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Abstract

In the last years it has been found that many real-world networks show a so-called community structure organization.
Much effort has been devoted in literature in order to develop methods and algorithms that can efficiently highlight this
hidden structure of the network, traditionally operating a partition of the graph. Since the network representation can
be very complex and can contain different variants in the traditional graph model, each algorithm present in literature
focuses on some of these properties and establishes its own definition of community. Then it extracts communities
according to this definition, able to reflect only some of the features of real communities. Aim of this survey is to
provide a manual for the community discovery problem. Given a meta definition of what is a community in a social
network, our aim is to organize the main categories of community discovery approaches basing on their own definition of
community. Given a desired definition of community and the features of a problem (size of network, direction of edges,
multidimensionality, and so on) we aim to provide the set of approaches a researcher might focus on.

Keywords: Community discovery, Social network, Groups, Complex network, Graph partitioning, Graph clustering,
Graph mining, Information propagation.

1. Introduction

A complex network is a mathematical model able to
represent in a machine readable form many interaction
phenomena that take place in the real world. A critical
feature, widely studied in literature since the early com-
plex network analysis, is the possibility to identify groups
and communities inside the structure of many phenomena
represented with this model.

Community detection is important for many reasons.
Identifying communities and their boundaries allows for
a classification of vertices, according to their topological
position in the groups. It is therefore possible to iden-
tify community leaders, a task that can be very useful in
order to identify, for example, critical actors in the spread-
ing of influence in an information propagation setting. Or
it is possible to identify individuals lying at the bound-
aries between groups, that play an important role of me-
diation and lead the relationships and exchanges among
different communities. Finally, one can study the graph
where entities are the communities and edges are set be-
tween these groups if there are connections between some
of their entities in the original graph and/or if the groups
overlap. In this way one attains a coarse-grained descrip-
tion of the original graph, which unveils the relationships
between modules.

Email addresses: coscia@di.unipi.it (Michele Coscia),
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In general, a “Community” is considered to be a set
of entities where each entity is closer to the other entities
within the community than to entities outside it. Commu-
nities are groups of entities which probably share common
properties and/or play similar roles within the interacting
phenomenon we are representing. Communities may cor-
respond to groups of pages of the World Wide Web dealing
with related topics [1], to functional modules such as cy-
cles and pathways in metabolic networks [2, 3], to groups
of related individuals in social networks [4] and so on.

The community discovery task is very close to the clus-
tering problem, a traditional data mining task. In data
mining, clustering is an unsupervised learning task, which
aims to assign a large set of data into homogeneous groups
(clusters). In fact, community discovery can be viewed as
a data mining analysis on graphs: an unsupervised clas-
sification of its nodes. Moreover, community discovery is
the most studied data mining application on social net-
works. Other applications, such as graph mining [5], are
in an early phase of their development. Community dis-
covery has instead reached a more advanced development
with contributions from different fields like physics.

Nevertheless, the community discovery problem is some-
thing more. In the classical data mining clustering we have
data which is not in a relational form. Thus, in this gen-
eral form, the fact that the entities are nodes connected
each other through edges is traditionally not deeply con-
sidered. Therefore, it is needed to map the concept of spa-
tial proximity among entities (i.e. vertices) in the graph
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representation setting.
The traditional and most accepted definition of prox-

imity in a network is based on the topology of its edges. In
this case the definition of community is formulated accord-
ing to the differences in the densities of links in different
parts of the network. Many networks, it is found, are inho-
mogeneous, consisting not of an undifferentiated mass of
vertices, but of distinct groups. Within these groups there
are many edges between vertices, but between groups there
are fewer edges. Aim of a community detection algorithm
is, in this case, to divide the vertices of a network into
some number k of groups, while maximizing the number
of edges inside these groups and minimizing the number
of edges established between vertices in different groups.
These groups are the desired communities of the network.

In the last years, this definition is no longer suitable
due to the increasing complexity of the network represen-
tations and of the novel analytical settings, such as infor-
mation propagation or multidimensional network analysis.
For example, in a temporal evolving setting, two entities
can be considered close each other if they share a com-
mon action profile even if they are not directly connected.
Thus each novel approach to the community discovery has
faced this problem and has developed its own definition of
community for its own solution.

