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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?
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Why Finding Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

* Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs) and
detecting future patterns that are dissimilar to all typical shapes.



How do we find Motifs?

* Given a predefined motif length m, a brute-force method searches for
motifs from all possible comparisons of subsequences.

* It is obviously very slow and computationally expensive.

* The most referenced algorithm is based on a hot idea from
bioinformatics, random projection* and the fact that SAX allows use
to lower bound discrete representations of TSs.

e J Buhler and M Tompa. Finding motifs using random projections. In
RECOMB'01. 2001.



Example of the Motif Discovery Algorithm
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Example of the Motif Discovery Algorithm

* A mask {1,2} was randomly chosen, so the values in columns {1,2}
were used to project matrix into buckets.

* Collisions are recorded by incrementing the appropriate location in
the collision matrix.
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Example of the Motif Discovery Algorithm

* A mask {2,4} was randomly chosen, so the values in columns {2,4}

were used to project matrix into buckets.

* Once again, collisions are recorded by incrementing the appropriate
lision matrix.
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Example of the Motif Discovery Algorithm

* At the end of the random perturbations
consider the motifs observing the matrix in
decreasing order of occurrences.

* For instance, this matrix indicates a high
chance of having a motif staring at positions 1
and 58.

* The problem with this approach is that it is
highly dependent from the approximation
technique adopted.
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Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.



Matrix Profile

m We can use sliding window of length m to

extract all subsequences of length m.
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Matrix Profile

m We can then compute the pairwise
distance among these subsequences.
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Matrix Profile

* For each subsequence we keep only the distance with the closest

nearest nelgh bor. set of all set of corresponding
subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.

time
series, T

matrix
profile, P

The matrix profile value at location i is the
distance between | and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.

time
series, T

matrix
profile
index, |

It turns out that
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The matrix profile value at location i is the
distance between

and its nearest neighbor

‘s nearest neighbor is



Matrix Profile

 The MP index allows to find the nearest neighbor to any subsequence in constant time.

* Note that the pointers in the matrix profile index are not necessarily symmetric.
* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.

SN

i
.‘]14W&“JVW]’W’LVTYL""‘(“{JI/‘J‘\"W"‘WN/ l\‘ j

\

NOA R f Ao
1 [ J | f N N Y \ / i ‘
) | pobirsiadbusdbosdsetonhont || | et

A f
IU kfmtw'%vwf»"‘»'M’vwfwwwwWNwwwawww»,w«w’

0 500 1000 1500 2000 2500 3000

1373 1375 | 1389 368 378 378 234 2000 2001 | 2002 2003 2003




How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the

/ original data, in this region.
We call these Time Series
Discords

W | | | | J
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Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We then put the distances in a vector based on the position of the subsequences
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We them put the distances in a vector based on the position of the subsequences
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Let say
the third value in the distance vector is O

happen to be the third subsequences, therefore




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

|
m
inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to
these two vectors
3 2 5 3 4 5 1 2 9 8 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to

these two vectors
3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

After we finish update matrix profile for the first iteration




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

In the second iteration, we randomly select another subsequence ' and it happens to be the 12t
subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

Once again, we compute the distance between | and every subsequences of T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min 1 The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min i The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 1 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4 2 2

We repeat the two steps (distance computation and update) until we have used every subsequences. The
different indexes are analyzed in parallel and the distance is calculated using the Mueen’s Algorithm for
Similarity Search (MASS) https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(| T|2log(|T]))




Motif Discovery From Matrix Profile

time
series, T
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Local minimums are corresponding to motifs

matrix
profile, P



Motif Discovery From Matrix Profile
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Top-K Motifs
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 We need a parameter R.
1 <R < (small number, say 3)
* Let's make R = 2 for now.

* We begin by finding the nearest
pair of points, the motif pair....

* This the pair of subsequences
corresponding to lowest pair of
values in the MP
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Top-K Motifs

* We find the nearest pair of
° ¢ points are D1 apart.

&N * Let's draw a circle, D1 times R,
&/ o around both points.

S * Any points that are within either
o o )

o of these circles, are added to
o this motif, in this case just one.

* The Top-1 motif has three
members, it is done.

0 500 1000 Yo 1500



Top-K Motifs

¢ ¢ * Now lets find the Top-2 motif.
® ® We find the nearest pair of

¢ points, excluding anything from
&Y the top motif.

® /x o * The nearest pair of points are
-

. \&J D2 apart.

e Lets draw a circle D2 times R,
o around both points.

o ® * Any points that are within
¢ O either of these circles, is added
o to this motif, in this case there
are two for a total of four items
o o ° in the Top-2 Motif



Top-K Motifs

* We are done with the Top-2 Motif

* Note that we will always have:
*D;<D,<D;... D¢

 When to stop? (what is K?)

* We could use MDL or a predefined K.



Anomaly Discovery From Matrix Profile
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/ * We need a parameter E of
@ subsegeunces to exclude in
the vicinity of the anomaly.

o~ * Lets make E =2 for now.

* We begin by finding the
subsequence with the
highest distance in the MP

* This corresponding to
biggest anomaly
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Top-K Anomaly
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* Then we look for the E
closest subsequences to
the anomaly.

e We remove all of them.

* We can use a predefined K
or the MDL to stop.
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Matrix Profile I: All Pairs Similarity Joins for Time Series:
A Unifying View that Includes Motifs, Discords and Shapelets
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increase of temporal data availability (Silva et L., 2018), hundreds of TSC algorithms have been
proposed since 2015 (Bagnall et al., 2017). Due to their natural temporal ordering, time series data
< are present in almost every task that requires some sort of human cognitive process (Lingkvist
et al., 2014). In fact, any classification problem, using data that is registered taking into account
some notion of ordering, can be cast as a TSC problem (Cristian Borges Gamboa, 2017). Time series
are encountered in many real-world applications ranging from electronic health records (Rajkomar
et al., 2018) and human activity recognition (Nweke et al., 2018; Wang et al., 2018) to acoustic scene
classification (Nwe et al., 2017) and cyber-security (Susto et al., 2018). In addition, the diversity of
the datasets’ types in the UCR/UEA archive (Chen et al., 2015b; Bagnall et al., 2017) (the largest
repository of time series datasets) shows the different applications of the TSC problem.
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Exercises Matrix Profile



Matrix Profile

Given the TSx =<2,1,3,4,7,5,3,4,7,5>

1. Build the Matrix Profile for x with m=4 using the Manhattan distance
as distance function between subsequences.

Draw the Matrix Profile
3. Identify the motifs with distance equals 0 and length equals to m
4. Which is a correct value for m that would have retrieved more motifs

with distance equals to 07
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Matrix Profile

*x=<2,1,3,4,7,5,3,4,7,5>
*mp=<7,40,8,8,4,0>




Matrix Profile

*x=<2,1,3,4,/7,5,3,4,7,5>

*mp=<7,40,8,8,4,0>
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Matrix Profile

ex=<2,1,3,4,7/,5,3,4,7,5>
*mp=<4,40,0,5,40,0>
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Matrix Profile

ex=<2,1,3,4,/,53,4,7,5>
*mp=<4,40,0,5,40,0>
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Matrix Profile

Given the TS x =<5,5,3,5,5,1>

1. Build the Matrix Profile for x with m=2 using the Manahttan
distance as distance function between subsequences.

Draw the Matrix Profile
3. Identify the motifs with distance equals 0 and length equals to m
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