
  - 1. Compute the proximity matrix
  - Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the proximity matrix
  - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms

# **Starting Situation**

Start with clusters of individual points and a proximity matrix

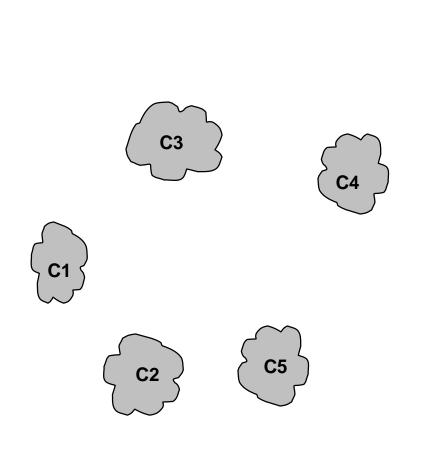






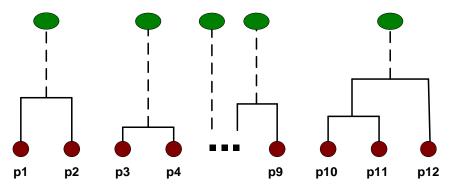
#### **Intermediate Situation**

After some merging steps, we have some clusters



|            | <b>C</b> 1 | C2 | СЗ | C4 | <b>C</b> 5 |
|------------|------------|----|----|----|------------|
| <b>C</b> 1 |            |    |    |    |            |
| <b>C2</b>  |            |    |    |    |            |
| <b>C3</b>  |            |    |    |    |            |
| <u>C4</u>  |            |    |    |    |            |
| <b>C</b> 5 |            |    |    |    |            |

**Proximity Matrix** 

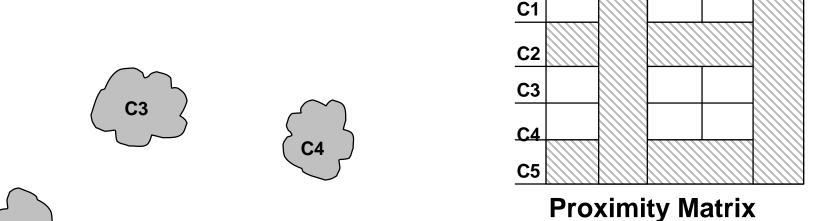


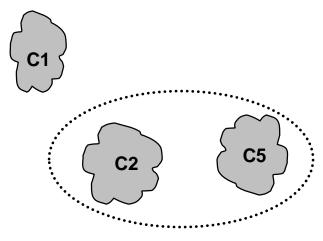
02/14/2018

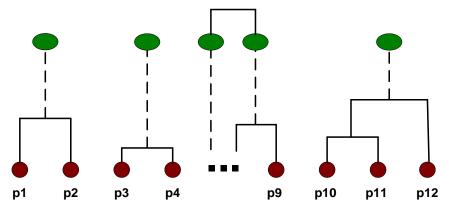
#### **Intermediate Situation**

We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.







