DATA MINING 2
Explainability

a.a. 2023/2024




Definitions

e To interpret means to give or provide the
meaning or to explain and present in
understandable terms some concepts.

* In Al, and in data mining and machine
learning, interpretability is the ability to
explain or to provide the meaning in
understandable terms to a human.

https://www.merriam-webster.com/

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v?2.


https://www.merriam-webster.com/

What s a Black Box Model?

A black box is a model, whose
internals are either unknown to
the observer or they are known

X1 —
but uninterpretable by humans.
X2
X3 — Example:
@ —@ * DNN
* SVM
* Ensemble

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.



Interpretable Models

Sex”?

female

male

1st, 2nd class survived

‘ Pclass? ‘
/ 3rd Class . HOt SUFVIVBd

survived

age?

\
>14

not survived

Decision Tree

PREDICTION: p(survived = yes | X) = 0.671
OUTCOME: YES

Feature contribution
|
PClass | -0.344 |
T ‘0 U .34 |
Sex 1194 |

Linear Model

if condition1 A conditiony A conditions then outcome

Rules

Value

3rd
52

female



Motivations For Ex



COMPAS Recidivism

DYLAN FUGETT BERNARD PARKER

Prior Offense Prior Offense
1attempted burglary 1resisting arrest B»
without violence
Subsequent Offenses
* 3drug possessions Subsequent Offenses
: None
LOW RISK 3 HiGHRrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.
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Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishesa right for all individualsto obtain “meaningful explanationsof the logic
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.



Explanation in different Al fields
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Auto-encoder Surogate Model
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case- Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Based Reasoning Through Prototypes: A Neural Network That Explains Representations of Trained Networks. NIPS 1995: 24-30

Its Predictions. AAAI 2018: 3530-3537



Explanation in different Al fields

* Machine Learning
* Computer Vision

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation  (d) Aleatoric Uncertainty (¢) Epistemic Uncertaimy

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590

Integrated Gradient

i Edge

Original ) Guided  Guided Integrated Gradients
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad  Input Detector
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Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, lanJ. Goodfellow, Moritz Hardt, Been
Kim: Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536



Explanation in different Al fields

* Machine Learning
* Computer Vision
* Knowledge Representation and Reasoning
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Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)
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Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. KR 2012



Explanation in different Al fields

Machine Learning
Computer Vision

Knowledge Representation and Reasciug

Multi-agent Systems

Domain ‘

Strategy Agent(s)
=

Application Intelligent Strategy .
pomain [ 3 Worid States. | PRESY States ) T pm—
eersomrGiicn Extraction e = G

—_—J —J

Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization.
AAMAS 2018: 1203-1207
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Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Explanation in different Al fields

050
* Machine Learning
* Computer Vision .9000-9
[ Cesmrrd e 7|
* Knowledge Representation and Reasoning s o600
* Multi-agent Systems N (gm
* NLP o

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Explanation in different Al fields

* Machine Learning
* Computer Vision

* Knowledge Representation and Reasoning

* Multi-agent Systems
 NLP
* Planning and Scheduling
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Human-in-the-loop Planning

T
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Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different Al fields

Machine Learning

Computer Vision

Knowledge Representation and Reasoning
Multi-agent Systems

NLP

Planning and Scheduling

Robotics

Robot: [ have decided to turn left.
Human: Why did you do that?

Robot: 1 believe that the correct action is Lo turn left

BECAUSE:

I'm being asked to go forward

AND This area in front of me was 20 ¢cm higher than me
*highlights area®

AND the area to the left has maximum protrusions of less
than 5 cm *highlights area*®

AND I'm tilted to the right by more than 5 degrees.

Here is a display of the path through the tree that lead to
this decision. *displays tree®

Human: How confident are you in this decision?

Robot: The distribution of actions that reached this leaf
node 1s shown in this histogram. *displays histogram®
This action 1s predicted to be correct 67% of the time.

Human: Where did the threshold for the area in front come
from?

