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Nonlinearly Separable Data

• Since f(w,x) is a linear 
combination of input variables, 
decision boundary is linear.

• For nonlinearly separable 
problems, the perceptron fails 
because no linear hyperplane can 
separate the data perfectly.

• An example of nonlinearly 
separable data is the XOR 
function.
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Why Now?

(Big) Data

GPU

Theory



A quick look on Deep Learning
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Deep learning

Representation learning methods that

• allow a machine to be fed with raw data and

• to automatically discover the representations 
needed for detection or classification.

Repres.

Learning

Deep 
Learning

• Age
• Weight
• Income
• Children
• Likes sport
• Likes reading
• Education
• …

Raw representation Higher-level representation

• Young parent
• Fit sportsman
• High-educated reader
• Rich obese
• …
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Multiple Levels Of Abstraction



Multilayer Neural Network

• Hidden Layers: intermediary layers between 
input and output layers.

• More general activation functions (sigmoid, 
linear, hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type 
of classification task involving nonlinear 
decision surfaces.

• Perceptron is single layer.
• We can think to each hidden node  as a 

perceptron that tries to construct one 
hyperplane, while the output node combines 
the results to return the decision boundary.
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General Structure of ANN

Activation

function

g(S
i 
)

S
i

O
i

I
1

I
2

I
3

w
i1

w
i2

w
i3

O
i

Neuron iInput Output

threshold, t

Input

Layer

Hidden

Layer

Output

Layer

x
1

x
2

x
3

x
4

x
5

y

Training ANN means learning 

the weights of the neurons



Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus 

multi-layered network

• Feed-forward versus recurrent network

• Various types of 
activation functions (f)
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Deep Neural Networks
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Deep Neural Networks
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Deep Neural Networks
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Actually deep 
learning is way 
more than having 
neural networks 
with a lot of layers

Backpropagation through 
many layers has numerical 
problems that makes 
learning not-straightforward 
(Gradient Vanish/Explosion)



Representation Learning

• We don’t know the 
“right” levels of 
abstraction of 
information that is 
good for the 
machine 

• So let the model 
figure it out!

Example from Honglak Lee (NIPS 2010)



Representation Learning

Face Recognition:
• Deep Network can build up 

increasingly higher levels of 
abstraction

• Lines, parts, regions

Example from Honglak Lee (NIPS 2010)



Representation Learning

Example from Honglak Lee (NIPS 2010)
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Activation Functions
• A new change: modifying the nonlinearity

• The logistic is not widely used in modern ANNs

Alternative 1: 
tanh

Like logistic function but shifted 
to range [-1, +1]



Activation Functions

Alternative 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient 
when you pass zero)



Activation Functions

Alternative 3: soft exponential linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient 



Activation Functions Summary

Hyperbolic Tangent

𝑓 𝑥 = ቊ
0 𝑓𝑜𝑟 𝑥 < 0

1 𝑓𝑜𝑟 𝑥 ≥ 0
𝑓 𝑥 = 𝑥 𝑓 𝑥 =

1

1 + 𝑒−𝑥

𝑓 𝑥 =
𝑒 𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 𝑓 𝑥 = ቊ
0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥𝑗 =
𝑒𝑥𝑗

σ𝑘 𝑒𝑥𝑘

Softmax Function



Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?

• Perceptron computes error e = y-f(w,x) and updates weights accordingly

• Problem: how to determine the true value of y for hidden nodes?

• Approximate error in hidden nodes by error in the output nodes

• Problems: 
• Not clear how adjustment in the hidden nodes affect overall error 

• No guarantee of convergence to optimal solution



Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• Activation function f must be differentiable

• For sigmoid function:

• Stochastic Gradient Descent (update the weight immediately)
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Slope of the Activation Function 
obtained as partial derivative by the 
Gradient Descent

Quadratic function from 
which we can find a global 

minimum solution

Sum of Squared Residuals

Step Size



Gradient Descent for Multilayer NN

• Weights are updated in the 
opposite direction of the 
gradient of the loss function.

• Gradient direction is the 
direction of uphill of the error 
function.

• By taking the negative we are 
going downhill.