C2

C3

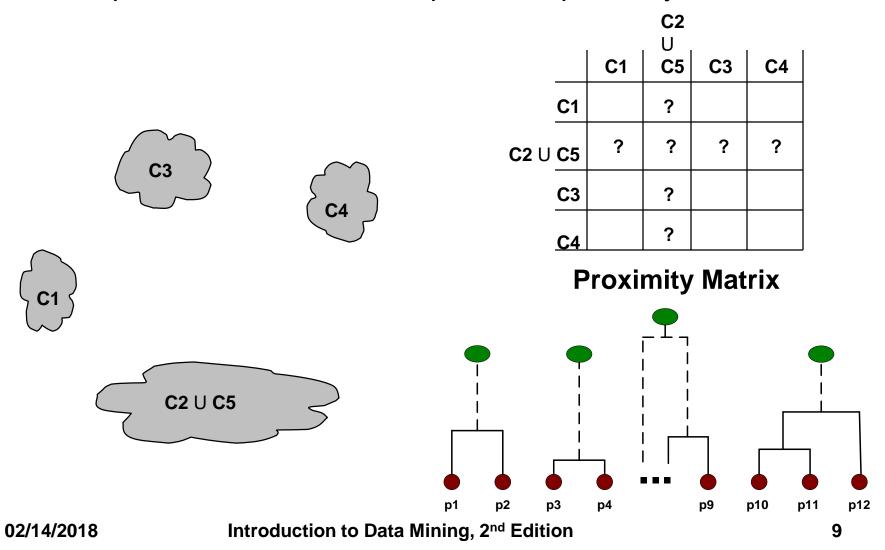
**C1** 

**C5** 

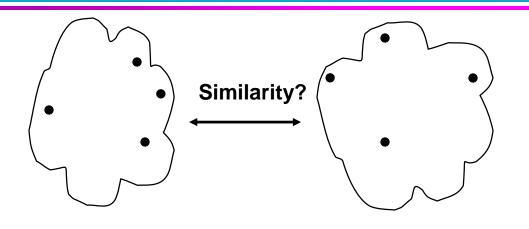
C4

# **After Merging**

The question is "How do we update the proximity matrix?"

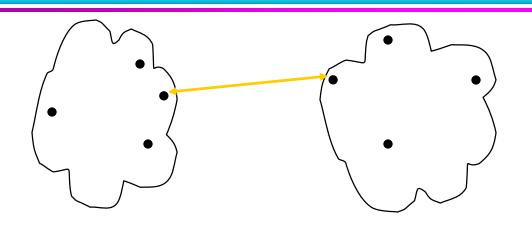


#### **How to Define Inter-Cluster Distance**



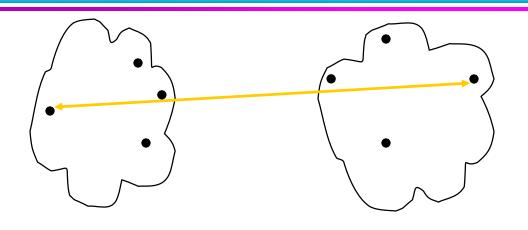
|           | <b>p</b> 1 | <b>p2</b> | р3 | p4 | <b>p</b> 5 |  |
|-----------|------------|-----------|----|----|------------|--|
| <b>p1</b> |            |           |    |    |            |  |
| <b>p2</b> |            |           |    |    |            |  |
| рЗ        |            |           |    |    |            |  |
| <b>p4</b> |            |           |    |    |            |  |
| p5        |            |           |    |    |            |  |
|           |            |           |    |    |            |  |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



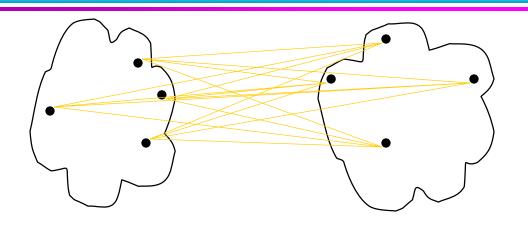
|            | <b>p1</b> | <b>p2</b> | рЗ | p4 | <b>p</b> 5 | <u> </u> |
|------------|-----------|-----------|----|----|------------|----------|
| <b>p</b> 1 |           |           |    |    |            |          |
| p2         |           |           |    |    |            |          |
| рЗ         |           |           |    |    |            |          |
| <b>p</b> 4 |           |           |    |    |            |          |
| р5         |           |           |    |    |            | _        |
|            |           |           |    |    |            |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