Robot: Here is the histogram of all training examples that
reached this leaf. 80% of examples where this area was
above 20 ¢m predicted the appropriate action to be “drive
forward”.

From Decision Tree to human-friendlyinformation

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]
{
r

|
ML Classifier

!

C: I predict FISH

- Humans may have follow-up questions
- Explanations cannot answer all users’ concerns



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]
0 H: Why?
C: See below:

{
.
|
ML Classifier |
‘ Green regions argue
for FISH, while RED
C l/”."‘/" t FISH /)H.\/hi\ towards DOG
There's more green

- Humans may have follow-up questions
- Explanations cannot answer all users’ concerns



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]
0 H: Why? H: (Hmm. Seems like it might
C: See below:

! be just recognizing anemone
- texture!) Which training
examples are most influential
to the prediction?
l C: These ones.
ML Classifier : _
‘ Green regions argue
for FISH, while RED
C: I predict FISH pushes towards DOG.
There s more green

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]

0 H: Why? H: (Hmm. Seems like it might H: What happens if the
! C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., é
to the prediction?
| C: These ones.
ML Classifier | C: I still predict
‘ Green regions argue FISH. because
for FISH, while RED of these green
C: I predict FISH pushes towards DOG. superpixels:
There s more green

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns



Role-based Interpretability

“Isthe-explanationinterpretable?” 2 “To whom is the explanation interpretable?”

No Universally Interpretable Explanations!

* End users “Am | being treated fairly?”
“Can | contest the decision?”

“What could | do differently to get a
positive outcome?”

* Engineers, data scientists: “Is my system
working as designed?”

* Regulators “ Is it compliant?”

An ideal explainer should model the user
background.

Creators
Examiners

Machine — —
learning

system Operators Executors Decision-

I subjects

8 [Tomsett et al. 18]

Data-subjects

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]



XAl is Interdisciplinary

* For millennia, philosophers have
asked the questions about what Seromee
constitutes an explanation, what
is the function of explanations,
and what are their structure

* [Tim Miller 2018]

\
Human-Agent
Interaction \\ :

Artificial Human-Computer

Intelligence Interaction



How to Open the Black Box
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XAl Taxonomy of Explanation Methods

Explanation
Methods




XAl Taxonomy of Explanation Methods

Explainable By
—>  Designh Methods -

(Intrinsic Explainability)

Explanation
Methods

Black Box -

— Explanation Methods
(Post-hoc Explainability)




XAl Taxonomy of Explanation Methods

Explanation
Methods

Explainable By

Designh Methods
(Intrinsic Explainability)

Black Box

Explanation Methods
(Post-hoc Explainability)

Black-box System

v
A o)

Ejﬁ :

Input Data

Interpretab|I|ty Transparent System

Black-box
Al System

Input Data

 ——_—

Explanation Sub-system

N
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Explanation
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XAl Taxonomy of Explanation Methods

Explanation
Methods

Explainable By

Designh Methods
(Intrinsic Explainability)

are

Global and Model Specific

Black Box

Explanation Methods
(Post-hoc Explainability)




Explainable by Design Method

Dataset
X

Interpretable
Model

Prediction and

C

Sunny

—
Humidity

A

S

Explanation
y, e=c(X)

Outlook

Rain
¥

Wind Overcast

User

A
High  Normal Strong  Weak \
[\ [\
No || Ye No

Yes

Yes




XAl Taxonomy of Explanation Methods

Explanation
Methods

Explainable By

Designh Methods
(Intrinsic Explainability)

are

Global and Model Specific

Black Box

Explanation Methods
(Post-hoc Explainability)

can be

g Global

> Local




Black Box Explanations: Global vs Local

BlI\E;IZK dBe?X | Prediction
b y = b(X)
Dataset
X | | User
Explanation .
Method | Explanation
e =f(b, x)
f
Outlook
If Outlook = Sunny and Humidity = Normal
Sunn Rain then Play Tennis = Yes
Humidity Wind Overcast
A A e Qutlook: 0.7
Hfgh Normal Strong Weak . Humidity, _o 4
/[ \ [\ . Wind: 0.0
No || Yes No || Yes Yes

