
DATA MINING 2
(Deep) Neural Networks
Riccardo Guidotti

a.a. 2023/2024

Slides edited from a set of slides titled “Introduction to
Machine Learning and Neural Networks” by Davide Bacciu

Nonlinearly Separable Data

• Since f(w,x) is a linear
combination of input variables,
decision boundary is linear.

• For nonlinearly separable
problems, the perceptron fails
because no linear hyperplane can
separate the data perfectly.

• An example of nonlinearly
separable data is the XOR
function.

x1 x2 y

0 0 -1

1 0 1

0 1 1

1 1 -1

21 xxy =

XOR Data

Why Now?

(Big) Data

GPU

Theory

A quick look on Deep Learning

AI

Machine
Learning

Repres.

Learning

Deep
Learning

Deep learning

Representation learning methods that

• allow a machine to be fed with raw data and

• to automatically discover the representations
needed for detection or classification.

Repres.

Learning

Deep
Learning

• Age
• Weight
• Income
• Children
• Likes sport
• Likes reading
• Education
• …

Raw representation Higher-level representation

• Young parent
• Fit sportsman
• High-educated reader
• Rich obese
• …

35
65

23 k€
2

0.3
0.6
high

…

0.9
0.1
0.8
0.0
…

Multiple Levels Of Abstraction

Multilayer Neural Network

• Hidden Layers: intermediary layers between
input and output layers.

• More general activation functions (sigmoid,
linear, hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type
of classification task involving nonlinear
decision surfaces.

• Perceptron is single layer.
• We can think to each hidden node as a

perceptron that tries to construct one
hyperplane, while the output node combines
the results to return the decision boundary.

n
1

n
2

n
3

n
4

n
5

x
1

x
2

Input

Layer

Hidden

Layer

Output

Layer

y

w
31

w
32

w
41

w
42

w
53

w
54

XOR Data

General Structure of ANN

Activation

function

g(S
i
)

S
i

O
i

I
1

I
2

I
3

w
i1

w
i2

w
i3

O
i

Neuron iInput Output

threshold, t

Input

Layer

Hidden

Layer

Output

Layer

x
1

x
2

x
3

x
4

x
5

y

Training ANN means learning

the weights of the neurons

Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus

multi-layered network

• Feed-forward versus recurrent network

• Various types of
activation functions (f)

)(=
i

ii XwfY

Deep Neural Networks

x1

a1

x2 x3 xM

y

a2 aD
…

…

Output

Input

Hidden Layer 1

Deep Neural Networks

x1

a1

x2 x3 xM

a2 aD
…

…
Input

Hidden Layer 1

b1

y

b2 bE
…

Output

Hidden Layer 2

Deep Neural Networks

x1

a1

x2 x3 xM

a2 aD
…

…
Input

Hidden Layer 1

b1 b2 bE
…

Hidden Layer 2

c1

y

c2 cF
…

Output

Hidden Layer 3

Actually deep
learning is way
more than having
neural networks
with a lot of layers

Backpropagation through
many layers has numerical
problems that makes
learning not-straightforward
(Gradient Vanish/Explosion)

Representation Learning

• We don’t know the
“right” levels of
abstraction of
information that is
good for the
machine

• So let the model
figure it out!

Example from Honglak Lee (NIPS 2010)

Representation Learning

Face Recognition:
• Deep Network can build up

increasingly higher levels of
abstraction

• Lines, parts, regions

Example from Honglak Lee (NIPS 2010)

Representation Learning

Example from Honglak Lee (NIPS 2010)

x1

a1

x2 x3 xM

a2 aD
…

…
Input

Hidden Layer 1

b1 b2 bE
…

Hidden Layer 2

c1

y

c2 cF
…

Output

Hidden Layer 3

Activation Functions
• A new change: modifying the nonlinearity

• The logistic is not widely used in modern ANNs

Alternative 1:
tanh

Like logistic function but shifted
to range [-1, +1]

Activation Functions

Alternative 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)

Activation Functions

Alternative 3: soft exponential linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient

Activation Functions Summary

Hyperbolic Tangent

𝑓 𝑥 = ቊ
0 𝑓𝑜𝑟 𝑥 < 0

1 𝑓𝑜𝑟 𝑥 ≥ 0
𝑓 𝑥 = 𝑥 𝑓 𝑥 =

1

1 + 𝑒−𝑥

𝑓 𝑥 =
𝑒 𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 𝑓 𝑥 = ቊ
0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥𝑗 =
𝑒𝑥𝑗

σ𝑘 𝑒𝑥𝑘

Softmax Function

Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?

