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Clustering

* Clustering: Grouping of objects into different sets, or more precisely,
the partitioning of a data set into subsets (clusters), so that the data
in each subset (ideally) share some common trait - often proximity
according to some defined distance measure

e Common distance functions:
* Euclidean distance, Manhattan distance, ...

* This kind of distance functions are suitable for numerical data
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Boolean and Categorical Attributes

* A boolean attribute corresponding to a single item in a transaction, if
that item appears, the boolean attribute is set to ‘1’ or ‘O’ otherwise.

* A categorical attribute may have several values, each value can be
treated as an item and represented by a boolean attribute.



Market Basket Data

* A transaction represents one customer, and each transaction contains set
of items purchased by the customer.

* Clustering customers reveals customers with similar buying patterns
putting them into the same cluster.

* |t is useful for
e Characterizing different customer groups
* Targeted Marketing
* Predict buying patterns of new customers based on profile

* A market basket database: A scenario where attributes of data points are
non-numeric, transaction viewed as records with boolean attributes
corresponding to a single item (TRUE if transaction contain item, FALSE
otherwise).

* Boolean attributes are special case of Categorical attributes.



Shortcomings of Traditional Clustering

* For categorical data we:
* Define new criterion for neighbors and/or similarity
* Define the ordering criterion

* Consider the following 4 market basket transactions

T1={1, 2, 3, 4} P1=(1,1, 1, 1)
T2={1, 2. 4} P2=(1.1,0, 1)
T3= {3} — P3=(0, 0, 1, 0)
Ta= {a} P4=(0.0,0, 1)

* using Euclidean distance to measure the closeness between all pairs of points, we
find that d(P1,P2) is the smallest distance: it is equal to 1



Shortcomings of Traditional Clustering

* If we use a hierarchical algorithm then we merge P1 and P2
and get a new cluster (P12) with (1, 1, 0.5, 1) as a centroid

* Then, using Euclidean distance again, we find:

d(p12,p3)= V3.25

d(pl2,p4)=

\2.25
d(p3,p4)= \2

* So, we should merge P3 and P4 since the distance between

them is the shortest.

 However, T3 and T4 don't have even a single common item.

* So, using distance metrics as similarity measure for
categorical data is not appropriate.

P1=(1,1,1,1)
P2=(1,1,0,1)
P3=(0,0, 1, 0)
P4=(0,0,0, 1)



Clustering Algorithms for Categorical/Transactional Data

* K-Modes
* ROCK

* CLOPE

* TX-Means



K-Modes
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Minimise P(W.Q) =Y > w;;d(X;. O))
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subject to XA: w, =1, 1<i<n
zluz,-,l;e{o,l}, | =i 1l El<k
e X={X,,..., X, }is the dataset of objects.
* X;=[x4,..., X, ] is an object i.e., a vector of m categorical attributes
* Wis a matrix n x k, with w;, equal to 1 if X; belongs to Cluster /, 0 otherwise.

*Q={Qq,..., Q}isthe set of representative objects (mode) for the k clusters.

* d( X;, Q) is a distance function for objects in the data



K-Modes: Distance

e K-Means as distance uses e K-Modes as distance uses the
Euclidean distance number of mismatches between
the attributes of two objects.

d(X,Y)= ") (x,-y,) (X, V)= 80, )
i=1 =

0 (x; =y))

o(x;,y;) = { 1 (x; #y))



K-Modes: Mode

* K-Modes uses the mode as representative object of a cluster

* Given the set of objects in the cluster C,the mode is get computing
the max frequency for each attribute

n

[, = e 1 X)) =2




K-Modes: Algorithm

1. Randomly select the initial objects as modes

2. Scan of the data to assign each object to the
closer cluster identified by the mode

3. Re-compute the mode of each cluster

Repeat the steps 2 and 3 until no object
changes the assighed cluster



ROCK: RObust Clustering using linK

* ROCK is a hierarchical algorithm for clustering transactional data
(market basket databases)

e ROCK uses links to cluster instead of the classical distance notion

* ROCK uses the notion of neighborhood between pair of objects to
identify the number of links between two objects



ROCK: The Neighbors Concept

* It captures a notion of similarity
 Aand B are neighbors if sim(A, B) 20

e ROCK uses the Jaccard coefficient
* sim(A,B)=|AnB|/|AUB |

A={1,3,4,7
11.3.4.7) ) sim(A,B)=%=%=O-5

B={1,2,4,7,8}



ROCK: Links

* A link defines the number of common neighbors
between two objects:

* link(A, B) = |neighbor(A) n neighbor(B) |

* Higher values of link(A, B) means higher probability A B R
that A and B belong to the same cluster B>R>A

* Similarity is local while link is capturing global . Lt
information A->R->A
& B->R->B

* A point is considered a neighbor of itself G0

* There is a link from each neighbor of the “root”
point back to itself through the root

* Therefore, if a point has n neighbors, then n? links
are due to it.