Global Explanation Local Explanations



XAl Taxonomy of Explanation Methods

Explanation
Methods

Explainable By

Designh Methods
(Intrinsic Explainability)

are

Global and Model Specific

Black Box

Explanation Methods
(Post-hoc Explainability)

> Global
can be R Local
p—— » Model Specific

> Model Agnostic




Black Box Explanations: Specific vs Agnostic

Model Specific

Model Agnostic

Dataset
X

[ Black Box
Model
b

Explanation
Method

fisblackbox Y f

dependent

Dataset
X

fisblackbox -

independent

| Prediction

y = b(X)

h____

Black Box
Model
b

| Explanation

e =f(b, x)

User

Explanation
Method

_ f

| Prediction

y = b(X)

| Explanation

e =f(b, x)

User




Types of Data

Table of baby-name data

(baby-2010.csv)

Field
name rank gender year """ hames
Jacob 1 Do 2010

7 M One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010
Sophia 2 girl 2010
Michael 3 boy 2010

] ] ]

' ' H

H 2000 rows ' '

: all told : :

Tabular
(TAB)

o _r

qQ o

¢ —. go00




Types of Explanations

* Tabular Data * Images * Text

* Rule-based  Saliency Maps e Sentence

» Decision Tree * Concept Attributions Highlighting

* Features Importance ¢ Prototypes * Attention-based

* Prototypes e Counter-exemplars * Prototypes

« Counter-exemplars * Counter-exemplars
IfOutIook=Su1tmyand Humidity = Normal —9 abele Ilme sa grad |ntg e|rp

then Play Tennis = Yes
* OQutlook:0.7 . ? . ? ? {?7
* Humidity:-0.4

e Wind: 0.0



Explanations and Explanation Methods
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TREPAN



Trepan

e Global explainer designed to explain NN e
but usable for any type of black box. B =

e It aims at approximating a NN with a DT =2 o 2
classifier using best-m-of-n rules. iy

* At each node split the feature to split is |
selected on the original data extended #
With ra ndom Samples respecting the Ebe[:\?gn] malirglnanj ber?ign begn maliggnant maIiTgsnant

%% o/;OO .31; %67 .8(:)3 %20 .Bg %20 A ;%83 .02470./?6

current path.

* It learns to predict the label returned by
the black box, not the original one.



65 35
.100.%
Tre pa n (yes }-UniformityCellSize < 2.5{ no |
benign malignant
97 03 .16 .84
60% 40%
BareNuclei < 4.5 —— UniformityCellShape < 2.5
01 T = root of the tree () @
02 Q = <T, X, {}> niformityCe:ISize<4.5
03 while Q not empty & size(T) < limit @
04 N’ XN’ CN - pop (Q) BareNj:Tei<2.5
05 Zy = random (Xy, Cy) _ | | 1
06 blackbox v, = b(z), vy = b(Xy) i o [om [
07 aUdltlng if Same_class(y U yZ) 2% 3% 2% 7%
08 continue
09 S = best split(Xy U Zy, v U yy)
10 S'= best m-of-n split(S)
11 N = update with split (N, S’)
12 for each condition c¢ in S’
13 C = new child of (N)
14 Cc = CN U {c}
15 Xc = select with constraints (Xy, Cy)
16 put (Q, <C, X., Cgc>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.



LIME



Local Explanation

* The overall decision
boundary is complex

* |n the neighborhood of a
single decision, the
boundary is simple

* A single decision can be
explained by auditing the
black box around the
given instance and
learning a local decision.




Local Interpretable Model-agnostic Explanations

0 ]
* Local model-agnostic explainer that reveals duration_in_month <= ...
. . 0.11
the black box decisions through features oot ghedk: stuii...
importance/saliency maps. ermomal it Sex:_‘._'m
. : - o7l
* It locally approximates the behavior of a installment_as_income...
N oo

black box with a local surrogate expressed
as a logistic regressor (with Lasso or Ridge
penalization).