Beside this variety of different definitions of commu-
nity, there are a number of interesting features of these
communities. Such features can be a hierarchical or over-
lapping configuration of the groups inside the network.
Or the graph can include directed edges, thus giving im-
portance to this direction when considering the relations
among entities. The communities can be dynamic, i.e.
evolving over time, or multi-relational, i.e. there might be
multiple relations and there might be sets of individuals
that behave as isolated entities in each relation of the net-
work forming a dense community when considering all the
possible relations at the same time.

This extreme richness of different definitions and fea-
tures had as a result the publication of an impressive num-
ber of excellent solutions to the community discovery prob-
lem. It is not a surprise, then, that a number of review
papers, collecting a description of all these methods, has
been proposed in literature (even very recently [6]). How-
ever, we believe that a novel point of view on this topic
is needed. The present reviews, in fact, are devoted to
analyze the different techniques from a very technical per-
spective. They do not consider to organize the impressive
number of algorithms according to their definition of com-
munity. In other words, the aim of those reviews is to talk
to people interested in build a new community detection
algorithm, not to people who want to use the methods
present in literature, which is the audience of this paper.

In order to do this, we have chosen to cluster the com-
munity discovery algorithms by considering their defini-
tion of what is a community, used as basis of what kind
of groups they aim to extract from the network. For each
algorithm we record the characteristics of the output of

the method, thus highlighting for which set of features the
reviewed algorithm is suitable and for which one it is not.
Further, we consider some general frameworks able to pro-
vide both a community discovery approach and a general
technique that is applicable to other graph partitioning
algorithms adding new features to these other methods.

The remainder of the paper is organized as follows. In
Section 2 we will provide the community discovery prob-
lem statement in the most general way possible and the
meta definition of what is a community. In Section 3 is ex-
plained the classification of algorithms based on the com-
munity definitions. Then, from Section 4 to Section 11, we
will present the main categories of approaches given our
problem definition, along with the most important and
known works in each given category. In Section 12 we will
briefly present some other related works, surveys about
community discovery in social networks, along with the
motivations of a novel point of view about these methods,
that is this paper. Finally, Section 13 concludes the sur-
vey and provides a perspective about some possible future
works.

2. Problem Definition

2.1. Problem Representation

We are given a graph G denoted by a quadruple G =
(V,E, L,C), where V is a set of labeled nodes, E is a set of
labeled edges, L is a set of edge labels and C is a set of node
labels. E is a set of quadruples of the form (u, v, l, w) where
u, v ∈ V are nodes, l ∈ L is a label and w is an integer
that represent the weight of the relation. We assume that
given a pair of nodes u, v ∈ V and a label l ∈ L it may
exist only one edge (u, v, l, w), however the direction of
the edge is considered in the model, thus edges (u, v, l, w)
and (v, u, l, w) are considered distinct. We assume also
that each node can be labeled with one or more category
c ∈ C. Moreover, we consider the temporal evolution of
the network. Thus each edges, and node, can be labeled
with an arbitrary number of timestamps that represent
the time in which the edge appear and disappear in the
network. Also the labels of a given node can change over
time. Please note that nodes can create/delete edges in
the network and/or change/introduce/delete one or more
label in their category set Cv = {c1, c2, ..., cn}. We call
such events “actions” performed by the nodes.

With this complex model we are able to represent all
possible variants in the graph representation of a com-
plex real world phenomenon. For example we can model
multi-relational networks by considering the edge labels L
as the different relations (dimensions) of the network. We
can also represent simpler models, such as unweighted net-
works, by assigning to every edge in the network the same
weight w = 1.

In the remainder of the paper we will use the notation
presented in Table 1. We will introduce new symbols and
notations when needed in the presentation of a particular
method and not useful for the others.
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Symbol Description
n Number of vertices of the network
m Number of edges of the network
k Number of communities of the network
K̄ Avg degree of the network
K Max degree in the network
T Number of action in the network
A Max number of actions for a node
D Number of dimensions (if any)
c Number of vertex types (if any)
t Number of time step (if any)

Table 1: Resume of the main notation used in the paper.

2.2. Community Meta Definition

We now present our meta definition of community in
a complex network. With this meta definition we create
an underlying concept which poses the basis of this survey
and it is able to include all the possible definition variants
present in literature.

Meta Definition 1 (Community). A community in a
complex network is a set of entities that share some closely
correlated sets of actions with the other entities of the com-
munity. Here we consider the direct connection a particu-
lar, and most important, kind of action.

Aim of a community discovery algorithm is to identify
these communities in the network. The desired result is
the list of sets of entities grouped together. Starting from
this meta definition we can model the main aspects of the
current issue of discovering communities in complex net-
works.