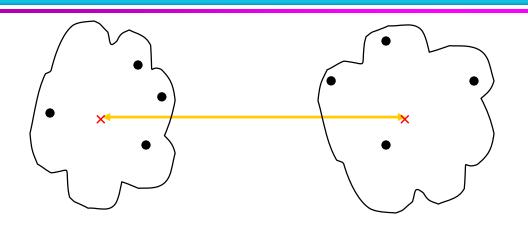
|           | <b>p</b> 1 | p2 | рЗ | p4 | p5 | <u> </u> |
|-----------|------------|----|----|----|----|----------|
| р1        |            |    |    |    |    |          |
| <b>p2</b> |            |    |    |    |    |          |
| рЗ        |            |    |    |    |    |          |
| <b>p4</b> |            |    |    |    |    |          |
| р5        |            |    |    |    |    |          |
|           |            |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|           | <b>p1</b> | <b>p2</b> | р3 | p4 | p5 | <u> </u> |
|-----------|-----------|-----------|----|----|----|----------|
| p1        |           |           |    |    |    |          |
| p2        |           |           |    |    |    |          |
| рЗ        |           |           |    |    |    |          |
| <b>p4</b> |           |           |    |    |    |          |
| р5        |           |           |    |    |    |          |
| _         |           |           |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



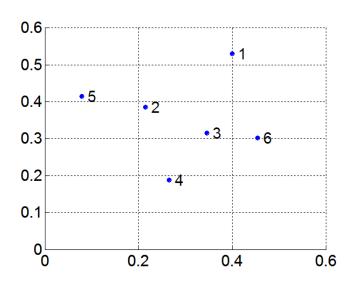
|           | р1 | p2 | рЗ | p4 | р5 | <u> </u> |
|-----------|----|----|----|----|----|----------|
| p1        |    |    |    |    |    |          |
| <u>p2</u> |    |    |    |    |    |          |
| р3        |    |    |    |    |    |          |
| <b>p4</b> |    |    |    |    |    |          |
| p5        |    |    |    |    |    |          |
|           |    |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

# MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph

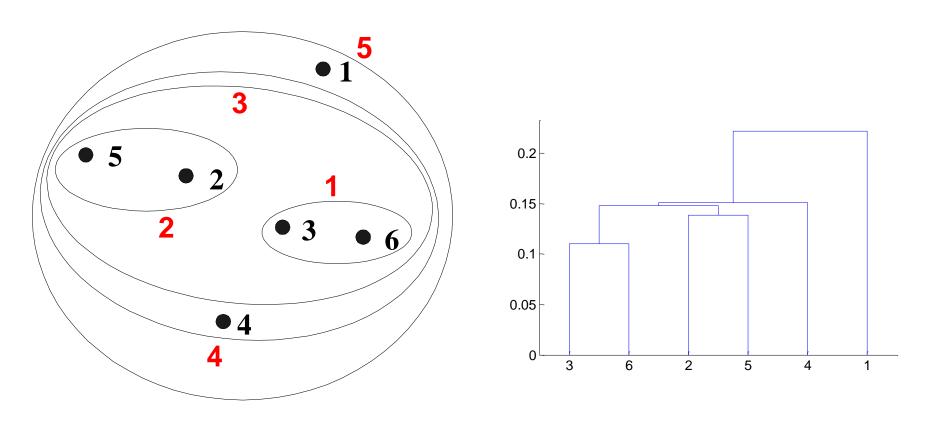
#### • Example:



#### **Distance Matrix:**

|    | p1   | p2   | р3   | p4   | p5   | p6   |
|----|------|------|------|------|------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28 | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00 |