* Synthetic neighbors are weighted w.r.t. the
distance with the instance to explain.




LIME

Sepal length | Sepal width | Petal length | Petal width mm




LIME

Sepal length | Sepal width | Petal length | Petal width mm
3 4 3 6 0.1 0.7 0.2

3 4 5 6 0.4 0.4 0.6



LIME

Sepal length | Sepal width | Petal length | Petal width mm
3 4 3 6 0.1 0.7 0.2

3 4 5 6 0.4 0.4 0.6
3 2 3 8 0.3 0.6 0.1



Sepal length | Sepal width | Petal length | Petal width mm
3 3 0.1 0.7 0.2

4 6
3 4 5 6 0.4 0.4 0.6
3 2 3 8 0.3 0.6 0.1
5 2 3 6 0.0 0.3 0.7
2 4 4 7 0.0 0.8 0.2



Sepal length | Sepal width | Petal length | Petal width mm
3 3 0.1 0.7 0.2

4 6
3 4 5 6 0.4 0.4 0.6
3 2 3 8 0.3 0.6 0.1
5 2 3 6 0.0 0.3 0.7
2 4 4 7 0.0 0.8 0.2
\
1

Train a Linear Regressor




Sepal length | Sepal width | Petal length | Petal width mm
3 3 0.1 0.7 0.2

4 6
3 4 5 6 0.4 0.4 0.6
3 2 3 8 0.3 0.6 0.1
5 2 3 6 0.0 0.3 0.7
2 4 4 7 0.0 0.8 0.2
\
1

Train a Linear Regressor

1

Returns the coefficients as Explanation




Features Importance

LIME ’

01
02
03
04
05
06
07
08
09

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trustyou?:
Explaining the predictions of any classifier. KDD.

duration_in_month <= ...

0.11
account_check status=...
7 = I ong
= {} personal_status_sex=...
x instance to explain | .
glstallment_as_mmmﬂ...
X' = real?interpretable (x o . e
P (X) credit_history=critical...
for i in {1, 2, .., N} o0cl

z,= sample around(x’)
Z

= 1nterpretabelZreal (z’)
Z = 72 U {<z,, b(z;,), d(x, z)>}

w = solve Lasso(Z, k) N
o black box

return w auditing




LIME

X
_ —1|1‘1|1|...|1|1|1|1 0.94

* LIME turns an image x to a : | , . , | : ,

vector x” of interpretable 1 1| 0|0 {(...] 1] 1 1 1 0.58

superpixels expressing

presence/absence. 1 1 1 O |... | O 0 1 1 0.15
* |t generates a synthetic

neighborhood Z by randomly

perturbing x” and labels them
with the black box.

* |t trains a linear regression
model (interpretable and
locally faithful) and assigns a
weight to each superpixel.




LORE



LOcal Rule-based Explainer

* LORE extends LIME adopting as local
surrogate a decision tree classifier
and by generating synthetic
instances through a genetic
procedure that accounts for both
instances with the same labels and
different ones.

* |t can be generalized to work on
images and text using the same data
representation adopted by LIME.

zzzzzzz




parent 2 | 30 | other | 5k | no
LORE e | P
01 X 1lnstance to explailn parent [ 25 | clerk | 10k | yes
02 Z_ = geneticNeighborhood(x, fitness_., N/2)  ildren ; ' o5
03 7, = geneticNeighborhood(x, fitness,, N/2)
04 Z = Z_. U Z, /blaclfl.)ox
05 ¢ = buildTree(z, b(z)) ™"
06 r = (p —> y) = extractRule(c, x)
07 ¢ = extractCounterfactual (¢, r, X)
08 return e = <r, ¢>
age < 25
tru, \,%
cleyj()b her mcomegio r = {age < 25, job = clerk, income <900} -> deny

imcome < 900

IIIK \
** . LLLEN

L * 'y
s deny: sgrant:deny
...--" 0...-“0

age < 17

0b grant

J
cle’ry \o‘th er

* e
,:gmn'{j_ deny grant
0.. “

parent 1

® = {({income > 900} -> grant),
({17 < age < 25, job = other} -> grant)}




LORE

1 = { Education = Bachelors, o = { Education = College,
Occupation = Prof-specialty, Sex = Male, Occupation = Sales, Sex = Male,
NativeCountry = Vietnam, Age = 35, NativeCountry = US, Age = 19,
Workclass = 3, Hours Week = 40, Workclass = 2, HoursWeek = 15,
Race = Asian-Pac-Islander, Race = White,