Density-based definitions. In this classical setting,
as we said in the Introduction, the definition is entirely
based on the topology of the network edges. The commu-
nity is defined as a group in which there are many edges be-
tween vertices, but between groups there are fewer edges.
Aim of a community detection algorithm is, in this case,
to divide the vertices of a network into some number k of
groups, while maximizing the number of edges inside these
groups and minimizing the number of edges that run be-
tween vertices in different groups. In our definition we
consider the connection between two vertices a particu-
lar kind of action. Hence, if we group entities maximizing
their common actions, we group them also maximizing the
edges inside the community. The community discovery is
exactly the same if the edge creation is the only action
recorded in the network representation. Further, by con-
sidering in the meta definition different kinds of sets of
action, we can also model the overlapping situation: for
certain set of actions (i.e. connections) a node belongs to
one community, for another set of actions it belongs to
another community.

Vertex similarity-based definitions. As pointed
out by Fortunato [6], it is natural to assume that com-
munities are groups of vertices similar to each other. One

can compute the similarity between each pair of vertices
with respect to some reference property, local or global,
no matter whether they are connected by an edge or not.
Each vertex ends up in the cluster whose vertices are most
similar to it. By considering an evolving setting in our
problem representation, also the presence or the absence
of a particular property (i.e. a label of the vertex), we are
able to model the similarity measures as the similarity of
the set of actions.

Action-based definitions. In this setting, that is
gaining increasing attention in literature, entities can be
grouped by the set of actions they perform inside the net-
work. For example, in [7] authors consider a multi-mode
network in which users are connected to queries and ads.
Two user can be considered part of the same community if
they are connected to the same queries (i.e. they perform
the same action) even if they are not directly linked each
other. The discovery of communities based on this defini-
tion can be performed both considering or not considering
the presence of a direct link among entities. Both cases
are included in our meta definition.

Influence Propagation-based definitions. In some
works, the concept of “tribe” has been introduced. In [8],
a tribe is defined as a set of entities that are influenced
by the same leaders. A node is a leader if it performed an
action and, within a chosen time bound after this action, a
sufficient number of other users performed the same action.
The role of social ties in this influence spread is considered.
Thus, according to our definition, the set of users that
frequently perform the same actions due to the influence
of their leaders are considered a community.

2.3. Problem Features

The features to be considered in the complex task of de-
tecting communities in graph structures are many. In this
section we will provide a resume of the considered features.
This, and the following sub section, is the description of
the data included in Table 2, that collects the main char-
acteristics and the classification of all the methods here
reviewed.

First, Table 2 records the main properties of a commu-
nity discovery algorithm. These properties can be grouped
in two classes. The first class consider the features of the
problem representation, the second one are the character-
istics of the approach.

Inside the first class of features we group all the possi-
ble variants in the representation of the original real world
phenomenon. The most important features we will con-
sider in this paper are the following:� Overlapping. In some real world networks the com-

munities can share one or more common nodes. For
example, in social networks actors may be part of dif-
ferent communities: the work, the family, the friends
and so on. All these communities will share a com-
mon member, and usually more since a work col-
league can also be your friend outside the working
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Figure 1: Different community features.

environment. Consider, for example, the structure
depicted in Figure 1(a): the central node is shared
by the two communities. A community discovery
algorithm should consider the possibility of identify
these overlapping situations. In Table 2 we record if
an algorithm consider this feature in the “Overlap”
column.� Directed. Some phenomena in real world must be
represented with edges and links that are not recipro-
cal. This, for example, is the case of the web graph:
an hyper-link from one page to another is directed
and the other page may not have another hyper-link
pointing in the other direction. In Figure 1(b) we
have depicted an example in which the direction of
the edges should be considered. The leftmost node
is connected to the community, but only in one di-
rection. If reciprocity is an important feature, the
leftmost node should be considered outside the de-
picted community. In Table 2 we record if an algo-
rithm consider this feature in the “Dir” column.� Weighted. A group of connected vertices can be
considered a community only if the weights of their
connections are strong enough, over a given thresh-
old. In the case of Figure 1(c), the left group might
not be strong enough to form a community. In Table
2 we record if an algorithm consider this feature in
the “Weight” column.� Dynamic. Following our problem representation in
Section 2.1, in our setting we have a set of edges that
can appear and disappear. Thus, also communities
might evolve over time. In Table 2 we record if an
algorithm consider this feature in the “Dyn” column.