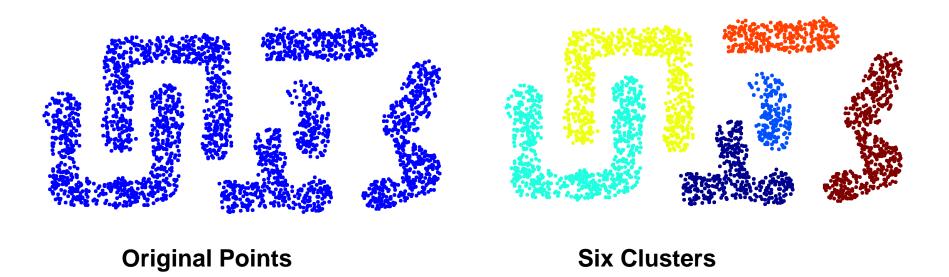
# **Hierarchical Clustering: MIN**



**Nested Clusters** 

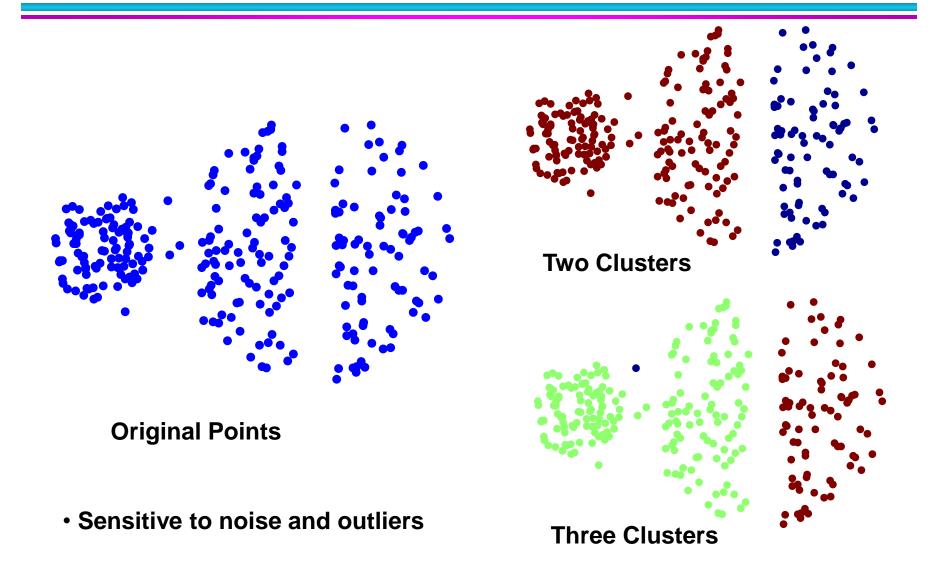
Dendrogram

# **Strength of MIN**



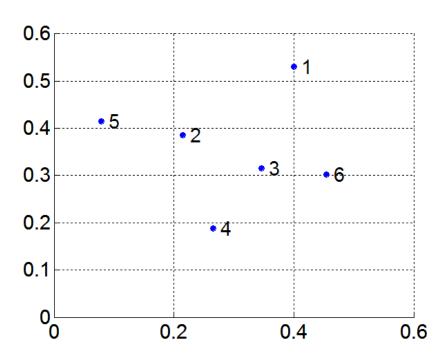
Can handle non-elliptical shapes

#### **Limitations of MIN**



## **MAX or Complete Linkage**

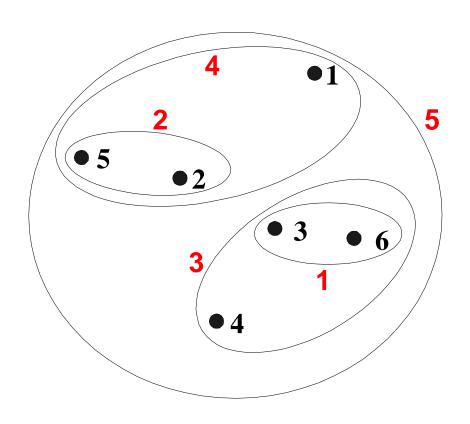
- Proximity of two clusters is based on the two most distant points in the different clusters
  - Determined by all pairs of points in the two clusters

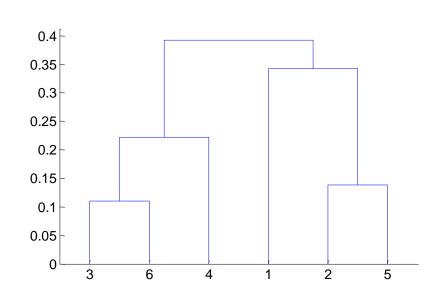


#### **Distance Matrix:**

|    | p1   | p2   | р3   | p4   | p5   | p6   |
|----|------|------|------|------|------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28 | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00 |

