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Nonlinearly Separable Data

* Since f(w,x) is a linear
combination of input variables,

decision boundary is linear.
. XOR Data
* For nonlinearly separable | %]y
problems, the perceptron fails 0| 01
: 1 0 1
because no linear hyperplane can | | | | |
separate the data perfectly. 1]1]4

* An example of nonlinearly

separable data is the XOR
function.
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A quick look on Deep Learning

Machine
Learning

Repres.

Learning

Deep
Learning




Deep learning

Repres.
Representation learning methods that

Learning

* allow a machine to be fed with raw data and

* to automatically discover the representations
Deep needed for detection or classification.

Learning

Raw representation Higher-level representation
* Age 35
*  Weight 65
O . Incogme 23 kE * Youngparent 0.9
. Children , = wi f) e Fit sportsman 0.1
* High-educatedreader 0.8

* Likes sport 0.3
* Likes reading 0.6
* Education high

* Rich obese 0.0

o



Multiple Levels Of Abstraction
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Multilayer Neural Network

Input Hidden Output
* Hidden Layers: intermediary layers between Layer Laver Layer

input and output layers.

* More general activation functions (sigmoid,
linear, hyperbolic tangent, etc.).

1

* Multi-layer neural network can solve any type *
of classification task involving nonlinear
decision surfaces.

* Perceptron is single layer.

* We can think to each hidden node as a
Eerceptron that tries to construct one
yperplane, while the output node combines
the results to return the decision boundary.




General Structure of ANN

Input
Layer Neuron i Output
Activation
function — 0,
Hidden 9(5;)
Layer
threshold, t
Output ‘ Training ANN means learning
Layer the weights of the neurons

<=



Artificial Neural Networks (ANN)

* Various types of neural network topology

* single-layered network (perceptron) versus
multi-layered network

* Feed-forward versus recurrent network

* Various types of
activation functions (f)

Y = (X wX,)
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Linear function
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Tanh function
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Sigmoid function
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Sign function
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Deep Neural Networks




Deep Neural Networks




Deep Neural Networks

Actually deep
learning is way
more than having
neural networks
with a lot of layers

Output

Backpropagation through
many layers has numerical
problems that makes
learning not-straightforward
(Gradient Vanish/Explosion)

Hidden Layer 3

Hidden Layer 2

Hidden Layer 1



Representation Learning

Feature representation
* We don’t know the " —
s =0 G Oy

right Igvels of s R 3rd layer
abstraction of OUEheorD “Objects”
. . . -
information that is
good for the

machine 2nd layer
* So let the model Object parts
figure it out!
1st layer
llEdgeSH
Pixels

Example from Honglak Lee (NIPS 2010)



Representation Learning

Feature representation

Face Recognition:

* Deep Network can build up frd !ayern
increasingly higher levels of Qbjects
abstraction

* Lines, parts, regions

2nd layer
“Object parts”
1st layer
“Edges”
Pixels

Example from Honglak Lee (NIPS 2010)



Representation Learning

Feature representation

Output

3rd layer
“Objects”

Hidden Layer 3

2nd layer
“Object parts”

Hidden Layer 2

Hidden Layer 1 1St Iayer
llEdgeS”

Pixels

Example from Honglak Lee (NIPS 2010)



Activation Functions

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

tanh(xz) a
Alternative 1:

tanh

Like logistic function but shifted
torange [-1, +1]

O
L

l+e

o = Ginet) =




Activation Functions

max(0, z)

Alternative 2: rectified linear unit

/ Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)
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max(0,w - x + b).



Activation Functions

_ Alternative 3: soft exponential linear unit

— loglexp(x) + 1)
10 F —  Maxi0, x)
—  1/(1 + exp(-x))

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
. Sparsifies outputs
Helps with vanishing gradient




Activation Functions Summary
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Learning Multi-layer Neural Network

* Can we apply perceptron learning to each node, including hidden nodes?
* Perceptron computes error e = y-f(w,x) and updates weights accordingly
* Problem: how to determine the true value of y for hidden nodes?

* Approximate error in hidden nodes by error in the output nodes

* Problems:
* Not clear how adjustmentin the hidden nodes affect overall error
* No guarantee of convergence to optimal solution



Sum of Squared Residuals

Gradient Descent for Multilayer NN

Quadratic function from

2
. . e 1 N /whichwecanfindaglobal
* Error function to minimize: E == —f(> w.X:) minimum solution
2|y (S,

i=1
; . (k+1) _ (k) 5E
* Welght update. Wj _ Wj o ﬂ’ Slope of the Activation Function
j obtained as partial derivative by the
Gradient Descent
 Activation function f must be differentiable /

* For sigmoid function: W =w{" + ZZ( y;~0;)0;(1—0;)X;
i
Step Size

 Stochastic Gradient Descent (update the weight immediately)



Gradient Descent for Multilayer NN

* Weights are updated in the
opposite direction of the
gradient of the loss function.

ok
W§k+1) _ ng) _ 2 -

J

1

e Gradient direction is the
direction of uphill of the error
function.

06r

* By taking the negative we are Gradlient direction
going downhill. '

0.3}

0.2F

* Hopefully to a minimum of the
error.