The second class of features collects some desired prop-
erties that an approach might have. These features can
specify constraints for input data, improve expressive power
of the results or may facilitate the community discovery
task.� Parameter free. A desired feature of an algorithm,

especially in data mining research, is the absence of
parameters. In other words, an algorithm should be
able to make explicit the knowledge that is hidden
inside the data without needing any previous infor-
mation about the data nor the problem (for instance

the number of the communities). A parameter free
community discovery algorithm is able to return a
partition of the network without further indications
from the analyst. In Table 2 we record if an algo-
rithm provide this feature in the “NoPar” column.� Multidimensional input. Multidimensionality in
networks is one of the emerging topic in recent years.
A network is said to be multidimensional if it con-
tains a number of different kinds of relation that are
established among the nodes of the network. Thus,
when dealing with multiple dimensions, the notion of
community changes. Our proposed Meta Definition
1 captures this complex environment, by represent-
ing the creation or the absence of a particular edge in
a particular dimension with an action. This concept
of multidimensionality is used (with various names:
multi-relational, multiplex, and so on) by some ap-
proaches as a feature of the input considered by the
approach. In Table 2 we record if an algorithm pro-
vide this feature in the “MDim” column.� Incremental. Another desired feature of an algo-
rithm is its ability to provide an output without an
exhaustive search of the entire input. An incremen-
tal approach to the community discovery can be to
classify a node in one community by looking only its
neighborhood, or the set of nodes two hops away, or
to put the newcomers in one of the previously de-
fined communities without starting the community
detection process from the beginning. In Table 2 we
record if an algorithm provides this feature in the
“Incr” column.� Multipartite input. Many community discovery
approaches are able to work even if the network has
the particular form of a multipartite graph. The
multipartite graph, however, is not entirely a fea-
ture of the input that we might want to consider for
the output. Many algorithms often use a (usually)
bipartite projection of a classical graph in order to
apply some efficient computations. As in the case of
multidimensionality, this is the reason of including
the multipartite input as a feature of the approach
and not of the output. In Table 2 we record if an
algorithm provide this feature in the “Multip” col-
umn.
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There is a last “meta feature” that we will consider.
This feature is the possibility of apply the considered ap-
proach to another community discovery technique adding
new features to the “guest method”. This meta feature
will be highlighted with an asterisk note next to the algo-
rithm name.

Table 2 records other informations. In “Complexity”
column we record the time complexity of the presented
methods. The two “BES” columns present the Biggest
Experiment Sizes, in terms of nodes (“BESn”) and edges
(“BESm”), that are included in the original paper re-
viewed. Please note that the Complexity and BES columns
often offers an evaluation of the actual values, since the
original work did not provide an explicit and clear analy-
sis of complexity or their experimental setting. When it is
considered not trivial to evaluate the complexity, or no ex-
perimental details are provided, we insert a question mark
in the column.

3. The Definition-based classification

In the following we will present an extensive review
of community detection approaches. We will group to-
gether in each section all the algorithms that share the
same definition of what is a community, i.e. same condi-
tions satisfied by a group of entities that allow to cluster
them together in a community. The proposed categories
are the following:� Feature Distance (Section 4). Here we will collect

all the community discovery approaches that starts
from the assumptions that a community is composed
by entities who share ubiquitously a very precise set
of features, with similar values (i.e. defining a dis-
tance measure on their features, the entities are all
close to each other). A common feature can be an
edge or any attribute linked to the entity (in our
problem definition: the action). Usually, these ap-
proaches propose this community definition in order
to apply classical data mining clustering techniques,
such as the Minimum Description Length principle
[48].� Internal Density (Section 5). In this group we
will consider the most important articles that de-
fine a community as a group in which the number
of edges present among its members is considerably
higher than the expected number of edges in a ran-
dom graph.� Bridge Detection (Section 6). This section in-
cludes the community discovery approaches based on
the concept that communities are dense parts of the
graph among which there are very few edges able to
break down in pieces the network if removed. These
edges are “bridges” and the components of the net-
work resulting by their removal are the desired com-
munities.