• Perceptron computes error e = y-f(w,x) and updates weights accordingly

• Problem: how to determine the true value of y for hidden nodes?

• Approximate error in hidden nodes by error in the output nodes

• Problems:
• Not clear how adjustment in the hidden nodes affect overall error

• No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• Activation function f must be differentiable

• For sigmoid function:

• Stochastic Gradient Descent (update the weight immediately)

j

k

j

k

j
w

E
ww

−=+)()1(

=

−=

N

i j

ijji xwftE
1

)(
2

1

 −−+=+

i

ijiiii

k

j

k

j xoootww)1()()()1(

yi

yi

2

Slope of the Activation Function
obtained as partial derivative by the
Gradient Descent

Quadratic function from
which we can find a global

minimum solution

Sum of Squared Residuals

Step Size

Gradient Descent for Multilayer NN

• Weights are updated in the
opposite direction of the
gradient of the loss function.

• Gradient direction is the
direction of uphill of the error
function.

• By taking the negative we are
going downhill.

• Hopefully to a minimum of the
error.

j

k

j

k

j
w

E
ww

−=+)()1(

Gradient direction

w(k)

w(k+1)

Gradient Descent for Multilayer NN

w
pi

w
qi

Neuron i

Neuron p

Neuron q

Neuron x

Neuron y

w
ix

w
iy

Hidden layer

k-1

Hidden layer

k

Hidden layer

k+1

• For output neurons, weight update
formula is the same as before (gradient
descent for perceptron)

• For hidden neurons:

+

−=

−−=

−+=

j

i

k

jkkjjj

jjjjj

j

piijjii

k

pi

k

pi

woo

otoo

xwooww

)1(:neurons Hidden

))(1(:neuronsOutput

)1()()1(

o: output of the network
t: target value (ground truth)

Training Multilayer NN

x1

z1

x2 x3
x
M

y

z2 zD
…

…

Output

Input

Hidden Layer

Training Multilayer NN

x1

z1

x2 x3
x
M

y

z2 zD
…

…

Output

Input

Hidden Layer

E(𝑦, 𝑦∗)

How do we update these weights
given the loss is available only at
the output unit?

E

Error Backpropagation

x1

z1

x2 x3
x
M

y

z2 zD
…

…

Output

Input

Hidden Layer

E(𝑦, 𝑦∗)

Error is computed at the output
and propagated back to the input
by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the

network output
2. Backward pass – Compute the loss

function gradients and update

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Error Backpropagation - Example

Error Backpropagation - Example

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map
arbitrary inputs to outputs.

Error Backpropagation - Example

• initial weights
• biases
• training inputs/outputs
• activation: logistic

Example - The Forward Pass →

Example - The Forward Pass →

Example - The Forward Pass →

Example - The Forward Pass →

Example – Calculating the Total Error

Example - The Backward Pass

How much a change in w5 affects the total error?

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

how much does the total error change with respect to the output?

Example - The Backward Pass

how much does the total error change with respect to the output?

Example - The Backward Pass

how much does the total error change with respect to the output?

Example - The Backward Pass

how much does the total error change with respect to the output?

Example - The Backward Pass

how much does the output o1 change with respect to its total net input?

Example - The Backward Pass

how much does the output o1 change with respect to its total net input?

Example - The Backward Pass

how much does the output o1 change with respect to its total net input?

Example - The Backward Pass

how much does the total net input of o1 change with respect to w5?

Example - The Backward Pass

how much does the total net input of o1 change with respect to w5?

Example - The Backward Pass

how much does the total net input of o1 change with respect to w5?