01r

D 1 1 1 1 1 1 1 1
-1 08 06 -04 02 o 0.2 0.4 0.6 0.8



Gradient Descent for Multilayer NN

* For output neurons, weight update
formula is the same as before (gradient

Hidden layer Hidden layer Hidden layer
descent for perceptron) k-1 k k+1
Neuron p Neuron x

* For hidden neurons: Q% Neuron i W}vO
wi = wi + A0, (1-0;) D 5w : / Q é

jed, P g y
Output neurons :6; =0,(1-0;)(t; —0;) Neuron g Neuron y
Hidden neurons : 8, =0,(1-0;) > W,
keCDj

o: output of the network
t: target value (ground truth)



Training Multilayer NN

Output

Hidden Layer

(E) Output (sigmoid)
_ 1
Y= 14+exp(—b)

?

(D) Output (linear)
b= Zf:o Bz

—

?

(C) Hidden (sigmoid)
1

Zj = \V/]

14exp(—aj)’

?

(B) Hidden (linear)
aj = ity icis Vj

?

(A) Input
Given x;, V1




Training Multilayer NN

™) Loss
=Sy —y)’
5 1
E(y, Yy ) [ (E) Output (sigmoid) ]

Y= 14+exp(—b)

?
(D) Output (linear)
b= Zf:o Bz

?

[ (C) Hidden (sigmoid)

Output

Hidden Layer

% = Trewpay W

?

(B) Hidden (linear)
aj =ity jitis Vj

 S—

How do we update these weights x
given the loss is available only at (A) Input
the output unit? [ Given z;, Vi ]




Error Backpropagation

Output

Hidden Layer

Error is computed at the output
and propagated back to the input
by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

A 2-step process

1. Forward pass - Compute the
network output

2. Backward pass — Compute the loss
function gradients and update

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Error Backpropagation - Example




Error Backpropagation - Example

b1 b2

The goal of backpropagation isto optimize the weights so that the neural network can learn how to correctly map
arbitrary inputs to outputs.



Error Backpropagation - Example

b1 b2 * initial weights
1 1 bi
* biases
* traininginputs/outputs
e activation:logistic



Example - The Forward Pass =2
/

netpy = Wy x4 + Wo * 49 + by * 1

netn; = 0.15%0.05+02%0.1+0.35% 1 = 0.3775

o b2



Example - The Forward Pass =2

netpy = Wy * 17 + Wo * 49 + by * 1

.05
netp; = 0.15x0.054+0.2%x0.14+0.35%x1 = 0.3775

outy) = —=— = 7 = 0.593269992 /

10 84

o b2



Example - The Forward Pass =2

netpy = Wy * 17 + Wo * 49 + by * 1

05
netn; = 0.15 % 0.05 + 0.2 % 0.1 + 0.35 * 1 = 0.3775

outy) = —L=— = ——7mr = 0.593269992 /

1+ hl 1 4+e—0.3
i2
e e — '
outy, = 0.596884378 A0 .99

b1.25 b2 .60



Example - The Forward Pass =2

0.5932

net,; = ws x outy + we * outys + by * 1
] hl h2 2

nety,; = 0.4 % 0.593269992 + 0.45 x 0.596884378 + 0.6 * 1 1.10

outy) = T '”.,“1 s risessezer = 0.75136507

out,o = 0.772928465

o b2



Example — Calculating the Total Error

0.5932

40 W5 0.75136507

Eiotat = Y 3(target — output)? CD\ A5 wi

E, = L(target, — out,)? = 1(0.01 — 0.75136507)2 = 0.274811083

2
Eoz = 0.023560026 /\/s w3

Eiviat = Eo1 + Eo = 0.274811083 + 0.023560026 = 0.298371109

45 wb

0.5968

0.772928465

ha

84

b1.25 b2 .60



Example - The Backward Pass €

(0.5932

. 0.75136507
How much a change in w5 affects the total error? fisoist

o b2



Example - The Backward Pass €

0.5932

OFEtotal _ 9Etotal K douty K dnety 0.75136507

ows — Oout,] = Onety ows,

o b2



Example - The Backward Pass €

OEotar _ OFtotal * Jout 1 * onet 1

Ows — Odout,] = Onety Owrs
dnet 1 dout 1 OFE ol OEj 10
output s onet dout,; — ows

wh

outo E o = Y(target o1 - out,, )?

Etota TEoi1 *Eo2

10

o

0.5932

0.75136507

0.772928465

84

b2



Example - The Backward Pass €

0.5932

OLjotar _ OFiorar o Oouter o Inetol @ 0.75136507
ows dout,| — Onety owrs

0.5968

0.772928465

how much does the total error change with respect to the output?



Example - The Backward Pass €

0.5932
OFEtotal _ 9Etotal K douty * dnet,yl @ 0.75136507
ows — Qout,y — Onety Owrs
L4, | 2 L4 | 2
Eiotar = 5(targety — outy)” + 5(target,y — outy)
0.5968

0.772928465

how much does the total error change with respect to the output?