ROCK: Example

* Data consisting of 6 Attributes: {Book, Water, Sun, Sand, Swimming, Reading}
{Book}

{Water, Sun, Sand, Swimming}
{Water, Sun, Sand, Reading}

{Reading, Sand} A B C D
A 1 0) 0] 0)
B i :
* Resulting Jaccard Coefficient Matrix c : 06 1 08
* Set Threshold = 0.2. Neighbors: = O 0= 05 1
* N(A)={A}; N(B)={B,C,D}
* N(C)={B,C,D}, N(D) = {B,C,D} A B C D
A 1 0) 0) 0)
B 0] 3 3 3
* Number of Links Table C 0 3 3 3
D 0) 3 3 3

* Link (B, C) = |{B,C,D}| =3

Resulting Clusters after applying ROCK: {A}, {B,C,D}



ROCK — Criterion Function

k
Maximize Ei=>) nix Y

1-6 j— :

f(t9)=1— =1 Pq,PrE€Ci
+60
— . ;

Dividing by the number of expected links Where nc-.ligizgl;vejrgggieorflpoin tsin C
between pairs of objects in the cluster C; we k’is the number of clusters :
avoid that objects with a low number of links 0 is the similarity threshold
are assigned all to the same cluster

This goodness measure helps to identify the best pair of clusters to be
merged during each step of ROCK.

i + ) PO — IO 1T

Number of expected cross-links between two clusters
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ROCK: Clustering Algorithm

Input:
A set S of data points
Number of k clusters to be found
The similarity threshold

Output:
Groups of clustered data

The ROCK algorithm is divided into three major parts:
1. Draw a random sample from the data set

2. Perform a hierarchical agglomerative clustering algorithm
3. Label data



ROCK: Clustering Algorithm

Draw a random sample from the data set:
 Sampling is used to ensure scalability to very large data sets

* The initial sample is used to form clusters, then the remaining data on
dataset is assigned to these clusters



ROCK: Clustering Algorithm

Perform a hierarchical agglomerative clustering algorithm:

* ROCK performs the following steps which are common to all
hierarchical agglomerative clustering algorithms, but with different
definition to the similarity measures:

1. Places each single data point into a separate cluster

2. Compute the similarity measure for all pairs of clusters

3. Merge the two clusters with the highest similarity (goodness measure)
4. Verify a stop condition. If it is not met then go to step 2.



ROCK: Clustering Algorithm

Label data
* Finally, the remaining data points are assighed to the clusters.

* This is done by selecting a random sample L; from each cluster C,
then we assign each point p to the cluster for which it has the
strongest linkage with L.



ROCK Summary

Input: dataset, number of clusters.

Draw a random sample from the data set

Places each data point into a separate cluster

Compute the similarity measure for all pairs of clusters
Merge the two clusters with the highest similarity
Verify a stop condition. If it is not met then go to step 2.

A A A

Assign not used points to clusters using linkage similarity with
respect to selected samples from each cluster



CLOPE: Clustering with sLOPE

* Transactional clustering efficient for high dimensional data
* Uses a global criterion function that tries to increase the intra-cluster overlapping of
transaction items by increasing the height-to-width ratio of the cluster histogram.
Example: 5 transactions {a,b} {a,b,c} {a,c,d} {d,e} {d,e,f}

D(C) = set of items in C
Clustering 1 S(€)= Y| Clustering 2

L,EC

W(C)=|D(C)
| | H(C)=S(C)/W(C)
abcd de f

occurrence

A

H=2.0, W=4 H=1.67, W=3 Vo0 =8 H=1.6, W=5
2 e ol e e e - - -
{ab, abc, acd} {de, def} H=1.6 ! [] > {ab, abc} {acd, de, def}
deac f item
H/W=0.5 H/W=0.55 L;V\%—’ H/W=0.55 H/W=0.32

Higher H/W means higher item overlapping



CLOPE: Criterion Function

* For evaluating the goodness of a clustering the gradient of a cluster is
* G(C)=H(C)/W(C)=S(C)/W(C)?