Example - The Backward Pass

Put everything together

Example - The Backward Pass

Rewriting as delta rule

Slope of the Activation Function obtained as partial derivative by the Gradient Descent

Example - The Backward Pass

Rewriting as delta rule

Example - The Backward Pass

Rewriting as delta rule

Example - The Backward Pass

Rewriting as delta rule

Example - The Backward Pass

Apply the step size to update w5.

Example - The Backward Pass

Apply the step size to update w5.

Example - The Backward Pass

The same calculus is applied to update w6, w7 and w8

Example - The Backward Pass

After that w5, w6, w7 and w8 have been updated we
continue backwards to update w1, w2, w,3 and w4

Example - The Backward Pass

After that w5, w6, w7 and w8 have been updated we
continue backwards to update w1, w2, w,3 and w4

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Same process is followed for

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Example - The Backward Pass

Backpropagation in other words

• In order to get the loss of a node
(e.g. Z0), we multiply the value of its
corresponding f’(z) by the loss of the
node it is connected to in the next
layer (delta_1), by the weight of the
link connecting both nodes.

• We do the delta calculation step at
every unit, back-propagating the loss
into the neural net, and finding out
what loss every node/unit is
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad
aspects of a possibly complex system down to a single number, a
scalar value, which allows candidate solutions to be compared.

• It is important, therefore, that the function faithfully represent our
design goals.

• If we choose a poor error function and obtain unsatisfactory results,
the fault is ours for badly specifying the goal of the search.

Objective Functions for NN

• Regression: A problem where you predict a real-value quantity.
• Output Layer: One node with a linear activation unit.

• Loss Function: Quadratic Loss (Mean Squared Error (MSE))

• Classification: Classify an example as belonging to one of K classes
• Output Layer:

• One node with a sigmoid activation unit (K=2, binary cross-entropy)

• K output nodes in a softmax layer (K>2, categorical cross-entropy)*

• Loss function: Cross-entropy (i.e. negative log likelihood)

J = E

*When K > 2 the target
variable needs to be
one-hot encoded

J = ∑ y* log(y)

(binary)

Cross Entropy
(categorical)

Design Issues in ANN

• Number of nodes in input layer
• One input node per binary/continuous attribute

• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem

• k or log2k nodes for k-class problem

• Number of nodes in hidden layer

• Initial weights and biases

Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if
the network is too large.

• Gradient descent may converge to local minimum.

• Model building can be very time consuming, but testing can be very fast.

• Can handle redundant attributes because weights are automatically learnt.

• Sensitive to noise in training data.

• Difficult to handle missing attributes.

Tips and Tricks of NN Training

Dataset Should Normally be Split Into

• Training set: use to update the weights. Records in this set are
repeatedly in random order. The weight update equation are applied
after a certain number of records.

• Validation set: use to decide when to stop training only by
monitoring the error and to select the best model configuration

• Test set: use to test the performance of the neural network. It should
not be used as part of the neural network development and model
selection cycle

Before Starting: Weight Initialization

• Choice of initial weight values is important as this decides starting
position in weight space. That is, how far away from global minimum
• Aim is to select weight values which produce midrange function signals

• Select weight values randomly from uniform probability distribution

• Normalize weight values so number of weighted connections per unit
produces midrange function signal

• Try different random initialization to
• Assess robustness

• Have more opportunities to find optimal results

Two learning fashion (plus one)

• Sequential mode (on-line, stochastic, or per-record)
• Weights updated after each record is presented

• Many weight updates, can quicker convergence but also make learning less stable

• Batch mode (off-line or per-epoch)
• Weights updated after all records are presented

• Can be very slow and lead to trapping in early local minima

• Minibatch mode (a blend of the two above)
• Weights updated after a few records (from tens to thousands) are presented

• Best of both (and good for GPU)

Convergence Criteria

• Learning is obtained by repeatedly supplying training data and
adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a sufficiently small value

• Absolute rate of change in the average squared error per epoch is
sufficiently small

• Validation for generalization performance: stop when generalization
performance reaches a peak

Early Stopping

• Running too many epochs may overtrain the network and result in
overfitting and perform poorly in generalization

• Keep a hold-out validation set and test accuracy after every epoch.
Maintain weights for best performing network on the validation set
and stop training when error increases beyond this

• Always let the network run for some epochs before deciding to stop
(patience parameter), then backtrack to best result

No. of epochs

error

Training set

Validation set

Model Selection

• Too few hidden units prevent the network from learning adequately fitting the
data and learning the concept.