Example - The Backward Pass €

0.5932
OF; a1 _ OE}otal dout 1 * dnetq @ (0.75136507
ows doutyy J Onety owrs

Eiotal = %(ta.-rgetgl — outy)? + %(ta.-rgetog — outy)?

0.5968

OFtotal __ 1 - ) 2—1 N TTO0IRARS
{')T.igl o 2 * E(tﬂ? gE'tDl o O’utol) * —1 + 0 0.772928465

how much does the total error change with respect to the output?



Example - The Backward Pass €

0.5932
OF; a1 _ OE}otal dout 1 * dnetq @ 0.75136507
ows doutyy J Onety owrs

Eiotal = %(ta.-rgetgl — outy)? + %(ta.-rgetog — outy)?

0.5968

aEtotai _ 1 . . 2—1 N TTO0ORARE
dout,1 2 * E(tﬂ? gE'tDl o O’utol) * _1 + 0 0.772928465

OPiowal — _(target,; — out,) = —(0.01 — 0.75136507) = 0.74136507

doutasy

how much does the total error change with respect to the output?



Example - The Backward Pass €

0.5932

OLjotar _ OFiorar o Oouter o Inetol @ 0.75136507
ows dout,| — Onety owrs

0.5968

0.772928465

how much does the output 01 change with respect to its total net input?



Example - The Backward Pass €

0.5932
OF; a1 _ OE}otal % dout 1 * dnetq <:::> (0.75136507
ows dout,| — Onety owrs
, . 1
Ou’tﬂl _ ]__I_E—ﬂetcl
0.5968

0.772928465

how much does the output 01 change with respect to its total net input?



Example - The Backward Pass €

0.5932
OLyotal — OFiotq1 f Oouto1\, Oneto @ 0.75136507
ows dout,y ) Onet,y owrs
, _ 1
Ou’tﬂl T 14e—m et 1
0.5968

Goutal — oyt (1 — outy) = 0.75136507(1 — 0.75136507) = 0.186815602 ki

onety1

how much does the output 01 change with respect to its total net input?



Example - The Backward Pass €

0.5932

OLjotar _ OFiorar o Oouter o Inetol @ 0.75136507
ows dout,| — Onety owrs

0.5968

0.772928465

how much does the total net input of 01 change with respect to w5?



Example - The Backward Pass €

0.5932
OFEtotal _ 9Etotal K douty * dnet,yl @ 0.75136507
ows — Qout,y — Onety Owrs
net, = ws * outy) + we * outps + by * 1
(0.5968

0.772928465

how much does the total net input of 01 change with respect to w5?



Example - The Backward Pass €

(0.5932
OF; 01 OFipta] . Jouter | @ 0.75136507
ows — Oout,] = Onety
net, = ws * outy) + we * outps + by * 1
Inet, 1—1 0.5968
GJEETf;l = 1 % O‘L-f.thl * ‘H.J_:g ) -+ 0 -+ 0= O’H.thl — (0.593269992 0.7729284165

how much does the total net input of 01 change with respect to w5?



Example - The Backward Pass €

0.5932

OF; a1 _ OE}otal % dout 1 * dnetq <:::> (0.75136507
ows dout,| — Onety owrs

% — (0.74136507 % 0.186815602 % 0.593269992 = 0.082167041
' 0.5968
0.772928465

Put everything together



Example - The Backward Pass €

Slope of the Activation Function obtained as partial derivative by the Gradient Descent

0.5932
OLjotar _ OFiorar o Oouter o Inetol @ 0.75136507
ows dout,| — Onety owrs
oE otal __
Setal = —(target,) — outpr) * outer (1 — oute) * outp
0.5968

0.772928465

Rewriting as delta rule



Example - The Backward Pass €

0.5932
OF; a1 _ OE; otal * dout 1 * dnetq @ (0.75136507
ows dout,| — Onety owrs
oE otal __
Setal = —(target,) — outpr) * outer (1 — oute) * outp

(0.5968
5.1 — 9EBtotar o Jouter __ OFtotal 0772928465
ol dout o onetql onet,l

Rewriting as delta rule



Example - The Backward Pass €

0.5932

OEiotal _ OEiotal K doutyl * dnety @ 0.75136507
ows — Qout,y — Onety ows,
aEtotaI - . 1 -

Siotal — (target,; — out,y) * outy,y (1 — out,y) * outp

0.5968

(S _ OFsotal " Oouty,1 _ OFiotal 0.772928465
ol — dout, dnet,1 Onetol
do1 = —(targety,y — outyy) * outyr (1 — outyy)

Rewriting as delta rule



Example - The Backward Pass €

0.5932
OF; a1 _ OE}otal % dout 1 * dnetq @ 0.75136507
ows dout,| — Onety owrs
oE otal __
Setal = —(target,) — outpr) * outer (1 — oute) * outp
0.5968

5, = 2Ltotal  Ooutor _ OFitotal 0772928465
1 =

dout, dnet,1 Onetol
do1 = —(targety,y — outyy) * outyr (1 — outyy)
—dgﬁém — DlO’ILthl

Rewriting as delta rule



Example - The Backward Pass €

0.5932

OF; a1 _ OE}otal % dout 1 * dnetq @ 0.75136507
ows dout,| — Onety owrs

Ofiotal — (74136507 * 0.186815602 * 0.593269992 = 0.082167041

Ow;
5 | 0.5968
wi = ws — 1 * % = 0.4 — 0.5 % 0.082167041 = 0.35891648 0.772923465

Apply the step size to update w5.