• Hopefully to a minimum of the 
error.

j

k

j

k

j
w

E
ww




−=+ )()1(

Gradient direction

w(k)

w(k+1)



Gradient Descent for Multilayer NN
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• For output neurons, weight update 
formula is the same as before (gradient 
descent for perceptron)

• For hidden neurons:
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Training Multilayer NN
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Training Multilayer NN
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E(𝑦, 𝑦∗)

How do we update these weights 
given the loss is available only at 
the output unit?
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Error Backpropagation
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Error is computed at the output 
and propagated back to the input 
by chain rule to compute the 
contribution of each weight 
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the 

network output
2. Backward pass – Compute the loss 

function gradients and update

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Error Backpropagation - Example



Error Backpropagation - Example

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map 
arbitrary inputs to outputs.



Error Backpropagation - Example

• initial weights
• biases 
• training inputs/outputs
• activation: logistic



Example - The Forward Pass →



Example - The Forward Pass →



Example - The Forward Pass →



Example - The Forward Pass →



Example – Calculating the Total Error



Example - The Backward Pass 

How much a change in w5 affects the total error?



Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 

how much does the total error change with respect to the output?



Example - The Backward Pass 

how much does the total error change with respect to the output?



Example - The Backward Pass 

how much does the total error change with respect to the output?



Example - The Backward Pass 

how much does the total error change with respect to the output?



Example - The Backward Pass 

how much does the output o1 change with respect to its total net input?



Example - The Backward Pass 

how much does the output o1 change with respect to its total net input?



Example - The Backward Pass 

how much does the output o1 change with respect to its total net input?



Example - The Backward Pass 

how much does the total net input of o1 change with respect to w5?



Example - The Backward Pass 

how much does the total net input of o1 change with respect to w5?



Example - The Backward Pass 

how much does the total net input of o1 change with respect to w5?



Example - The Backward Pass 

Put everything together



Example - The Backward Pass 

Rewriting as delta rule

Slope of the Activation Function obtained as partial derivative by the Gradient Descent



Example - The Backward Pass 

Rewriting as delta rule



Example - The Backward Pass 

Rewriting as delta rule



Example - The Backward Pass 

Rewriting as delta rule



Example - The Backward Pass 

Apply the step size to update w5.



Example - The Backward Pass 

Apply the step size to update w5.



Example - The Backward Pass 

The same calculus is applied to update w6, w7 and w8



Example - The Backward Pass 

After that w5, w6, w7 and w8 have been updated we 
continue backwards to update w1, w2, w,3 and w4



Example - The Backward Pass 

After that w5, w6, w7 and w8 have been updated we 
continue backwards to update w1, w2, w,3 and w4



Example - The Backward Pass 
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Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 

Same process is followed for 



Example - The Backward Pass 
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Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 



Example - The Backward Pass 



Backpropagation in other words

• In order to get the loss of a node 
(e.g. Z0), we multiply the value of its 
corresponding f’(z) by the loss of the 
node it is connected to in the next 
layer (delta_1), by the weight of the 
link connecting both nodes.

• We do the delta calculation step at 
every unit, back-propagating the loss 
into the neural net, and finding out 
what loss every node/unit is 
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7


On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad 
aspects of a possibly complex system down to a single number, a 
scalar value, which allows candidate solutions to be compared.

• It is important, therefore, that the function faithfully represent our 
design goals. 

• If we choose a poor error function and obtain unsatisfactory results, 
the fault is ours for badly specifying the goal of the search.



Objective Functions for NN

• Regression: A problem where you predict a real-value quantity.
• Output Layer: One node with a linear activation unit.

• Loss Function: Quadratic Loss (Mean Squared Error (MSE))

• Classification: Classify an example as belonging to one of K classes
• Output Layer: 

• One node with a sigmoid activation unit (K=2, binary cross-entropy)

• K output nodes in a softmax layer (K>2, categorical cross-entropy)*

• Loss function: Cross-entropy (i.e. negative log likelihood)

J = E

*When K > 2 the target 
variable needs to be 
one-hot encoded

J = ∑ y* log(y)

(binary)

Cross Entropy
(categorical)



Design Issues in ANN

• Number of nodes in input layer 
• One input node per binary/continuous attribute

• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem

• k or log2k nodes for k-class problem

• Number of nodes in hidden layer

• Initial weights and biases



Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if 
the network is too large.