� Diffusion (Section 7). Here we will include all the
approaches to the community discovery task relying
on the idea that communities are groups of nodes
that can be influenced by the propagation (diffusion)
of a certain property or information inside the net-
work. In addiction, the community definition can be
narrowed to the groups that are influenced only by
the very same set of sources of these diffusions.� Closeness (Section 8). A community can be defined
also as a group of entities that can reach each of its
own community companions with very few hops on
the edges of the graph, while the entities outside the
community are significantly farther.� Structure (Section 9). Another approach to com-
munity discovery is to define exactly the community
as a very precise and almost immutable structure of
edges. Often these structures are defined as combi-
nation of smaller network motifs. The algorithms
following this approach define some kind of these
structures and then they try to find them efficiently
inside the graph.� Link Clustering (Section 10). The last class of
solutions that we will consider can be viewed as a
projection of the community discovery problem. In-
stead of clustering the nodes of a network, these ap-
proaches state that is the relation that belongs to a
community, not the node. Therefore they cluster the
edges of the network and then the nodes belong to
the set of communities of their edges.� No Definition (Section 11). There are a number
of community discovery frameworks which have not
a basic definition of the characteristic of the com-
munity they want to explore. Instead they define
some operations and algorithms to combine the re-
sults of various community discovery approaches and
then use the target method community definition for
their results, or they let the analyst define its own
notion of community and search it into the graph.

In each Section we will provide, if possible, a simple
graphical example of the definition considered.

Please note that in the following we will not focus
our attention to historical approaches. Some examples of
classical clustering algorithms that are not extensively re-
viewed are the Kernighan-Lin algorithm [49] or the classi-
cal spectral bisection approach [50]. We have chosen this
approach because this survey is meant to be devoted to
the most recent approaches and to the more general defi-
nitions of community. Thus, for an historical point of view
of the community discovery problem, we refer to other re-
view papers.

3.1. The Classification Overlap

It is worthwhile noting that there is a sort of overlap
for some community definitions. For example a defini-
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Name Overlap Dir Weight Dyn NoPar MDim Incr Multip Complexity BESn BESm Year Ref

F
ea

tu
re

D
is

ta
n
ce

Evolutionary* X X O(n2) 5k ? 2006 [9]
MSN-BD X X O(n2ck) 6k 3M 2006 [10]
SocDim X X X O(n2 log n)∗ 80k 6M 2009 [11]
PMM X X O(mn2) 15k 27M 2009 [12]
MRGC X X X X O(mD) 40k ? 2007 [13]

Infinite Relational X X O(n2cD) 160 ? 2006 [14]
Find-Tribes X X O(mnK2) 26k 100k 2007 [15]
AutoPart X X X O(mk2) 75k 500k 2004 [16]
Timefall X X X O(mk) 7.5M 53M 2008 [17]

Context-specific Cluster Tree X X O(mk) 37k 367k 2008 [18]

In
te

rn
a
l
D

en
si

ty

Modularity X O(mk logn) 400k 2.5M 2004 [19]
Directed modularity X X O(n2 logn) 50 ? 2008 [20]

External Optimization X X O(n2 logn) 27k ? 2005 [21]
Local modularity X X O(n2) 400k 2.5M 2005 [22]

Modularity Unfolding X O(mk) 118M 1B 2008 [23]
Multislice modularity X X X X X O(mkD) 2k ? 2010 [24]

MetaFac X X O(mnD) ? 2M 2009 [25]
Variational Bayes X X O(mk) 115 613 2008 [26]
LA→ IS2* X X O(mk + n) 16k ? 2005 [27]

Local Density X X X O(nK logn) 108k 330k 2005 [28]

B
ri

d
g
e Edge Betweenness X O(m2n) 271 1k 2002 [4]

CONGO* X O(n log n) 30k 116k 2008 [29]
L-Shell X X O(n3) 77 254 2005 [30]

Internal-External Degree X O(n2 logn) 775k 4.7M 2009 [31]

D
iff

u
si

o
n

Label Propagation X X X O(m+ n) 374k 30M 2007 [32]
Node Colouring X X O(ntk2) 2k ? 2007 [33]

Kirchhoff X X O(m+ n) 115 613 2004 [34]
Communication Dynamic X X X X O(mnt) 160k 530k 2008 [35]

GuruMine X X O(TAn2) 217k 212k 2008 [8]
DegreeDiscountIC X O(k log n+m) 37k 230k 2009 [36]

MMSB X X O(nk) 871 2k 2007 [37]

C
lo

se Walktrap O(mn2) 160k 1.8M 2006 [38]
DOCS X ? 325k 1M 2009 [39]

Infomap X X O(m log2 n) 6k 6M 2008 [40]

S
tr

u
ct

u
re K-Clique X O(m

ln m

10 ) 20k 127k 2005 [3]
S-Plexes Enumeration O(mn) ? ? 2009 [41]