Example - The Backward Pass €

0.5932

OF; a1 _ OE}otal % dout 1 * dnetq @ 0.75136507
ows dout,| — Onety owrs

Ofiotal — (74136507 * 0.186815602 * 0.593269992 = 0.082167041

Jws
0.5968
wi = ws — nx 2Hel = 0.4 — 0.5 % 0.082167041 ={0.35891613™ 0.772928465
ws

Apply the step size to update w5.



Example - The Backward Pass €

0.5932

OF; a1 _ OE}otal % dout 1 * dnetq @ 0.75136507
ows dout,| — Onety owrs

Ofiotal — (74136507 * 0.186815602 * 0.593269992 = 0.082167041

Jws
0.5968
wi = ws — nx 2Hel = 0.4 — 0.5 % 0.082167041 ={0.35891613™ 0.772928465
ws

The same calculusis applied to update w6, w7 and w8



Example - The Backward Pass €

o

After that w5, w6, w7 and w8 have been updated we
continue backwards to updatewl, w2, w,3 and w4

0.5932

b2

0.75136507



Example - The Backward Pass €

9E OE Soutn Onetr. 0.75136507
Dtotal . OFtotal 4 Oouthy , Onetn _15@ .
dwq doutp dnetpq dwq

0.772928465

10 84

o b2

After that w5, w6, w7 and w8 have been updated we
continue backwards to updatewl, w2, w,3 and w4



Example - The Backward Pass €

0.5932
0.75136507

OEtotal _ OFiotal * doutpi * dnetpy

.15«iii)

i - i i i
duw doutpy dnetpq dun
L‘:.Jr.lF__,”..l_.f ULE..”,I_.{ ) U-"-'Ul_:l 1 . one -f‘_.'. 1
l:')-’r'[ l:’)n'n'ﬂf‘_,'.l e "l.".l_ I:'L'I"l
OEi i O0E, A E o
oty i - ot i dout; 1

0.772928465

10 84

b1.25 b2 .60

b1 b2



Example - The Backward Pass €

0.5932

0.75136507

OFtotal __ OFiotal +« doutpi % dnetpy

— M .H\"I
dwq doutp dnetpq w1 l"x L
e
05
— 0.772928465
L ™
|2
./
S
10 g9

o b2



Example - The Backward Pass €

0.5932
dwy  Ooutpy * Inety * w1 (i
\__/
05 01
doutpy doutpq doutp,

0.772928465

10 898

o b2



Example - The Backward Pass €

0.5932

0.75136507

OFiotal _ OFiotal douth % Inetpy N
o)

dwy;  Oout Onet w1 ..
/ hl hl IR-___/{
05 01
doutpq doutpq doutpq
/ . 0.772928465
doutpq ~ Oneto doutp, ‘ /
10 99

o b2



Example - The Backward Pass €

0.5932

m 40 W5
hi

0.75136507

OFitotal _ OFEiotal , Ooulni o Oneth1 5
Owy  Ooutp * dnetpq * dwy L) D@

/ ~
05

é)oul‘hl}mdhl T doutp

OF 1 , Onety I.ff _“\

doutpy doutp \'2 /
10

<35—01 = OPoy doutel _ () 74136507 % 0.186815602 = (0.138498562

Onet,1  Oout,l onet

0.772928465

898

o b2



Example - The Backward Pass €

0.5932
0.75136507

OFiotal _ OFtotal 4 Oouthy  Onetny N 45(n) /0 40w
dwq doutp Onetp Awn L1 hi
/ S
05 01

é)outhl‘)mdhl T doutpq

0.772928465

oF, onet,1 2
douls. % Adoutp, \IE J
10 g9
Dlal — OPal  Joulel — () 74136507 + 0.186815602 = 0.138498562
netol out,1 netol

net,; = ws * outy + we * outps + by * 1 ! b2



Example - The Backward Pass €

0.5932
w1 Aoutp Onetpq Aw1 | i
/ \_
05 01

aEtotuf — anl _|_ 8E02
douty, lA/aOtifh 1 doutpq
OFEo1 Ineto:

0F,1 __ 0F, « dout 1
dnet,1  Ooutsl onet,1

0.772928465

~
\_:_6/

898

0.74136507 x 0.186815602 = 0.138498562

b2

net,; = ws * outyy + we % outps + by x 1 ) 1

gnetol — 4y = (.40
doutp
\




Example - The Backward Pass €

0.5932
OLtotal _ 9Etotal 4 Ooutni , Inetp f “\ @ 40 W5
dwq /d'outm dnetpq duwn ‘x j

C}Etofaf dEol dEoQ

doutp, 0 m‘hl ()oufhl

C)Eol
doutp

0F,1 __ 0F, « dout 1
dnet,1  Ooutsl onet,1

0.75136507

45 wb 01

0.5968

0.138498562 x 0.40 = 0.055399425

10 898

0.74136507 x 0.186815602 = 0.138498562

0.772928465

b2

net,; = ws * outyy + we % outps + by x 1 ) 1

gnctol — 40 = (.40
doutp
\




Example - The Backward Pass €

0.5932

@ q 40 W5 0.75136507
pa_ o1

9L _ _().019049119] o

5’E¢Qtﬂg o 5’E¢gtﬂg * doutpi % onetpi N
o (i

.\\K-_d—/f

05

—&
n

duw Aoutp Onetpq Owq

: ' ' : dout
OFtotal _ _9Foq OFE g2 Same process is followed for othi

doutp _/&)ou.tm T doutp \

Aoutyq Q -

0.5968

0.772928465

10 g9
<£L;1 — 885;1 * 3"“‘?01 0.74136507 % 0.186815602 = 0.138498562
net,1 out,1 net,1
net,; = ws * outyy + we % outps + by x 1 ! 1 b2

gnetol — 4y = (.40
doutp
\




Example - The Backward Pass €

] 0932
OFiotal _ OLiotal 4 Ooutp1 o Onetp f “\ 0.75136507

40 wh

15
20 '..."E/k/\ 45 wb

OBtotal _ OB 4 OPw2 _ () 055309425 + —0 019049119 = 0.036350306

Ooutp douty doutyq
/ED W3 S0w 0.772928465
2
I 30 w4 25 wi

o b2

duw Aoutp Onetpq Owq




Example - The Backward Pass €

0.5932

0.75136507

OEtotal __ O9Eiotal +« doutpi % dnetpy
duw Aoutp Onetpq Owq |11

1
1_+_e—'”f:’f.hl

outpy =

0.772928465

10 99

o b2



Example - The Backward Pass €

0.5932
OFiotal _ OFEiotal  \Qoutni), Onetny @ - 0.75136507
dwq dout dnetpq w1 |1
1‘“‘~-..__,--*"f .
e 1 05 435 wb 01
O'U.thl — 1—{—6_'”61"111
) 0.5968

0.772928465

Goulil — outyy (1 — outy;) = 0.59326999(1 — 0.59326999) = 0.241300709

S o S
10 99

o b2



Example - The Backward Pass €

0.5932

m 40 W5
h1

= — Hou : = (i
duw Aoutp Onetpq Owq "
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Example - The Backward Pass €
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Example - The Backward Pass €
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Example - The Backward Pass €
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Backpropagation in other words

* In order to get the loss of a node 7 delta 0
(e.g. Z0), we multiply the value of its a
corresponding f’(z) by the loss of the
node it is connected to in the next
layer (delta 1), by the weight of the
link connecting both nodes.

* We do the delta calculation step at
every unit, back-propagating the loss
into the neural net, and finding out
what loss every node/unit is
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7



https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

On the Key Importance of Error Functions

* The error/loss/cost function reduces all the various good and bad
aspects of a possibly complex system down to a single number, a
scalar value, which allows candidate solutions to be compared.

* It is important, therefore, that the function faithfully represent our
design goals.

* If we choose a poor error function and obtain unsatisfactory results,
the fault is ours for badly specifying the goal of the search.



Objective Functions for NN

: A problem where you predict a real-value quantity.
Output Layer: One node with a linear activation unit.
Loss Function: Quadratic Loss (Mean Squared Error (MSE))

: Classify an example as belonging to one of K classes
Output Layer:

* One node with a sigmoid activation unit (K=2, binary cross-entropy)
* Koutput nodes in a softmax layer (K>2, categorical cross-entropy)*

Loss function: Cross-entropy (i.e. negative log likelihood)

*When K > 2 the target
variableneeds to be
one-hot encoded

J=3% y* logly)

Cross Entropy
(categorical)

J=E Forward Backward
1 dJ
dratic J = =(y — y*)* 2y — oyt
Quadratic 2(y y*) a0 y—y
. . dJ L1 L1
Cross Entropy J =y"log(y) + (1 —y")log(l—y)| — =y —+ (1 —y")——
(binary) dy Y y—1



Design Issues in ANN

* Number of nodes in input layer

* One input node per binary/continuous attribute
* k or log,k nodes for each categorical attribute with k values

* Number of nodes in output layer
* One output for binary class problem
* k or log,k nodes for k-class problem

* Number of nodes in hidden layer
* Initial weights and biases



Characteristics of ANN

Multilayer ANN are universal approximators but could suffer from overfitting if
the networkis too large.

Gradient descent may converge to local minimum.

Model building can be very time consuming, but testing can be very fast.
Can handle redundant attributes because weights are automatically learnt.
Sensitive to noise in training data.

Difficult to handle missing attributes.



Tips and Tricks of NN Training



Dataset Should Normally be Split Into

* Training set: use to update the weights. Records in this set are
repeatedly in random order. The weight update equation are applied
after a certain number of records.

