Distance-based outlier detection

- Given the dataset of the right, find the outliers according to the basic DB (ε, π)-Outliers method with:
$-\varepsilon=1.5$
- $\pi=0.28=4$ points (including the reference point we are analyzing)

Density-based outlier detection

- Compute LOF score for points $5,1,10$ of the dataset:
- $\mathrm{K}=3$
- The reference point is not considered
- Simplify: use distance in place of reachability distance (reach_dist(p,o))

$$
\operatorname{lrd}_{k}(p)=1 /\left(\frac{\sum_{o \in k N N(p)} \operatorname{reach}^{-\operatorname{dist}_{k}(p, o)}}{\operatorname{Card}(k N N(p))}\right)
$$

$$
L O F_{k}(p)=\frac{\sum_{o \in k N N(p)} \frac{\operatorname{lrd}_{k}(o)}{\operatorname{Card}(k N N(p))}}{\operatorname{CaN}(p)}
$$

$\mathrm{NN}_{3}(5)=(2),(8),(14)$
$\operatorname{Lrd}(5)=1 /((1+1.41+1.41) / 3)=0.78$
$\rightarrow \operatorname{Lrd}(2)=1 /((1+1+2.23+2.23) / 4)=0.62$
$\operatorname{Ird}_{k}(p)=1\left(\frac{\sum_{o \in \operatorname{NNN}(p)}^{\text {rach }^{(d i s t}(p, o)}(k N N(p))}{\operatorname{Crrd}}\right)$
$\rightarrow \operatorname{Lrd}(8)=1 /((1+1.41+2) / 3)=0.68$
$\rightarrow \operatorname{Lrd}(14)=1 /((2+1.41+2.23) / 3)=0.53$
$\operatorname{LOF}(5)=((\operatorname{Lrd}(2)+\operatorname{Lrd}(8)+\operatorname{Lrd}(14)) / 3) / \operatorname{Lrd}(5)=0.61 / 0.78=\mathbf{0 . 7 8}$

$$
L O F_{k}(p)=\frac{\sum_{o \in \operatorname{kNN}(p)} \frac{\operatorname{lrd}_{k}(o)}{\operatorname{Card}(k N N(p))}}{\operatorname{Crg}_{k}(p)}
$$

Notice that (2) has 4 points in its $3-\mathrm{NN}$ set, because (14) and (10) have the same distance. In case of ties we take all the points having that same distance.

$\mathrm{NN}_{3}(1)=(3),(7),(9)$
$\operatorname{Lrd}(1)=1 /((1.41+1.41+2.23) / 3)=0.59$
$\rightarrow \operatorname{Lrd}(3)=1 /((1.41+2+2.23+2.23) / 4)=0.50$
$\operatorname{lrd}_{k}(p)=1 /\left(\frac{\sum_{o \in k N N(p)} \text { reach }^{\prime} \operatorname{dist}_{k}(p, o)}{\operatorname{Card}(k N N(p))}\right)$
$\rightarrow \operatorname{Lrd}(7)=1 /((1+1.41+2) / 3)=0.68$
$\rightarrow \operatorname{Lrd}(9)=1 /((1+2.23+2.23) / 3)=0.55$
$\operatorname{LOF}(5)=((\operatorname{Lrd}(3)+\operatorname{Lrd}(7)+\operatorname{Lrd}(9)) / 3) / \operatorname{Lrd}(1)=0.57 / 0.59=0.96$
$L O F_{k}(p)=\frac{\sum_{o \in N N N(p)} \frac{\operatorname{lrd}_{k}(o)}{\operatorname{lrd}(p)}}{\operatorname{Card}(k N N(p))}$

$\mathrm{NN}_{3}(10)=(2),(5),(6),(11),(3)$
$\operatorname{Lrd}(10)=1 /((2+2.23+2+2.23+2.23) / 5)=0.46$
$\rightarrow \operatorname{Lrd}(2)=1 /((1+1+2.23+2.23) / 4)=0.62$

$\rightarrow \operatorname{Lrd}(5)=1 /((1+1.41+1.41) / 3)=0.78$
$\rightarrow \operatorname{Lrd}(6)=1 /((1+1+1.41) / 3)=0.87$
$\rightarrow \operatorname{Lrd}(11)=1 /((1+1.41+2.23+2.23) / 4)=0.58$
$\rightarrow \operatorname{Lrd}(3)=1 /((1.41+2+2.23+2.23) / 4)=0.50$
$L O F_{k}(p)=\frac{\sum_{o \in \operatorname{kNN}(p)} \frac{\operatorname{lrd}_{k}(o)}{\operatorname{lord}(p)}}{\operatorname{Card}(k N N(p))}$
$\operatorname{LOF}(10)=((\operatorname{Lrd}(2)+\operatorname{Lrd}(5)+\operatorname{Lrd}(6)+\operatorname{Lrd}(11)+\operatorname{Ldr}(3)) / 5) / \operatorname{Lrd}(10)=0.67 / 0.46=1.45$

Here (10) has 3 points in a tie for the $3^{\text {rd }}$ place in the $3-\mathrm{NN}$ set $(2,3,11)$, resulting in 5 NNs .

Depth-based outliers

- Compute the depth score of each point

Depth $1=\{12,8,14,13,4,11,9,7\}$

Depth $1=\{12,8,14,13,4,11,9,7\}$

Depth $1=\{12,8,14,13,4,11,9,7\}$ Depth $2=\{2,5,6,3,1\}$

Depth $1=\{12,8,14,13,4,11,9,7\}$
Depth $2=\{2,5,6,3,1\}$

Depth $1=\{12,8,14,13,4,11,9,7\}$
Depth $2=\{2,5,6,3,1\}$
Depth $3=\{10\}$

Depth $1=\{12,8,14,13,4,11,9,7\}$
Depth $2=\{2,5,6,3,1\}$
Depth $3=\{10\}$

Angle-based outliers

- Compute the simplified ABOD for each point
- Simple-ABOD(p) $=$ MAX $_{\text {x,y in }}$ дв $\{$ angle(xpy $\left.)\right\}$
- Equivalent to find the smallest angle in p that contains the whole dataset

Angle-based outliers

Simple-ABOD $(p)=$ MAX $_{x, y \text { in } \text { дв }}\{$ angle(xpy) $\}$

Simple-ABOD ((13)) $=135^{\circ}$

Angle-based outliers

Simple-ABOD $(p)=$ MAX $_{x, y \text { in } ~}^{\text {дв }}$ $\{$ angle $(x \bar{p} y)\}$

Simple-ABOD ((12)) $=90^{\circ}$

Angle-based outliers

Simple-ABOD $(p)=$ MAX $_{x, y \text { in } ~}^{\text {дв }}$ $\{$ angle $(x \bar{p} y)\}$

Simple-ABOD ((10)) $=180^{\circ}$