# **Hierarchical Clustering: MAX**

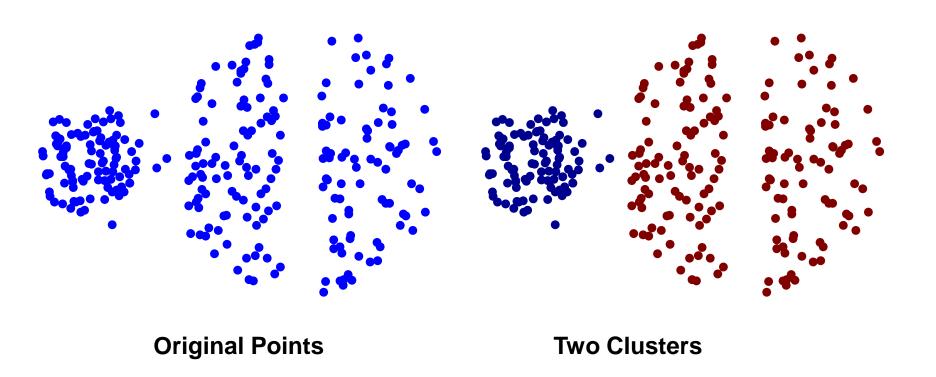




**Nested Clusters** 

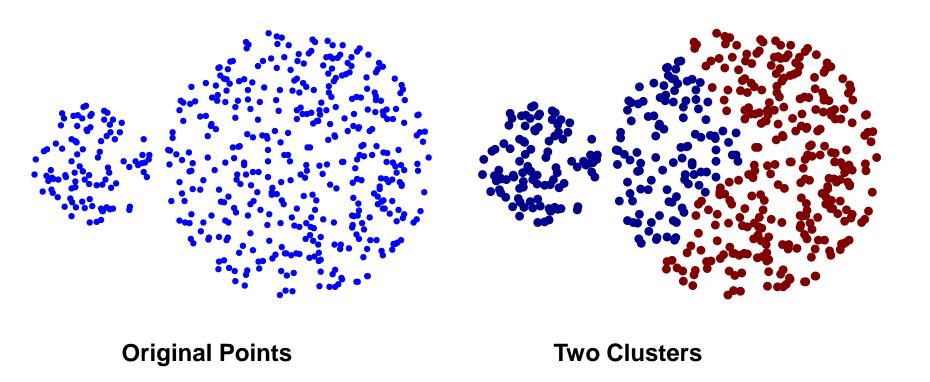
**Dendrogram** 

# **Strength of MAX**



Less susceptible to noise and outliers

#### **Limitations of MAX**



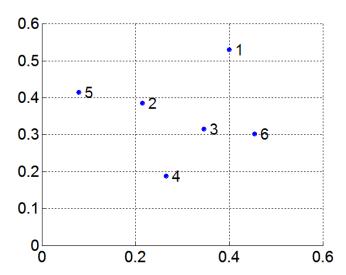
- Tends to break large clusters
- Biased towards globular clusters

# **Group Average**

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$\frac{\sum_{p_i \in Cluster_i} proximity(p_i, p_j)}{proximity(Cluster_i, Cluster_j)} = \frac{\sum_{p_i \in Cluster_i} proximity(p_i, p_j)}{|Cluster_i| \times |Cluster_i|}$$

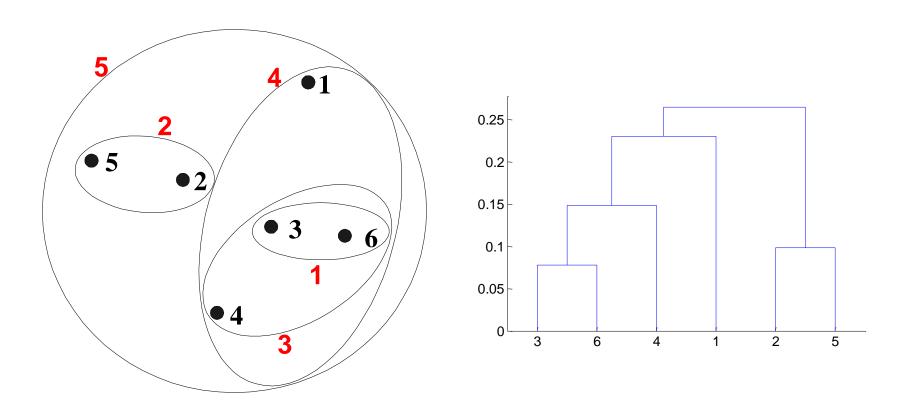
 Need to use average connectivity for scalability since total proximity favors large clusters