* Validation set: use to decide when to stop training only by
monitoring the error and to select the best model configuration

 Test set: use to test the performance of the neural network. It should
not be used as part of the neural network development and model
selection cycle



Before Starting: Weight Initialization

* Choice of initial weight values is important as this decides starting
position in weight space. That is, how far away from global minimum
e Aim is to select weight values which produce midrange function signals
e Select weight values randomly from uniform probability distribution

* Normalize weight values so number of weighted connections per unit
produces midrange function signal

* Try different random initialization to
* Assessrobustness
* Have more opportunities to find optimal results



Two learning fashion (plus one)

e Sequentialmode (on-line, stochastic, or per-record)
* Weights updated after each record is presented
 Many weight updates, can quicker convergence but also make learning less stable

* Batch mode (off-line or per-epoch)

* Weights updated after all records are presented
* Can be very slow and lead to trapping in early local minima

* Minibatch mode (a blend of the two above)

* Weights updated after a few records (from tens to thousands) are presented
» Best of both (and good for GPU)



Convergence Criteria

* Learning is obtained by repeatedly supplying training data and
adjusting by backpropagation
e Typically 1 training set presentation =1 epoch

* We need a stopping criteria to define convergence
* Euclidean norm of the gradient vector reaches a sufficiently small value

* Absolute rate of change in the average squared error per epoch is
sufficiently small

 Validation for generalization performance: stop when generalization
performance reaches a peak



Early Stopping

* Running too many epochs may overtrain the network and result in
overfitting and perform poorly in generalization

* Keep a hold-out validation set and test accuracy after every epoch.
Maintain weights for best performing network on the validation set
and stop training when error increases beyond this

* Always let the network run for some epochs before deciding to stop
(patience parameter), then backtrack to best result

A

Validation set
error
Training set

No. of epochs

»
>



Model Selection

* Too few hidden units prevent the network from learning adequately fitting the
data and learning the concept.

* Too many hidden units leads to overfitting, unless you regularize heavily (e.g.
dropout, weight decay, weight penalties)

* Cross validation should be used to determine an appropriate number of hidden
units by using the optimal validation error to select the model with optimal
number of hidden layers and nodes.



Regularization

* Constrain the learning model to avoid overfitting and help improving
generalization.

* Add penalization terms to the loss function that punish the model for
excessive use of resources
e Limit the number of weights that is used to learn a task
* Limit the total activation of neurons in the network

E'=E(y,y") +

Hyperparameter to be R(Wp) Penalty on
chosen in model selection

R (Z) Penalty on



Common penalty terms (norms)

* l-norm [[A[]; = X5 |aj
* Parameters: R(Wy) = ||[Wy||4
e Activations: R(Z(X)) = ||Z(X)||? (Zz hidden unit activation)

* 2-norm ||A]], = \/Zu i

* Parameters: R(Wy) = ||Wy||5
* Activations: R(Z(X)) = ||Z(X)||5 (Z hidden unit activation)

* Any p-norm and more...




Dropout Regularization

Randomly disconnect units from the network during training

O~ N
o\ ——/\




Dropout Regularization

Randomly disconnect units from the network during training

o/ }\{v‘

L
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Dropout Regularization

Randomly disconnect units from the network during training




Dropout Regularization

Randomly disconnect units from the network during training

You can also drop single
connections (dropconnect)

Regulated by unit dropping
hyperparameter

Prevents unit coadaptation
Committee machine effect
Need to adapt prediction phase
Used at prediction time gives
predictions with confidence
intervals



Momentum

 Adding a term to weight update equation to store an exponentially
weight history of previous weights changes

 Reducing problems of instability while increasing the rate of convergence

* |If weight changes tend to have same signs, the momentum term
increases, and gradient decrease speed up convergence on shallow
gradient

* |f weight changes tend have opposing signs, the momentum term
decreases, and gradient descent slows to reduce oscillations
(stabilizes)

* Can help escape being trapped in local minima



Choosing the Optimization Algorithm

e Standard Stochastic Gradient Descent (SGD)

* Easyand efficient

 Difficult to pick up the best learning rate

* Unstable convergence

* Often used with momentum (exponentially weighted history of previous weights changes)

* RMSprop
» Adaptive learning rate method (reduces it using a moving average of the squared gradient)
* Fastens convergence by having quicker gradients when necessary

e Adagrad

* Like RMSprop with element-wise scaling of the gradient

* ADAM

* Like Adagrad but adds an exponentially decaying average of past gradients like momentum



Convolutional Neural Networks

* Are typically applied for the classification of images and time series
* Instead of having only “fully connected” layers adopt “convolutional

layers”
_— 32x32x3 image

/ 5x5x3 filter w
2

1 number:
the result of taking a dot product between the

filter and a small 5x2x3 chunk of the image
(i.,e. 95*5*3 = 75-dimensional dot product + bias)

] wlz +b

N=)




Recurrent Neural Network

 Are typically applied in natural language processing (NLP).