MaritialStatus = Married-civ, MaritialStatus = Married-civ,

Relationship = Husband, Relationship = Husband,

CapitalGain = 0, CapitalGain = 2880,

CapitalLoss = 0}, > 50k CapitalLoss = 0 }, < 50k
Tiore =  {Education < Masters,

Tiore = { Education > 5-6th, Race > 0.86, Occupation > -0.34,
WorkClass < 3.41, HoursWeek < 40,
CapitalGain < 20000, WorkClass < 3.50
CapitalLoss < 1306 } — > 50k CapitalGain < 10000,

Age < 84} — < 50k

. Clore = { Education > Masters } — > 50k
{CapitalLoss > 436 } — < 50k {CapitalGain > 20000} — > 50k
{ Occupation < -0.34 } — > 50k

Clore —



LORE on Medical Images

* The goal is to classify
dermoscopic images among
categories such as: Melanoma
(MEL), Melanocytic Nevus (NV);
Basal Cell Carcinoma (BCC),
Actinic Keratosis (AK), etc.

* The original is classified as AK
* The counterfactual as BCC.




SHAP



Shapely Values

* A prediction can be explained by assuming that each feature value of
the instance is a "player"” in a game where the prediction is the
payout. Shapley values -- a method from coalitional game theory --
tells us how to fairly distribute the "payout" among the features.

 Example: A black box predicts apartment prices. For a certain
apartment it predicts €300,000 and you need to explain this
prediction. The apartment has an area of 50 m?, is located on the 2nd
floor, has a park nearby and cats are banned.

‘ ==p €300,000

50 m?
2nd floor



Shapely Values and Game Theory

* The average prediction is €310,000. How much has each feature value
contributed to the prediction compared to the average prediction?

* The "game" is the prediction task for a single instance of the dataset.

* The "gain" is the actual prediction for this instance minus the average
prediction for all instances.

* The "players" are the feature values of the instance that collaborate
to receive the gain (= predict a certain value).

* The explanation could be: The park-nearby contributed
€30,000; area-50 contributed €10,000; floor-2nd contributed €0; cat-

banned contributed -€50,000. The contributions add up to -€10,000,
the final prediction minus the average predicted apartment price.



Shapely Values Example

* The Shapley value is the average marginal
contribution of a feature value across all
possible coalitions (combination of fixed feature
values). '

* We evaluate the contribution of cat-banned —
when it is added to a coalition of park- \/ X
nearby and area-50.

* We simulate that only park-nearby, cat-
banned and area-50 are in a coalition by
randomly drawing another apartment from the
data and using its value for the floor feature.

* The floor-2nd is replaced by the randomly
drawn floor-1st.

* Then we predict the price of the apartment
with this combination (€310,000).

=y == €310,000

1st floor



Shapely Values Example

* |n a second step, we remove cat-banned from
the coalition by replacing it with a random value
of the cat allowed/banned from the randomly
drawn apartment. In the example it was cat-
allowed, but it could have been cat-
banned again.

* We predict the apartment price for the coalition
of park-nearby and area-50(€320,000).

* The contribution of cat-banned was €310,000 -
€320,000=-€10,000. This estimate depends on
the values of the randomly drawn apartment
that served as a "donor" for the cat and floor
feature values.

* We get better estimates if we repeat this
sampling step and average the contributions.

F 9

V

D

50 m*

1st floor

V

=) €310,000

=) €320,000



Shapely Values Example

* We repeat this computation for all possible coalitions.