Repulsion.
When ris large,

transactions within the k

same cluster must Z S(Cz) <|C
share a large portion of W(C )r i
common items. C) =l - [




CLOPE: Algorithm

/* Phrase 1 - Initialization */

: while not end of the database file

2:  read the next transaction (¢, unknown);

put ¢ in an existing cluster or a new cluster C;
that maximize profit;

4:  write (¢, i) back to database;

U

W

/* Phrase 2 - Iteration */
5: repeat
6 rewind the database file;
7:  moved = false;
8 while not end of the database file
9: read (z, i);
10: move ¢ to an existing cluster or new cluster C;
that maximize profit;
I if C; = C, then
12 write (¢, j);
{15 moved = true;
14:until not moved,




CLOPE Summary

Input: dataset, repulsion, maximum number of clusters

e Phase 1

1. For each transaction, add it to a new cluster or to an existing one
such that the profit is maximized

 Phase 2

1. For each transaction, try to move it to another cluster and do it if
this maximizes the profit

2. Repeat 1. until all the transactions remain in the same cluster



TX-MEANS

* A parameter-free clustering algorithm able to efficiently partitioning
transactional data automatically

* Suitable for the case where clustering must be applied on a massive
number of different datasets
* E.g.: when a large set of users need to be analyzed individually and each of
them has generated a long history of transactions
* TX-Means automatically estimates the number of clusters

* TX-Means provides the representative transaction of each cluster,
which summarizes the pattern captured by that cluster.



How It Works 1/3
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How It Works 2/3




How It Works 3/3

e Clusters




TX-Means Algorithm

TXMEANS (B: baskets):

r <-- GETREPR(B); reprs:;f(‘;?tlve

Q.push(B,r);

While there is a cluster B,r to split

bisecting
schema

in Q:
* Remove common items from Bj; é////////////

e« Bl, B2, rl, r2 <-- BISECTBASKET (B);
1f BIC(B1,B2,rl,r2) > BIC(B,r) Then:<— |

stopping
criterion

e add B1,B2,rl,r2 to the clusters to split 0Q;

* Else
* add B,r to the clustering result C;

Return C;




Bisecting Schema

BISECTBASKET (B: baskets):
* SSE <-- inf;
* rl,r2 <-- select random initial baskets in B as representative;

* While True:
* Cl,C2 <-- assign baskets in B with respect to rl,r2;
* rl new <-- GETREPR(Cl); r2 new <-- GETREPR(C2);
* SSE new <-- SSE(C1l,C2,rl new,r2 new);

e If SSE new >= SSE Then: overlap-based
- distance function:
* Return C1,C2,rl,r2;

Jaccard coefficient
* rl,r2 <-- rl new,rZ2 new;



Get Representative Baskets

GETREPR(B: baskets): overlap-based distance

function (Jaccard

e T <-- not common items in B; coefficient)

* r <—-- common items in B;

* While I is not empty:
* Add to r the items wi maximum frequency in I;

* Calculate the distance between r and the baskets in B;
 If the distance no longer decreases Then:

* Return r;
* Else

* remove from I the items with maximum frequency;

* Return r;



Dealing with Big Datasets

* Clustering of a big individual transactional dataset B.
* TX-Means is scalable thanks to the following sampling strategy.

 Sampling strategy:
 Random selection of a subset S of the baskets in B;

e Run of TX-Means on the subset S and obtain clusters C and
representative baskets R;

* Assign the remaining baskets B/ S to the clusters C using a nearest
neighbor approach with respect to the representative baskets R.
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X-means: Extending K-means with
Efficient Estimation of the Number of Clusters
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Abstract