“e:\ “lﬂ/\ “I”/\ “o”
Sample

y t f t t
] .03 .25 1 .1
Key idea: RNNs have an sonmax |2 || (2| [F]] |
“internal state” that is “: -5: "’13 '7:’
/ updated as a sequence is 10 05 X 02
processed output layer | 52 30 b 01
4.1 1.2 1.1 2.2
T T T [ vy
ht o fW (|ht_1, wt) hidden layer _%31 > ?)g > _%15 W—hr; }?3
X new state /| old state input vector at o - e e
some time step I ! I T w_xn
some function 1 o 0 0
with parameters W input layer | 9 X . .
(8) 0 0 0
input chars: “p" \* ‘e" \ )"l" \}I



input
multivariate
time series

Convolution

Buttl;neck

Convolution
A

el

¥ i '|'..' ’
y—;ﬂ.
_,_.—'—'_? \
output
|| multivariate
@ time series

“Convolution
(bottleneck)

Convolutional Neural Network

s
MaxPooling

Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019 _lecture09.pdf



Fully Connected Layer

32x32x3 Image -> stretch to 3072 x 1

input activation

Wax

3072 10 x 3072 10

weights



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wax
— —> 1 (O
3072 10 x 3072 / 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth



Convolution Layer

— Filters always extend the full
32)(32)(3%896 depth of the input volume
oxox3 filter
32 £/
II Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer

_— 32x32x3 image
oxax3 filter w

2
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 9*5*3 = 75-dimensional dot product + bias)

] wlz +b

1 number:




Convolution Layer

activation map

_— 32x32x3 image

- 5x5x3 filter /
2
@>® ”

convolve (slide) over all

spatial locations
32 28
1




Convolution Layer

11011

0 1 0
1:-:1 1:-:!‘3 1:-:1 0 0 L 0 1
0,1,/1/1(0 4 Convolutio
0:-:1 Oxﬂ 1:-:1 1 1
0/|0(1|110
011({1/0(0

Convolved
Image

Feature



Convolution Layer

Kernel Channel #1

I

308

Kernel Channel #2

l

—498

+

o | o|o|of|o]o ol oo o] o o| ol o
0 156 | 155 | 156 | 158 | 158 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 | 153 | 154 [ 157 | 159 | 159 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 | 149 | 151 [ 155 | 158 | 159 160 | 162 | 166 | 169 | 170 o | 156 | 158 | 162 | 165 | 166
(1] 146 | 146 | 149 | 153 | 158 156 | 156 | 159 | 163 | 168 0 155 | 155 | 158 | 162 | 167
0 | 145 | 143 [ 143 | 148 | 158 155 | 153 | 153 | 158 | 168 o | 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)

-1 -1 1 1 0 0

0 =T 1(-1]-1

0 1 1 i 0| -1

Kernel Channel #3

164 +1=-25

l

Bias=1

|

Output

-25




Convolution Layer

— 32x32x3 Image activation maps

||t - OXOx3 filter
>O 28

convolve (slide) over all

spatial locations
32 /1 -




Convolution Layer

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

)

28

Convolution Layer

32 A

3 6

We stack these up to get a “new image” of size 28x28x6!



Convolutional Neural Network

Image Maps
Input

Fully Connected

Convolutions
Subsampling



Convolutional Neural Network

* CNN is a sequence of Conv Layers, interspersed with activation functions.

* CNN shrinks volumes spatially.
e E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...).

 Shrinking too fast is not good, doesn’t work well.

A A A

CONV, CONV, CONV,
RelU Rel U RelU

ik cq o
XIX 5x5x6
32 filters 28 filters A

10

Wl
@ |



CNN for Image Classification

Low-level
features

Mid-level
features

VGG-16 Conv1_1

High-level
features

Linearly
separable |
classifier




Stride

/X7 Input (spatially)

assume 3x3 filter

=> 5x5 output




Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!




Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

/ doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.




Stride

Output size:

(N - F) / stride + 1

eg.N=7,F=3:

F stride 1 => (7-3)/1+1=
stride 2 => (7-3)/2 + 1 =
stride 3 => (7-3)/3+1=2.33:\




e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In general, common to see CONV layers with stride
1, filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)

e F=3=>zero pad with 1 pixel

e F=5=>7zero pad with 2 pixel

e F=7=>zero pad with 3 pixel



Convolution Summary

 Accepts a volume of size W; x Hy; x Dy
» Requires four hyperparameters:
o Number of filters K,
o their spatial extent F',
o the stride S,
o the amount of zero padding P.
Produces a volume of size W5 x Hy x D, where:
o Wo=(W; —F+2P)/S+1
o Hy = (Hy, — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o D2 = J5
With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F' - D ) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.



Pooling Layer

* Makes the representations smaller and more manageable
* Operates over each activation map independently

224x224x64
112x112x64

pool

> 112
224 downsampling !