The Shapley value is the average of all the marginal
contributions to all possible coalitions.

The computationtime increases exponentially with the
number of features.

For each of these coalitions we compute the predicted
apartment price with and without the feature value cat-
banned and take the difference to get the marginal
contribution.

We replace the feature values of features that are not in a
coalition with random feature values from the apartment
dataset to get a prediction from the black box.

If we estimate the Shapley values for all feature values, we
get the complete distribution of the prediction (minus the
average) among the feature values.




SHAP B
M
+ SHAP (SHapley Additive 9() = 9o + ) dizi;
exPlanations) assigns each

, S|'(|F| - |S| - 1)!
feature an importance value ~ d.= 3 21 ||F||. =D oo @su) - Fs(@s)]
for a particular prediction by SCF\) R
mea ns Of an additive feature 34 18.34 20.34 baszez.ﬁue mogi:::tpm 26.34 28.34 30.34
attribution method. B G
* It assigns an importance value N
to each feature that represents L
the effect on the model o
prediction of including that
feature o
Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model mi:

predictions. Advances in Neural Information Processing Systems. 2017. e S S S S S Low



SHAP on Tabular Data
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SHAP on Images
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Saliency Maps



Saliency Maps

* A saliency map is an image in which a pixel's brightness represents how salient the pixel
is. A positive value (red) means that the pixel has contributed positively to the
classification, while a negative one (blue) means that has contributed negatively.

* There are two methods for creating SMs.
1. Assignto every pixel a saliency value.

2. Segment the image into different pixel groups (superpixels or segments) and then assign a
saliency value for each group.
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Sallency Maps
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Integrated Gradient

- Mukund Sundararajan, Ankur Taly, Qigi Yan. Axiomatic

* INTGRAD can only be applied to differentiable models.

* INTGRAD constructs a path from the baseline image x” to the input x
and computes the gradients of points along the path.

* The points are taken by overlapping x with x’, and gradually modifying
the opacity of x. Saliency maps are obtained by cumulating the

gradients of these points. 5

!
n3

Attribution for Deep Networks. arXiv preprint
arXiv:1703.01365. 2017



MASK

01 X 1lnstance to explain black box
02 varying x into x’ maximizing b(x)~b(x’)/ auditing
03 the variation runs replacing a region R of x with:

constant value, noise, blurred 1image
04 reformulation: find smallest R such that b (xz) Kb (x)

flute: 0.9973 flute: 0.0007 Learned Mask

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).



Sentence Highlighting

INTGRAD

LIME

Deeplift

Gradient x Input

the [iOViE is not that [l . ringo lam BMEE . | B8 when van @& ##me has love in
his movies , van @am ##me is good only when i@ doesn ' t have love in his IS .

the movie is il that bad | ringo lam |l | i haté when van dam ##me has love in his
movies , van dam ##me is good only when he doesn 't have love in his movies .

the movie is not that bad | ringo lam SUEKS | i haté when van dam ##me has love in

his movies , van dam ##me is good only when he doesn 't have love in his movies .

hat bad | finge I B8RS . | hate when van dam ##me has love in

theé movie is not tha
his movies , van dam ##me is good only when he doesn 't have love in his movies .




Instance-based Explanations



Instance-based Explanations

* Instance-based explanation methods select particular instances of the
dataset or generate synthetic instances to explain black box behaviors.

* Instance-based explainers are mainly local explainers.

* Instance-based explanations only make sense if we can represent an
instance of the data in a humanly understandable way.

* This works well for:
* images
 tabular data with not many features
* short texts



Instance-based Explanations

* We mainly recognize the following example-based explanations:

* Prototypes: a selection of representative instances having the
same class of the instance under analysis. Among prototypes we
also recognize:

* Criticisms: instances that are not well represented by prototypes.

* Influential Instances: training points that were the most influential for the
training of the black-box or for the prediction itself.

* Counterfactuals: a selection of representative instances having a
different class w.r.t. the instance under analysis.