Despite its popularity for general clustering,
K-means suffers three major shorteming
i scaks poorly computationally, the mum.
ber of clusters K has to be suppliad by the
user, and the search is prone to lacal min-
ima. We propose solutions for the first two
problems, and a partial remedy for the third,
Building on prior work for algorithmic accd-
cation that is not based an approximation,
we introduce a new algorithm that eficient]
searches the space of cluster locations and
number of clusters to optimize the Bayesian
Information Criterion (BIC) or the Akaike
Information Criterion (AIC) measure, The
imnovations indude two new ways of exploit-
ing cached suficient statistics and a new very
efficient test that in one K-means sweep se-
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lutions for these problems. Speed is greatly improved
by embedding the dataset in a multiresolution kd4ree
and storing suffient statistics at its nodes, A careful
ysis of the centroid locations allows for geomet-
“praofs” about the Voronoi boundaries, and (un-
like all of (Deng & Moore, 1995; Zhang et al,, 1995:
Moare, 1999)) there is absolutely no_approximation
anywhere in the computation, An additional gmmet-
ric computation, blacklisting, maintains a list of just
those centroids that need to be considered for a given
region (Pelleg & Moare, 2000). Blacklisting s not only
extremy fast but also scales very well with the num-
ber of centroids, allowing tractable 10, 000-means algo-
rithms, This fast algorithm is used as a building -block
in X-means: a new algorithm that quickly estimates
t goes inta action after cach run of K-means, mak-
ing local decisions about which subset of the current
centraids should split themselves in order to better fit
the data. The splitting decision is done by computing

lects the most peomising subset of dasses for i
rofinement. This gives rise to a fast, statis- he
tically founded algorithm that outputs both

the number of dasses and their parameters.
Experiments show this technique reveals the
true number of classes in the underlying dis-
tribution, and that it is much faster than re-
peatedly using accelerated K-means for dit-
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1. Introduction be
i

K-means (Duda & Hart, 1973; Bishop, 1995) has long ~ w!
been the workhorse for metric data, lts attractive- m
ness lies in its simplicity, and in its locabminimum
convergence properties. 1t has, however, three main
shartcomings. One, it is slow and scales poorly with
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ABSTRACT

Mining a larg ing human

‘making sense of Sadividualdata i the key enabler of a new wave
of personalized knowledge-based services. In this paper we focus.
on the problem of clustering individual transactional data for a
Iarge mass of users. Transactional data is a very pervasive kind of

from other users. This requires ths
included in any data mining methc
the necessity to automatically cap!
'vidual behaviors. Due to the poten!
(e.g users in nowadays massive sy
generally unfeasible to determine in

information that is collected by several services, often involving ~ Parameter configuration for each of

huge pools of users. We propose txmeans, a parameter-free clus-  focus data mining methods that adju

tering i partitioning data

in letely y. Tmeans is the case

where clustering must be applied on a massive number of different ‘we focus on the pi

datasets, for instance when a large set of users need to be analyzed “°ml clustering for a large numbe:
collection of transactions, transacti

individually and each of them has generated a long history of trans-
actions. A

f the
of different personal datasets, and suggests that txmeans outper-
forms existing methods in terms of quality and efficiency. Finally,
we present a personal cart assistant application based on txmeans.

1 INTRODUCTION
‘The most disruptive effect of our always-connected society is data,

‘covering groups of homogeneous t
common items (30]. In the state ¢
transactional clustering require eitt
that is not automatic, or an extren
that does not scale to large user b
repeatedly applying the existing pr
lions of different datasets - which i
large population of users - is simp
problem. i.e. the separate individua

are becoming observable, measurable, quantifiable and, predictable.

year. An avalanche of information that, for the most part, consists
of transactions (or baskets). Le.,a special kind of categorical data
in the form of sets of event data, such as the items purchased in
a shopping cart, the web pages visited in a browsing session, the
songs listened in a time period, the clinical events in a patient’s
history. Such kind of data may be key enablers of a new wave of
knowledge-based services, and of new scientific discoveries.
Several application contexts involve the analysis of a large num-
ber of datasets, each one characterized by different properties. For
instance, this is the case of individual transactional data — retail
sales, web sessions, credit card transactions, etc. - where each
user produces historical data that need to be analyzed separately

datasets, as mass clusi

‘The problem to design parameter
been addressed in the context of non
like xmeans [22]. which are perfe
of the clustering problems. Unfort
‘applicable to transactional data. To
only existing parameter-free transac
(5. 7). Nevertheless, they are based
generally not efficient and overestim
In addition, they do not provide repr
items that characterize the transact

In this paper we propose txmean:
ing method providing a viable soluti
a massive number of different dat:
strategy similar to xmeans [22], bul
finding clusters in the specific cont
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ABSTRACT
This pepr st the prolem of categorical daa chussi,
especiall transactional chanacterized by  high

of increasing the height-to-width ratio of the cluster histogram, we
develop a novel algorithm — CLOPE, which is very fast and
scalable, while being quite effective. We demonstrate the
performance of our algorithm on two real world datasets, and
compare CLOPE with the state-of-art algorithms.