12
224




MaxPooling and AvgPoling

max pooling

20

112

30
37

average pooling



Pooling Summary

Accepts a volume of size W; x H; x D,
Requires three hyperparameters:
o their spatial extent F',
o the stride S,
Produces a volume of size Wy x Hy x D5 where:
© W2 -_—(Wl —F)/S+1
o Hy=(H, - F)/S+1
° D2 — D1
 Introduces zero parameters since it computes a fixed function of the input
» Note that it is not common to use zero-padding for Pooling layers



Example of CNN

Conv_1
Convolution
(5 x 5) kernel
valid padding

A

r ™

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
RelLU activation

—N A

Conv_2
Convolution
(5 x 5) kernel

INPUT
(28 x 28 x 1)

Max-Pooling lid baddi Max-Pooling "
(2x2) valid padding (2x2) /" dropout)
A * * o | \d
- N7 ™ e 5 )
. | ‘ 1
I 2

(8x8xn2)

nl channels

nl channels

@9
OUTPUT

n3 units



Recurrent Neural Network

Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecturel0.pdf



Types of Recurrent Neural Networks

one to one one to many many to one many to many many to many

Vanilla NN Image --> Sequence of Words --> Sequence of Words -->  Video Classification
Sequence of Words Sentiment Sequence of Words
Image Captioning Sentiment Classification Machine Translation

TS Classification



Recurrent Neural Network - RNN

Key idea: RNNs have an
‘Internal state” that is

/ updated as a sequence is
processed




Recurrent Neural Network - RNN

* We can process a sequence of vectors x by applying a recurrence

formula at every time step:

hy

new state

(.

7

Lt

)

fw

some fdnction
with parameters W

old state input vector at
some time step

y

-




Unfolded RNN

=~ v @




RNN: Computational Graph

hD—hfW—lrh1 fw—h-hz—-—
W X1 x2

Reminder: Re-use the same weight matrix at every time-step




RNN: Computational Graph: Many to Many




RNN: Computational Graph: Many to One




RNN: Example Training

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

input layer

input chars:

1
0
0
0
“H?

T loo-=o0

e ===

—:‘D-H:nc:



RNN: Example Training

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

hiy = tanh(Whphi—1 + Wepxt)

hidden layer

input layer

input chars:

w

0.
-0.
0.

O

J

1
0
0
0
‘Kh'!

20 =4
- Wo

®  oco-~0O|—»

y

wom=

n 1 Io
= |O=00|—s| ©CO.

W_hh




RNN: Example Training

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training

seqguence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars:

=
-

L4200
20O =

_

J

T oco=|—»

o

i
wom-—=

O=m00|—s| ©CO;

O oco=s0|—>

13
-3

W_hh| -




RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

1
o
0
O
e




RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

1
0
0
O
“h

® | oo=0

4




RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:

1
0
0
0
ah




RNN: Example Test

Example: S e,\ ,'/\ '/\ i

input chars: “h”

t ? r
Character-level 03 2| |m n
Softmax 00 05 68 .08
Language Model ‘84 50 03 79
Sampling -
output layer _23% 9‘% (1)3 :(1)?
4.1 1.2 1.1 2.2

Vocabulary: T T ] T w_ny
[n:9:4.0] sasenir B Ll | 1o
0.9 0.1 -0.3 0.7

At test-time sample T T T [ w_eh
characters one at a time, it é E § §
feed back to model 0 i 2 b?
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Exercises - Neural Network



Predict with a Neural Network

e Given the following NN with
— assigned weights (see figure)
— activation function f(S) = sign(S-0.2) for all nodes

» Label the test set on the right, then compute accuracy,
and precision & recall for both classes

11 12 O
0.4 E) 1
1~ ol Y 1 +l
0.0 1 -1
0.2 0O 1 1
0.4 -1 +1
+1 +1
12 0.1 93 = -
0.4 +1 +1
' -1 -1
input layer hidden layer output layer 1 1




Predict with a Neural Network - Solution

« Given the following NN with H =sign(0-4 *-1+0.1%1-0.2) =
=sign(-0.5) =-1
- assigned weights (see figure) H, = sign(0.0 * -1 +-0.4 * 1-0.2) =

= sign(-0.6) =-1
H; =sign(-0.1 *-1+0.4*1-0.2) =
- Label the test set on the right, then compute accurac = *8"03)=1

and precision & recall for both classes

— activation function f(S) = sign(S-0.2) for all nodes

Y,=sign(0.2 *-1+0.2*-1+0.3*1-0.2) =

I 2 c - sign(-0.3) =-1
0.4 E) 1 K]
11 0.1 0.2 +1 +1 +1
0.0 +1 -1 -1
0.2 O +1 -1 +1
0.4 -1 +1 +1
+1 +1 +1
12 0.1 03 = . -
0.4 +1 +1 -1
' -1 -1 -1
input layer hidden layer output layer 1 1 +1




Predict with a Neural Network

Given the neural network below (on the left), apply it to the test set provided (on the right). The weights are reported beside
each connection, while the activation function is simply £(5) = sign(5), i.e. -1 for positive values, +1 for positive ones and 0
for 5=0. For each case, show the output also of the nodes on the hidden layer.

0.4 .Hl'

01 0.3
11 ' 11 12 0
00 H2 >3 O +0 1
-0.4 '
1 0.1 +1 +0
0.1 | -1 +1
0.6 H3

input layer hidden layer output layer +1 1



Predict with a Neural Network - Solution

0.4 | H1 Answer:
. 0.3 11 |12 0
11 0.1 | |
- 0.3 il +0 -1 -1
000 H2 @)
B4 | o +1 +0 +1
12 _0.1 | -1 +1 -1
| o5 H3 +1 +1 +1
input layer hidden layer output layer +1 -1 +1
Inputl 0 1 -1 1 1
Input2 -1 0 1 1 -1
H1
H2
H3

QOutput
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