• Too many hidden units leads to overfitting, unless you regularize heavily (e.g.
dropout, weight decay, weight penalties)

• Cross validation should be used to determine an appropriate number of hidden
units by using the optimal validation error to select the model with optimal
number of hidden layers and nodes.

Regularization

• Constrain the learning model to avoid overfitting and help improving
generalization.

• Add penalization terms to the loss function that punish the model for
excessive use of resources
• Limit the number of weights that is used to learn a task

• Limit the total activation of neurons in the network

𝐸′ = 𝐸 𝑦, 𝑦∗ + 𝜆𝑅(⋅)

𝑅(𝑊𝜃)

𝑅(𝑍)

Hyperparameter to be
chosen in model selection

Penalty on parameters

Penalty on activations

Common penalty terms (norms)

• 1-norm ||𝐴||1 = σ𝑖𝑗 |𝑎𝑖𝑗|
• Parameters: 𝑅 𝑊𝜃 = ||𝑊𝜃||1

2

• Activations: 𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||1
2 (Z hidden unit activation)

• 2-norm ||𝐴||2 = σ𝑖𝑗 𝑎𝑖𝑗
2

• Parameters: 𝑅 𝑊𝜃 = ||𝑊𝜃||2
2

• Activations: 𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||2
2 (Z hidden unit activation)

• Any p-norm and more…

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization
Randomly disconnect units from the network during training

• Regulated by unit dropping
hyperparameter

• Prevents unit coadaptation
• Committee machine effect
• Need to adapt prediction phase
• Used at prediction time gives

predictions with confidence
intervals

You can also drop single
connections (dropconnect)

… …

x

x

x

x

x

Momentum

• Adding a term to weight update equation to store an exponentially
weight history of previous weights changes

• Reducing problems of instability while increasing the rate of convergence

• If weight changes tend to have same signs, the momentum term
increases, and gradient decrease speed up convergence on shallow
gradient

• If weight changes tend have opposing signs, the momentum term
decreases, and gradient descent slows to reduce oscillations
(stabilizes)

• Can help escape being trapped in local minima

Choosing the Optimization Algorithm

• Standard Stochastic Gradient Descent (SGD)
• Easy and efficient
• Difficult to pick up the best learning rate
• Unstable convergence
• Often used with momentum (exponentially weighted history of previous weights changes)

• RMSprop
• Adaptive learning rate method (reduces it using a moving average of the squared gradient)
• Fastens convergence by having quicker gradients when necessary

• Adagrad
• Like RMSprop with element-wise scaling of the gradient

• ADAM
• Like Adagrad but adds an exponentially decaying average of past gradients like momentum

Convolutional Neural Networks

• Are typically applied for the classification of images and time series

• Instead of having only “fully connected” layers adopt “convolutional
layers”

Recurrent Neural Network

• Are typically applied in natural language processing (NLP).

Convolutional Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf

Fully Connected Layer

Fully Connected Layer

Convolution Layer

Convolution Layer
Filters always extend the full
depth of the input volume

Convolution Layer

Convolution Layer

Convolution Layer

1 0 1

0 1 0

1 0 1

Convolution
Kernel

Convolution Layer

Convolution Layer

Convolution Layer

Convolutional Neural Network

Convolutional Neural Network

• CNN is a sequence of Conv Layers, interspersed with activation functions.

• CNN shrinks volumes spatially.

• E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...).

• Shrinking too fast is not good, doesn’t work well.

CNN for Image Classification

Stride

Stride

Stride

Stride

Padding

7x7 output!