Counterfactual Explanations

* A counterfactual explanation describes a causal situation in the form:
"If X had not occurred, Y would not have occurred".

* Thinking in counterfactual terms requires imagining a hypothetical
reality that contradicts the observed facts.

* Even if the relationship between the inputs and the outcome to be
predicted might not be causal, we can see the inputs of a model as
the cause of the prediction.

* A counterfactual explanation of a prediction describes the smallest
change to the feature values that changes the prediction to a
predefined output.
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car owner: no

f; o % {otherdebts:yes

¥,

income: 12005
Counterfactual Explan }

e Counterfactuals answer why a
decision has been made by
highlighting what changes in
the input would lead to a
different outcome.

Denied!

income: 12005
car owner: yes
* CF are not generalizations!!! other debts: yes

car owner: no

income: 15005
other debts: yes}
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Generating Counterfactual Explanations

* A simple and naive approach to generating counterfactual
explanations is searching by trial and error: randomly changing
feature values of the instance of interest and stopping when the
desired output is predicted.

* As an alternative we can define a loss function that consider the
instance of interest, a counterfactual and the desired (counterfactual)
outcome. Then, we can find the counterfactual explanation that
minimizes this loss using an optimization algorithm.

* Many methods proceed in this way but differ in their definition of the
loss function and optimization method.



Counterfactuals with a Brute Force Procedure
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Counterfactuals by Optimization Problems

* Most of the counterfactual explainers return counterfactuals by
solving an optimization problem.

* The problem is typically designed through the definition of a loss
function aimed at guaranteeing a set of desired properties.

* The objective is to find a counterfactual instance that minimizes this
loss using an optimization (OPT) algorithm.



Optimized CF Search

Wachter et al. suggest minimizing the following loss:

L2y, A) =X (f (@) —y')* + d(z, 2 o2 =Y

_—

balancethe prediction

Sample a random CF x’
Optimize the loss L

fnot |f(z') —vy'| <e
Increase Lambda. Go to 2.

* Wachter, Sandra and Mittelstadt, Brent and

Return the CF x’ that minimizes the loss. Russell, Chris. Counterfactual explanations

without opening the black box: Automated
decisions and the GDPR. 2017. Harv. JL & Tech

Al



Optimized CF Search

* The loss function minimized by Wachter et al. is

Ab(z") — ') +d(z, z")

* where the first term is the quadratic distance between the desired
outcome y’ and the classifier prediction on x’, and the second term is
the distance between x and x'.

* Lambda balances the contribution of the first term against the second
term.

Wachter S, Mittelstadt BD, Russell C (2017) Counterfactual explanations without opening the black box: Automated decisions and the GDPR. HarvJL & Tech 31:841



Distance Functions

* Manhattan distance weighed with the inverse median absolute
deviation MAD (used by Wachter)

z; — x|

E j € z.[{l_,_ ) _,n} 1,] Ed a’Ilf{_{l,. . ,;ﬂ} 'T!!,j

 Mixed Distance (used by Mothilal)
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DICE - Diverse Counterfactual Explanations

* DICE solves an optimization problem with penalization terms to
ensure plausibility by similarity and diversity.

* It returns a set of k plausible and different counterfactuals for x.

C(x) = arg min
C1,.--.Ck

& =
.M;T‘

Il
|

k
A
yloss(f(ci).y) + ?1 ; dist(c;,x)

1

— Ao dpp_diversity(cy, ..., cx)

Mothilal RK, Sharma A, Tan C (2020) Explaining machine learning classifiers through diverse counterfactual explanations. In: FAT*, ACM, pp 607-617
Mothilal RK, Mahajan D, Tan C, Sharma A (2021) Towards unifying feature attribution and counterfactual explanations: Different means to the sameend. In:
AIES, ACM, pp 652—-663



Counterfactuals through Heuristic Strategies

e Heuristic strategies are typically much more efficient than
optimization algorithms.

 Efficiency is paid with solutions that are not necessarily optimal.