Keywords
data mining, clustering, categorical data, scalability

1. INTRODUCTION

Clustering is an important ue that groups
together similar data. records [12. [y n nmmy ‘more
attention has been put on clustering cat mudm[mxss7
13], where records are made up of ibutes.

The Lurgeem (13 agoitin grovs g caegorical dabases
by iterative optimization of a global criterion function.
eniterion function is based on the notion of large item that '.be
item in a cluster having occurrence rates larger than a user-defined

on top of pair-wise similarities. This global approach makes
Largeltem very suitable for clustering large categorical databases.
In this paper, we propose  novel global criterion function that
tries to increase the intra-cluster overlapping of transaction items.
by increasing the height-to-width ratio of the cluster histogram.
Moreover, we generalize the idca by introducing to
ool i ightase of the . Dffrst scber of clusters
an bo btined by varying his st Experments show that
our algorithm runs an Lacgliom, with chusiering
quality quite close to Moﬁ.hc I'(OCK algorithm [7].
To gtin some busc des tebind ur igockt, s ke o sanl
basket database wi transactions {(apple, bam].
(ﬂPP'ﬁ banana, cake), (HPP'L rdlt duh), (dllh- m). (dm.

Tnmmmldlu,hkzmkammmwhwd
can be thought of a special type of categorical data having boolean
value, with all the possible items as attributes. Fast and accurate
clustering of transactional data has many potcatial applications in
retai industry, e-commerce intelligenee, etc

However, fast and effective clustering of transactional databases is
extemly diffck becaus of b bigh dinensionaly, spersiy,
and huge volumes often characterizing these databascs. Dis

based like k-means (11] sad CLARANS [m are
licive o bow dimepsoral onericl ds

on high dimensional categorical data,

unsatisfactory (7). Hi uuthx‘l clustering et e ROCK 01 (7
have been demonstrated 10 be quite effective in categorical data
clustering, but they are naturally inefficient in processing large
databases.
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Jishy}. For Y,

ab, etc. For this small database, we want to mmme m

two clstring (1) {ab, abe,acd), (de def}) nd @) b, nbc].

{acd, de, def}}. For each cluster, we count the cccurrence of

dinine e, and ten obiain he heght (1) and wadth (I of he

cluster, For example, cluster (ab, ab, acd) has the occurrences of

b, 2, 1 1, with K20 and o4, Figure | shows these
ally as mm'um, with items sorted in reverse

ud«ufﬂ\aroucum y for the sake of easier visual

i
abed def abe deacf
H0 W~ HeL6), W3 HeLET W3 Hel, WS

{ab, abc, acd) {de.defy  {(ab.abc) {acd, de, def}
clustering (1) clustering (2)
Figure 1. Histograms of the two clusterings.

‘We judge the qualities of these two clusterings geometrically, by

analyzing the heights and widths of the clusters. Leaving out the

two identical histograms for cluster (de, def} and cluster {ab, abe},
the other two histograms are of different quality. stogram
for cluster {ab, ab, acd} has only 4 distinct items for 8 blocks

(H=2.0, HIW=0.5), but the one for cluster {acd, de, def} has 5, for




Exercises Transactional Clustering



Rock — Exercise 1

Using Jaccard coefficient as a similarity measure, we obtain the following similarity table

Suppose we have four verses contains some subjects, as follows:

P1={judgment, faith, prayer, fair}

P2={ fasting, faith, prayer}

P3={fair, fasting, faith}

P4={ fasting, prayer, pilgrimage}

the similarity threshold = 0.3, and number of required cluster is 2.

P1 P2 P3 P4
P1 i} 0.4 04 | 0.17
P2 1 0.5 0.5
P3 1 0.2
P4 1




Rock — Exercise 1

* Since we have a similarity
threshold equal to 0.3, then we
derive the adjacency table: 2

* By multiplying the adjacency table
with itself, we derive the following
table which shows the number of
links (or common neighbors): 2>

P2

P3

P4

P1 il 0.4 0.4 0.17
P2 1 0.5 0.5
P3 1 0.2
P4 1
Pl P2 P3 P4
Pl 1 1 1 0
P2 1 1 1
P3 1 0
P4 1
P1 P2 P3 P4
P1 3 £ 1
P2 - 3 2
P3 - 1

P4




Rock — Exercise 1

* we Compute the goodness measure for all link[B,Pj]
. . . g(F, P]) = 142/(0) _142/(0) 142/(0)
adjacent points ,assuming that (n+m) —n —m

e ()= 1-60 /1+60 =1-0.3 /1+0.3 =0.54

Parr | Goodness measure
P1F? 1.35
* we obtain the following table=> P1,P3 135
P1P4 0.45
RS 1.35
e we have an equal goodness measure for P2,P4 0.90
merging ((P1,P2), (P2,P3), (P3,P1)) P3 P4 0.45




Rock — Exercise 1

* Now, we start the hierarchical algorithm by merging, say P1 and P2.