In general, common to see CONV layers with stride
1, filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)
• F = 3 => zero pad with 1 pixel
• F = 5 => zero pad with 2 pixel
• F = 7 => zero pad with 3 pixel

Convolution Summary

Pooling Layer

• Makes the representations smaller and more manageable

• Operates over each activation map independently

MaxPooling and AvgPoling

Pooling Summary

Example of CNN

Recurrent Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf

Types of Recurrent Neural Networks

Vanilla NN Image -->
Sequence of Words
Image Captioning

Sequence of Words -->
Sentiment

Sentiment Classification
TS Classification

Sequence of Words -->
Sequence of Words

Machine Translation

Video Classification

Recurrent Neural Network - RNN

Recurrent Neural Network - RNN

• We can process a sequence of vectors x by applying a recurrence
formula at every time step:

Unfolded RNN

RNN: Computational Graph

Reminder: Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Example Training

RNN: Example Training

RNN: Example Training

RNN: Example Test

RNN: Example Test

RNN: Example Test

RNN: Example Test

References

• Artificial Neural Network. Chapter 5.4 and
5.5. Introduction to Data Mining.

• Hands-on Machine Learning with Scikit-
Learn, Keras & Tensorflow. A practical
handbook to start wrestling with Machine
Learning models (2nd ed).

• Deep Learning. Ian Goodfellow, Yoshua
Bengio, and Aaron Courville. The
reference book for deep learning models.

Exercises - Neural Network

Predict with a Neural Network

Predict with a Neural Network - Solution
H1 = sign(0.4 * -1 + 0.1 * 1 -0.2) =
 = sign(-0.5) = -1
H2 = sign(0.0 * -1 + -0.4 * 1 -0.2) =
 = sign(-0.6) = -1
H3 = sign(-0.1 * -1 + 0.4 * 1 -0.2) =
 = sign(0.3) = 1

