K-means Clustering

[ Partitional clustering approach

I Each cluster is associated with a (center point)
I Each point is assigned to the cluster with the closest
centroid

I Number of clusters, K, must be specified
I The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

. until The centroids don’t change
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K-means Clustering - Details

I Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

I The centroid is (typically) the mean of the points in the
cluster.

1 ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

I K-means will converge for common similarity measures
mentioned above.

I Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

Complexity isO(n*K*1*d)

— n = number of points, K = number of clusters,
| = number of iterations, d = number of attributes

| —

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 23




Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Clusters vs. Voronoi diagrams
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Voroni cell = set of points that are closer
to a reference point than any other

http://www.cs.cornell.edu/home/chew/Delaunay.html
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

0 If there are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Ink K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K= 10, then probability = 10!/10"™ = 0.00036

— Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don’t

—  Consider an example of five pairs of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

31




10 Clusters Example

Iteration 1 Iteration 2
8 8
6 6
4l 4

-4 4
6 -6}
0 5 10 15 20 0 5 10 15 20
Ilteration 3 lteration 4
8 8
6 6
4l 4

+
+

1 1 1 J 1 1 1 J
0 5 10 15 20 0 5 10 15 20

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only
one.
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Solutions to Initial Centroids Problem

[1 Multiple runs
— Helps, but probability is not on your side

I Sample and use hierarchical clustering to
determine initial centroids

1 Select more than k initial centroids and then

select among these initial centroids .. —

— Select most widely separated

I Postprocessing ey

I Bisecting K-means
— Not as susceptible to initialization issues
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Evaluating K-means Clusters

1 Most common measure is Sum of Squared Errors (SSE)
— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

1.5

K
SSE=). D, dist’(m.x)

i=1 xeC,

.2

0.5

0.0

— X is a data point in cluster Cand m, is

-0.5

the representative point for cluster C

#1]

— Given two clusters, we can choose the one with the smallest error

— One easy way to reduce SSE is to increase K, the number of
clusters

¢ A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K
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Handling Empty Clusters

[1 Basic K-means algorithm can yield empty clusters

I Several strategies

— Choose a point and assign it to the cluster
* The point that contributes most to SSE
* A random point from the cluster with highest SSE

— If there are several empty clusters, the above can be
repeated several times.
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Pre-processing and Post-processing

I Pre-processing
— Normalize the data
— Eliminate outliers

I Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ |ISODATA
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