• Gradient descent may converge to local minimum.

• Model building can be very time consuming, but testing can be very fast. 

• Can handle redundant attributes because weights are automatically learnt.

• Sensitive to noise in training data.

• Difficult to handle missing attributes.



Tips and Tricks of NN Training



Dataset Should Normally be Split Into

• Training set: use to update the weights. Records in this set are 
repeatedly in random order. The weight update equation are applied 
after a certain number of records.

• Validation set: use to decide when to stop training only by 
monitoring the error and to select the best model configuration

• Test set: use to test the performance of the neural network. It should 
not be used as part of the neural network development and model 
selection cycle



Before Starting: Weight Initialization

• Choice of initial weight values is important as this decides starting 
position in weight space. That is, how far away from global minimum
• Aim is to select weight values which produce midrange function signals 

• Select weight values randomly from uniform probability distribution

• Normalize weight values so number of weighted connections per unit 
produces midrange function signal

• Try different random initialization to
• Assess robustness

• Have more opportunities to find optimal results



Two learning fashion (plus one)

• Sequential mode  (on-line, stochastic, or per-record) 
• Weights updated after each record is presented

• Many weight updates, can quicker convergence but also make learning less stable

• Batch mode (off-line or per-epoch) 
• Weights updated after all records are presented

• Can be very slow and lead to trapping in early local minima

• Minibatch mode (a blend of the two above) 
• Weights updated after a few records (from tens to thousands) are presented 

• Best of both (and good for GPU)



Convergence Criteria

• Learning is obtained by repeatedly supplying training data and 
adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a sufficiently small value

• Absolute rate of change in the average squared error per epoch is 
sufficiently small 

• Validation for generalization performance: stop when generalization 
performance reaches a peak



Early Stopping

• Running too many epochs may overtrain the network and result in 
overfitting and perform poorly in generalization

• Keep a hold-out validation set and test accuracy after every epoch. 
Maintain weights for best performing network on the validation set 
and stop training when error increases beyond this

• Always let the network run for some epochs before deciding to stop 
(patience parameter), then backtrack to best result

No. of epochs

error

Training set

Validation set



Model Selection

• Too few hidden units prevent the network from learning adequately fitting the 
data and learning the concept. 

• Too many hidden units leads to overfitting, unless you regularize heavily (e.g. 
dropout, weight decay, weight penalties)

• Cross validation should be used to determine an appropriate number of hidden 
units by using the optimal validation error to select the model with optimal 
number of hidden layers and nodes.



Regularization

• Constrain the learning model to avoid overfitting and help improving 
generalization.

• Add penalization terms to the loss function that punish the model for 
excessive use of resources
• Limit the number of weights that is used to learn a task

• Limit the total activation of neurons in the network  

𝐸′ = 𝐸 𝑦, 𝑦∗ + 𝜆𝑅(⋅) 

𝑅(𝑊𝜃) 

𝑅(𝑍) 

Hyperparameter to be 
chosen in model selection

Penalty on parameters

Penalty on activations



Common penalty terms (norms)

• 1-norm ||𝐴||1 = σ𝑖𝑗 |𝑎𝑖𝑗|
• Parameters: 𝑅 𝑊𝜃 = ||𝑊𝜃||1

2

• Activations:  𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||1
2 (Z hidden unit activation)

• 2-norm ||𝐴||2 = σ𝑖𝑗 𝑎𝑖𝑗
2

• Parameters: 𝑅 𝑊𝜃 = ||𝑊𝜃||2
2

• Activations:  𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||2
2 (Z hidden unit activation)

• Any p-norm and more…



Dropout Regularization

… …

Randomly disconnect units from the network during training



Dropout Regularization

… …

Randomly disconnect units from the network during training



Dropout Regularization

… …

Randomly disconnect units from the network during training



Dropout Regularization
Randomly disconnect units from the network during training

• Regulated by unit dropping 
hyperparameter

• Prevents unit coadaptation
• Committee machine effect
• Need to adapt prediction phase
• Used at prediction time gives 

predictions with confidence 
intervals

You can also drop single 
connections (dropconnect)