#### **Distance Matrix:**

|    | p1   | p2   | р3   | p4   | p5   | p6   |
|----|------|------|------|------|------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28 | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00 |

# **Hierarchical Clustering: Group Average**



**Nested Clusters** 

Dendrogram

# **Hierarchical Clustering: Group Average**

 Compromise between Single and Complete Link

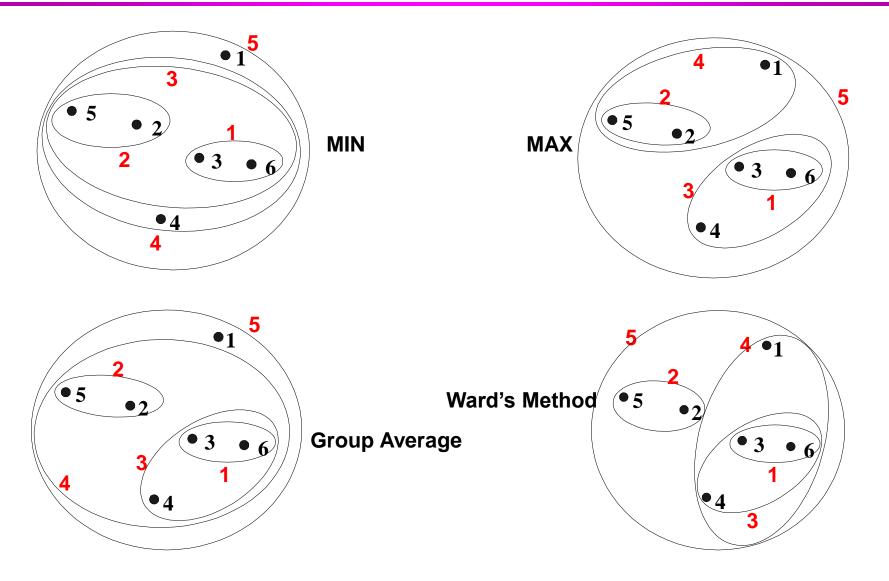
- Strengths
  - Less susceptible to noise and outliers

- Limitations
  - Biased towards globular clusters

# **Cluster Similarity: Ward's Method**

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
  - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
  - Can be used to initialize K-means

#### **Hierarchical Clustering: Comparison**

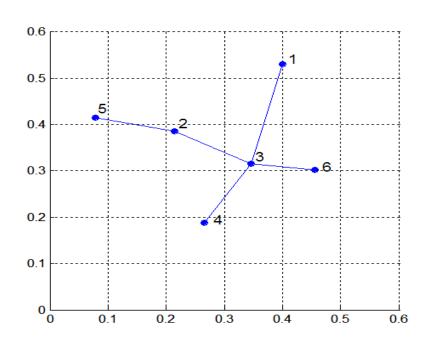


# **MST: Divisive Hierarchical Clustering**

## Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q





# **MST: Divisive Hierarchical Clustering**

Use MST for constructing hierarchy of clusters

#### Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

#### **Hierarchical Clustering: Time and Space requirements**

- O(N<sup>2</sup>) space since it uses the proximity matrix.
  - N is the number of points.
- O(N³) time in many cases
  - There are N steps and at each step the size, N<sup>2</sup>,
     proximity matrix must be updated and searched
  - Complexity can be reduced to O(N<sup>2</sup> log(N)) time with some cleverness

#### **Hierarchical Clustering: Problems and Limitations**

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
  - Sensitivity to noise and outliers
  - Difficulty handling clusters of different sizes and nonglobular shapes
  - Breaking large clusters