Y1 = sign(0.2 * -1 + 0.2* -1 + 0.3 * 1 -0.2) =
 = sign(-0.3) = -1

Predict with a Neural Network

Predict with a Neural Network - Solution

	Slide 1: DATA MINING 2 (Deep) Neural Networks
	Slide 2: Nonlinearly Separable Data
	Slide 3: Why Now?
	Slide 4: A quick look on Deep Learning
	Slide 5: Deep learning
	Slide 6: Multiple Levels Of Abstraction
	Slide 7: Multilayer Neural Network
	Slide 8: General Structure of ANN
	Slide 9: Artificial Neural Networks (ANN)
	Slide 10: Deep Neural Networks
	Slide 11: Deep Neural Networks
	Slide 12: Deep Neural Networks
	Slide 13: Representation Learning
	Slide 14: Representation Learning
	Slide 15: Representation Learning
	Slide 16: Activation Functions
	Slide 17: Activation Functions
	Slide 18: Activation Functions
	Slide 19: Activation Functions Summary
	Slide 20: Learning Multi-layer Neural Network
	Slide 21: Gradient Descent for Multilayer NN
	Slide 22: Gradient Descent for Multilayer NN
	Slide 23: Gradient Descent for Multilayer NN
	Slide 24: Training Multilayer NN
	Slide 25: Training Multilayer NN
	Slide 26: Error Backpropagation
	Slide 27: Error Backpropagation - Example
	Slide 28: Error Backpropagation - Example
	Slide 29: Error Backpropagation - Example
	Slide 30: Example - The Forward Pass
	Slide 31: Example - The Forward Pass
	Slide 32: Example - The Forward Pass
	Slide 33: Example - The Forward Pass
	Slide 34: Example – Calculating the Total Error
	Slide 35: Example - The Backward Pass
	Slide 36: Example - The Backward Pass
	Slide 37: Example - The Backward Pass
	Slide 38: Example - The Backward Pass
	Slide 39: Example - The Backward Pass
	Slide 40: Example - The Backward Pass
	Slide 41: Example - The Backward Pass
	Slide 42: Example - The Backward Pass
	Slide 43: Example - The Backward Pass
	Slide 44: Example - The Backward Pass
	Slide 45: Example - The Backward Pass
	Slide 46: Example - The Backward Pass
	Slide 47: Example - The Backward Pass
	Slide 48: Example - The Backward Pass
	Slide 49: Example - The Backward Pass
	Slide 50: Example - The Backward Pass
	Slide 51: Example - The Backward Pass
	Slide 52: Example - The Backward Pass
	Slide 53: Example - The Backward Pass
	Slide 54: Example - The Backward Pass
	Slide 55: Example - The Backward Pass
	Slide 56: Example - The Backward Pass
	Slide 57: Example - The Backward Pass
	Slide 58: Example - The Backward Pass
	Slide 59: Example - The Backward Pass
	Slide 60: Example - The Backward Pass
	Slide 61: Example - The Backward Pass
	Slide 62: Example - The Backward Pass
	Slide 63: Example - The Backward Pass
	Slide 64: Example - The Backward Pass
	Slide 65: Example - The Backward Pass
	Slide 66: Example - The Backward Pass
	Slide 67: Example - The Backward Pass
	Slide 68: Example - The Backward Pass
	Slide 69: Example - The Backward Pass
	Slide 70: Example - The Backward Pass
	Slide 71: Example - The Backward Pass
	Slide 72: Example - The Backward Pass
	Slide 73: Example - The Backward Pass
	Slide 74: Backpropagation in other words
	Slide 75: On the Key Importance of Error Functions
	Slide 76: Objective Functions for NN
	Slide 77: Design Issues in ANN
	Slide 78: Characteristics of ANN
	Slide 79: Tips and Tricks of NN Training
	Slide 80: Dataset Should Normally be Split Into
	Slide 81: Before Starting: Weight Initialization
	Slide 82: Two learning fashion (plus one)
	Slide 84: Convergence Criteria
	Slide 85: Early Stopping
	Slide 86: Model Selection
	Slide 87: Regularization
	Slide 88: Common penalty terms (norms)
	Slide 89: Dropout Regularization
	Slide 90: Dropout Regularization
	Slide 91: Dropout Regularization
	Slide 92: Dropout Regularization
	Slide 93: Momentum
	Slide 94: Choosing the Optimization Algorithm
	Slide 95: Convolutional Neural Networks
	Slide 96: Recurrent Neural Network
	Slide 97: Convolutional Neural Network
	Slide 98: Fully Connected Layer
	Slide 99: Fully Connected Layer
	Slide 100: Convolution Layer
	Slide 101: Convolution Layer
	Slide 102: Convolution Layer
	Slide 103: Convolution Layer
	Slide 104: Convolution Layer
	Slide 105: Convolution Layer
	Slide 106: Convolution Layer
	Slide 107: Convolution Layer
	Slide 108: Convolutional Neural Network
	Slide 109: Convolutional Neural Network
	Slide 110: CNN for Image Classification
	Slide 111: Stride
	Slide 112: Stride
	Slide 113: Stride
	Slide 114: Stride
	Slide 115: Padding
	Slide 116: Convolution Summary
	Slide 117: Pooling Layer
	Slide 118: MaxPooling and AvgPoling
	Slide 119: Pooling Summary
	Slide 120: Example of CNN
	Slide 121: Recurrent Neural Network
	Slide 122: Types of Recurrent Neural Networks
	Slide 123: Recurrent Neural Network - RNN
	Slide 124: Recurrent Neural Network - RNN
	Slide 125: Unfolded RNN
	Slide 126: RNN: Computational Graph
	Slide 127: RNN: Computational Graph: Many to Many
	Slide 128: RNN: Computational Graph: Many to One
	Slide 129: RNN: Example Training
	Slide 130: RNN: Example Training
	Slide 131: RNN: Example Training
	Slide 132: RNN: Example Test
	Slide 133: RNN: Example Test
	Slide 134: RNN: Example Test
	Slide 135: RNN: Example Test
	Slide 136: References
	Slide 137: Exercises - Neural Network
	Slide 138: Predict with a Neural Network
	Slide 139: Predict with a Neural Network - Solution
	Slide 140: Predict with a Neural Network
	Slide 141: Predict with a Neural Network - Solution