… …

x

x

x

x

x



Momentum

• Adding a term to weight update equation to store an exponentially 
weight history of previous weights changes

• Reducing problems of instability while increasing the rate of convergence

• If weight changes tend to have same signs, the momentum term 
increases, and gradient decrease speed up convergence on shallow 
gradient

• If weight changes tend have opposing signs, the momentum term 
decreases, and gradient descent slows to reduce oscillations 
(stabilizes) 

• Can help escape being trapped in local minima



Choosing the Optimization Algorithm

• Standard Stochastic Gradient Descent (SGD)
• Easy and efficient
• Difficult to pick up the best learning rate
• Unstable convergence
• Often used with momentum (exponentially weighted history of previous weights changes)

• RMSprop
• Adaptive learning rate method (reduces it using a moving average of the squared gradient)
• Fastens convergence by having quicker gradients when necessary

• Adagrad
• Like RMSprop with element-wise scaling of the gradient

• ADAM
• Like Adagrad but adds an exponentially decaying average of past gradients like momentum



Convolutional Neural Networks

• Are typically applied for the classification of images and time series

• Instead of having only “fully connected” layers adopt “convolutional 
layers”



Recurrent Neural Network

• Are typically applied in natural language processing (NLP).



Convolutional Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf



Fully Connected Layer



Fully Connected Layer



Convolution Layer



Convolution Layer
Filters always extend the full
depth of the input volume



Convolution Layer



Convolution Layer



Convolution Layer

1 0 1

0 1 0

1 0 1

Convolution
Kernel



Convolution Layer



Convolution Layer



Convolution Layer



Convolutional Neural Network



Convolutional Neural Network

• CNN is a sequence of Conv Layers, interspersed with activation functions.

• CNN shrinks volumes spatially. 

• E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...). 

• Shrinking too fast is not good, doesn’t work well.



CNN for Image Classification



Stride



Stride



Stride



Stride



Padding

7x7 output!

In general, common to see CONV layers with stride 
1, filters of size FxF, and zero-padding with (F-1)/2. 
(will preserve size spatially)
• F = 3 => zero pad with 1 pixel
• F = 5 => zero pad with 2 pixel
• F = 7 => zero pad with 3 pixel



Convolution Summary



Pooling Layer

• Makes the representations smaller and more manageable

• Operates over each activation map independently



MaxPooling and AvgPoling



Pooling Summary



Example of CNN



Recurrent Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf



Types of Recurrent Neural Networks

Vanilla NN Image --> 
Sequence of Words
Image Captioning

Sequence of Words -->
Sentiment

Sentiment Classification
TS Classification

Sequence of Words --> 
Sequence of Words

Machine Translation

Video Classification



Recurrent Neural Network - RNN



Recurrent Neural Network - RNN

• We can process a sequence of vectors x by applying a recurrence 
formula at every time step:



Unfolded RNN



RNN: Computational Graph

Reminder: Re-use the same weight matrix at every time-step



RNN: Computational Graph: Many to Many



RNN: Computational Graph: Many to One



RNN: Example Training



RNN: Example Training



RNN: Example Training



RNN: Example Test



RNN: Example Test



RNN: Example Test



RNN: Example Test



References

• Artificial Neural Network. Chapter 5.4 and 
5.5. Introduction to Data Mining.

• Hands-on Machine Learning with Scikit-
Learn, Keras & Tensorflow. A practical 
handbook to start wrestling with Machine 
Learning models (2nd ed).

• Deep Learning. Ian Goodfellow, Yoshua
Bengio, and Aaron Courville. The 
reference book for deep learning models.



Exercises - Neural Network



Predict with a Neural Network



Predict with a Neural Network - Solution
H1 = sign(0.4 * -1 + 0.1 * 1 -0.2) = 
     = sign(-0.5) = -1
H2 = sign(0.0 * -1 + -0.4 * 1 -0.2) = 
     = sign(-0.6) = -1
H3 = sign(-0.1 * -1 + 0.4 * 1 -0.2) = 
     = sign(0.3) = 1

Y1 = sign(0.2 * -1 + 0.2* -1 + 0.3 * 1 -0.2) = 
     = sign(-0.3) = -1



Predict with a Neural Network



Predict with a Neural Network - Solution
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