* The search strategy is typically designed such that at each iteration, x'
is updated with the objective of minimizing a cost function.

* The cost function is based on a local and heuristic choice aiming for a
valid counterfactual similar to x.



SEDC- Search for Explanations for Document Classification

* The search is guided by local improvements via best-first search with pruning.

* b(“the quick brown fox jumps over the lazy dog”) =y (0.8) Prob. of vy

Input
* b(“the quick brown fox jumps over the lazy dog”) =y (0.8)
°I_b.(i‘the.q:u:i:ele.brawn_fox.jump.s.oueLtln.e.lazs/_d.ag”_)_;éy'.(D.B.)___________.i
*.b(“the quick brews fox jumpsover the lazy dog”) =v(0.7) __________.! Iter 1

* b(“the quick brewn fox jumps over the lazy dog”) =y (0.6)
* b(“the quick brewn fox jumps over the lazv. dog”).= y.(LLb‘.)____________I lter 2

Martens D, Provost FJ (2014) Explaining data-driven document classifications. MIS Q 38(1):73-99



GSG - Growing Spheres Generation

* GSG relies on a generative
approach growing a sphere of
synthetic instances around x to
find the closest counterfactual x'.

* GSG ignores in which direction the
closest classification boundary
might be.

Laugel T, Lesot M, Marsala C, Renard X, Detyniecki M (2018) Comparison-based
inverse classification for interpretability in machine learning. In:IPMU (1),
Springer, Communications in Computer and Information Sci-ence, vol 853, pp
100-111
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Counterfactuals with Instance-Based Strategies

* The very simple but effective idea of instance-based (or case-based)
approaches for counterfactual explanation is to search into a
reference population instances to be used as counterfactuals.



NNCE - Nearest-Neighbor Counterfactual Explainer

* NNCE is an endogenous i 0
counterfactual explainer inspired
by kNN classifiers that select as
counterfactual(s) the instances
in x’€ X most similar to x and 0.7}
with a different label, i.e., b(x') z .|
b(x).

e Candidate counterfactuals are
sorted with respect to the
distance between x, and the k 0.3}
most similar ones are selected. 02l

0.9}

0.8 F

05F

0.4F

0.1

Shakhnarovich G, Darrell T, Indyk P (2008) Nearest-neighbor methods inlearn
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CBCE - Case-Based Counterfactual Explainer

e CBCE refines NNCE.

* |t adopts the notion of
explanation case (xc).

(a) Pairs of explanation cases.

(b) Generating synthetic CF.

* Given X, an xc is a couple of
instances (x,x’) such that
(x,x') are the two most

similar instances in X and _
b(x') # b(x). g

xc(xx’)
xc(x,x’)

Keane MT, Smyth B (2020) Good counterfactuals and where to find them: A case-based technique for generating counterfactuals for explainable Al(XAl).
In: ICCBR, Springer, Lecture Notes in Computer Science, vol 12311,pp 163-178
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Open The Black Box!

* To empower individual against undesired effects of
automated decision making

* To reveal and protect new vulnerabilities

e To implement the “right of explanation”

e To improve industrial standards for developing Al-
powered products, increasing the trust of companies
and consumers

* To help people make better decisions
* To align algorithms with human values
 To preserve (and expand) human autonomy



Open Research Questions

* There is no agreement on what an explanation is
* There is not a formalism for explanations
 How to evaluate the goodness of explanations?

* There is no work that seriously addresses the
problem of quantifying the grade of
comprehensibility of an explanation for humans

 What if there is a cost for querying a black box?
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Explanation Toolboxes and Repositories

e https://github.com/jphall663/awesome-machine-learning-interpretability

* https://github.com/pbiecek/xai resources
 https://github.com/ModelOriented/DrWhy
* https://fat-forensics.org/

* https://github.com/Trusted-Al/AIX360

e https://captum.ai/

* https://github.com/interpretml/interpret
e https://github.com/SeldonlO/alibi
* https://github.com/pair-code/what-if-tool
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