* A new cluster (let’s call it C(P1,P2)) is formed.

* It should be noted that for some other hierarchical clustering
techniques, we will not start the clustering process by merging P1 and
P2, since Sim(P1,P2) = 0.4,which is not the highest. But, ROCK uses

the number of links as the similarity measure rather than distance.



Rock — Exercise 1

* Now, after merging P1 and P2, we CPLP2)| P3 | P4
have only three clusters. The C(Pl}fz) . 3+3 | 2+1
following table shows the number of 51 - =
common neighbors for these
clusters:—>

Pair | Goodness measure

* Then we can obtain the following C(P1,P2),P3 1.31

goodness measures for all adjacent C(P1,P2), P4 0.66

clusters:=> P3P "




Rock — Exercise 1

* Since the number of required clusters is 2, then we finish the
clustering algorithm by merging C(P1,P2) and P3, obtaining a new
cluster C(P1,P2,P3) which contains {P1,P2,P3} leaving P4 alone in a

separate cluster.



Rock — Exercise 2

* Given the following
similarity matrix find the
clustering result knowing
that the similarity threshold
= 0.4, and number of
required cluster is 2.

pl p2 p3 p4 pS
pl 1 0.7 0.2 0.5 0.5
p2 1 0.6 0.8 0.1
p3 1 0.5 0.4
p4d 1 0.3




Rock — Exercise 2 — Solution

pl p2 p3 p4 P>
pl 1 0.7 0.2 0.5 0.5
p2 1 0.6 0.8 0.1
p3 1 0.5 0.4
p4d 1 0.3
P> 1

pl p2 p3 p4 P>
pl 1 1 0 1 1
P2 1 1 1 1 0
p3 0 1 1 1 1
p4 1 1 1 1 0
p5 1 0 1 0 1




Rock — Exercise 2 — Solution

p5




Rock — Exercise 2 — Solution

*f(6)= 1-0 /1+0 =1-0.4 /1+0.4 = 0.43 link[ P, P]

g(F, j) = (n+m)1+2f(9) _ 2O _ 121 (6)

*1+2f(6)=1.86

pl p2 p3 p4 p5 pl p2 p3 p4 p5
pl - 3 3 3 2 pl - 1.84 | 1.84 | 1.84 | 1.22
p2 3 4 2 p2 1.84 | 2.45 | 1.22
p3 3 2 p3 1.84 | 1.22
P4 2 p4 1.84
o) p5




Rock — Exercise 2 — Solution

* f(O)= 1-6 /1+60 =1-0.4 /1+0.4 =0.43

*1+2f(6)=1.86

link[, P,

g(F, j) = (n+m)1+2f(9) _ 2O _ 121 (6)

pl p2 p3 p4 P> pl p2pd p3 p5 pl p2p4d p3 p5
p1 3 3 2 pl - 6 3 2 pl - 1.94 | 1.84 | 1.22
p2 3 | 4 ]2 204 6 4 2p4 1.94 | 1.29
" ; A p2p p2p : :
iy - » p3 2 p3 1.22
p5 PS5 P>

* Final Clusters: p1234 p5




Clope Exercise 1

Splitl: i
* 4 transactions: abc, abc, ab, a Z S(Cz') X‘C‘
e a:4,b:3, c:2->sol: $=9; W=3; H=9/3=3; H/W=1 —~ )y '
« 3 transactions: def, de, de Profit, (C) = =] . l
+ d:3,e:3,f: 1 ->sol: S=7; W=3; H=7/3=2.33; H/W=0.77 Z‘Cl'
Split2: i=1

* 2 transactions: abcd, ab

* a:2,b:2,c:1,d:1->sol:S=6; W=4; H=6/4=1.5; H/W=0.37
* 2 transactions: ec, ec

e e:2,c:2->s0l:S=4; W=2; H=4/2=2; H/W=1

Splitl is the best clustering considering r=2
Profit(Splitl) = (9/32* 4 + 7/32* 3) /7 =0.90
Profit(Split2) = (6/42 * 2 + 4/22* 2) /4=0.16



