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What is Cluster Analysis?

@ Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @
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Applications of Cluster Analysis

@ Understanding

— Group related documents
for browsing, group genes
and proteins that have
similar functionality, or
group stocks with similar
price fluctuations

® Summarization

— Reduce the size of large
data sets

Discovered Clusters

Industry Group

= W

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,
Computer-Assoc-DOWN,Circuit-City-DOWN,
Compag-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP, Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financial-DOWN

Oil-up

Clustering precipitation
in Australia
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What is not Cluster Analysis?

® Simple segmentation

— Dividing students into different registration groups
alphabetically, by last name

® Results of a query

— Groupings are a result of an external specification
— Clustering is a grouping of objects based on the data

® Supervised classification
— Have class label information

® Association Analysis
— Local vs. global connections
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Notion of a Cluster can be Ambiguous
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Types of Clusterings

® A clustering Is a set of clusters

e Important distinction between hierarchical and
partitional sets of clusters

e Partitional Clustering

— A division of data objects into non-overlapping subsets
(clusters) such that each data object is in exactly one subset

@ Hierarchical clustering
— A set of nested clusters organized as a hierarchical tree
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Partitional Clustering

Original Points A Partitional Clustering
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Hierarchical Clustering

B

pl p2 p3 p4

Traditional Hierarchical Clustering Traditional Dendrogram
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Other Distinctions Between Sets of Clusters

® EXxclusive versus non-exclusive

— In non-exclusive clusterings, points may belong to multiple
clusters.

— Can represent multiple classes or ‘border’ points

® Fuzzy versus non-fuzzy

— In fuzzy clustering, a point belongs to every cluster with some
weight between 0 and 1

— Weights must sumto 1
— Probabilistic clustering has similar characteristics

e Partial versus complete
— In some cases, we only want to cluster some of the data

® Heterogeneous Versus homogeneous
— Clusters of widely different sizes, shapes, and densities
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Types of Clusters

® Well-separated clusters

® Center-based clusters

@ Contiguous clusters

® Density-based clusters

® Property or Conceptual

@ Described by an Objective Function
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Types of Clusters: Well-Separated

® Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters
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Types of Clusters: Center-Based

® Center-based

— A cluster is a set of objects such that an object in a cluster is
closer (more similar) to the “center” of a cluster, than to the
center of any other cluster

— The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most “representative”
point of a cluster

4 center-based clusters
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Types of Clusters: Contiguity-Based

® Contiguous Cluster (Nearest neighbor or
Transitive)

— Each point is closer to at least one point in its cluster than to
any point in another cluster.

— Graph based clustering

® This approach can have trouble when noise is present since a
small bridge of points can merge two distinct clusters

8 contiguous clusters
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Types of Clusters: Density-Based

® Density-based

— A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

— Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters

02/14/2018 Introduction to Data Mining, 2"d Edition 14



Types of Clusters: Objective Function

@ Clusters Defined by an Objective Function

— Finds clusters that minimize or maximize an objective
function.
— Enumerate all possible ways of dividing the points into

clusters and evaluate the goodness' of each potential
set of clusters by using the given objective function.

(NP Hard)

— Can have global or local objectives.
+ Hierarchical clustering algorithms typically have local objectives
+ Partitional algorithms typically have global objectives
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Characteristics of the Input Data Are Important

@ Type of proximity or density measure
— Central to clustering
— Depends on data and application

e® Data characteristics that affect proximity and/or density are

— Dimensionality
¢ Sparseness

— Attribute type

— Special relationships in the data
¢ For example, autocorrelation

— Distribution of the data

@ Noise and Ouitliers
— Often interfere with the operation of the clustering algorithm
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Clustering Algorithms

® K-means and Its variants
@ Hierarchical clustering

® Density-based clustering
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K-means Clustering

Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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Example of K-means Clustering
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Example of K-means Clustering
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K-means Clustering — Details

® Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

® The centroid is (typically) the mean of the points in the
cluster.

® ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

® K-means will converge for common similarity measures
mentioned above.

® Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

e ComplexityisO(n*K*I1*d)

—  n=number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Evaluating K-means Clusters

® Most common measure is Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

SSE :ZK:Zdistz(mi,x)
i=1 xeC, 2

® X is a data point in cluster C, and m; is the representative
point for cluster Ci 2

can show that mi corresponds to the center (mean) of

the cluster R S

® Given two sets of clusters, we prefer the one with the
smallest error

® One easy way to reduce SSE is to increase K, the number of
clusters

® A good clustering with smaller K can have a lower SSE than
a poor clustering with higher K

02/14/2018 Introduction to Data Mining, 2"d Edition

22




Two different K-means Clusterings
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Limitations of K-means

® K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

@ K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
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Overcoming K-means Limitations

3 3
& oo
2 0 T% o 2
o O Q%D
%@%g%g S 8%

o, § o @g}giéc?@o %080{90 1|:| o océ + + v
S T S OC A o TG %i% Tl
g o® " L0 OO@) o 0dag o SR o ®° v

] O a2 Oy o o6 g D%
1 oo 080 QDOO & 1 o o % v
C%O%Q@o L +
2t 0% o o . 2
3 3
4 3 2 1 ] 1 2 3 4 4 3 2 1 a 1 P 2 4
X
Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density
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Overcoming K-means Limitations
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Empty Clusters

@ K-means can yield empty clusters
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Handling Empty Clusters

@ Basic K-means algorithm can yield empty
clusters

@ Several strategies

= Choose a point and assign it to the cluster
+Choose the point that contributes most to SSE
+Choose a point from the cluster with the highest SSE

e If there are several empty clusters, the above can
be repeated several times.
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Pre-processing and Post-processing

® Pre-processing
— Normalize the data
— Eliminate outliers

@ Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ ISODATA
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

@ |Ifthere are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Inf K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K = 10, then probability = 10!/101° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.
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10 Clusters Example

Iteration 1

0 5 1’0 15 20
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Iteration 2
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5 10 15 20

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

@ Multiple runs
— Helps, but probability is not on your side

@ Sample and use hierarchical clustering to determine initial
centroids

® Select more than K initial centroids and then select among
these Iinitial centroids

— Select most widely separated
® Postprocessing

® Generate a larger number of clusters and then perform a
hierarchical clustering

® Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

@ In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

@ An alternative Is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Bisecting K-means

® Bisecting K-means algorithm

—  Variant of K-means that can produce a partitional or a
hierarchical clustering

. Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for i = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters

CLUTO: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Bisecting K-means Example
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