Bi-Clique X X O(m2) 200k 500k 2008 [42]
EAGLE X X X O(3

n

3 ) 16k 31k 2009 [43]

L
in

k Link modularity X X X O(2mk logn) 20k 127k 2009 [44]
Link Jaccard* X X X O(nK̄2) 885k 5.5M 2010 [45]

N
o
D Hybrid* X X X X O(nkK̄) 325k 1.5M 2010 [46]

Multi-relational Regression X X ? ? ? 2005 [47]

T
a
b
le

2
:

R
es

u
m

e
o
f
th

e
co

m
m

u
n
it
y

d
is

co
v
er

y
m

et
h
o
d
s.
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tion of internal density may find also communities with
sparse external links, i.e. bridges. We will see in Section
5 that in this definition a key concept is modularity [19].
Modularity is a quality function which both consider the
internal density of a community and the absence of edges
among communities. Thus methods based on it could be
clustered in both category. However, the underlying def-
inition of modularity has the focus on the internal den-
sity, and this is the reason for the proposed classification.
To give another example, a diffusion approach may de-
tect the same communities whose member can reach each
other with few hops. But this is not necessary: the diffu-
sion approach may find communities also with an arbitrary
distance among its members.

In order to have a stronger evidence of this fact con-
sider Figures 2, 4, 7, 9, 12 and 13. In these figures are
depicted the most simple typical communitties identified,
respectively, by the definitions of Feature Distance, Inter-
nal Density, Bride Detection, Diffusion, Closeness e Struc-
ture Definition. As one can see, there are a number of
differences among these toy examples. The Bridge Detec-
tion example (Figure 7) is a random graph, thus with no
community structure by definition for the algorithms in
the Internal Density category. Also the Diffusion exam-
ple (Figure 9) is a random graph, but even if the diffusion
process identify two communities, no clear bridges can be
detected.

The overlap is due to the fact that many algorithms
work with some general “background” meta definitions of
community. The categories here proposed can be clus-
tered together in a hierarchy with the four main categories
exposed in Section 2.2. Further, many algorithms may
present common strategies in the exploration of the search
space or in evaluating the quality of their partition in order
to refine it. Consider for example [51] and [52]. In these
two paper there is a deep theoretical study about mod-
ularity and its most general form. In [51], for example,
authors were able to derive modularity as a random walk
exploration strategy, thus highlighting its overlap with the
algorithms here clustered in the “Closeness” category.

Evaluating the overlap and the relationships among the
most important community discovery approaches is not a
trivial task, and it is outside the aim of this survey. Here
we are interested in focusing on the connection between
an algorithm and its particular definition of community.
In this way we can create the “inverted index” useful to
connect particular analysis needs to the tools available in
literature. To study how to derive one algorithm in terms
of another, thus creating a graph of algorithms and not a
classification, is an open interesting problems we will leave
to future works.

4. Feature Distance

In this Section we will review the community discov-
ery methods that define a community according this meta
definition:

Figure 2: An example of graph which can be partitioned with a
notion of “distance” among its nodes.

Meta Definition 2 (Community). A community in a
complex network is a set of entities that share a precise
set of features (including the edge as a feature). Defining
a distance measure based on the values of the feature, the
entities inside a community are very close to each other,
more than entities outside the community.

Using this definition the task of finding communities is
very similar to the classical clustering problem in data min-
ing. In data mining, clustering is an unsupervised learning
task. Aim of a clustering algorithm is to assign a large set
of data into groups (clusters) so that the data in the same
clusters are similar each other more than with any other
data in any other cluster. Similarity is defined through
a distance measure, usually based on the number of com-
mon features of the entities, or on similar values of these
attributes.

Consider Figure 2. Here we have depicted a network
whose nodes are positioned according to a distance mea-
sure. It is important to note that this measure could con-
sider the direct edge connection, but it is not mandatory.
The nodes are then grouped in the same community if they
are close in this space (which may be highly dimensional
according to the number of features considered).

An example of clustering technique is K-means [53]. A
natural clustering approach to the community discovery
are some evolutions of co-clustering [54, 55] and/or some
spectral approaches to the clustering problem [56]. A sur-
vey focused on co-clustering algorithms is [57].

Here we will focus on some clustering techniques able to
provide some very interesting features: the Evolutionary
clustering [9]; RSN-BD [10], a k-partite graph based ap-
proach; MRGC [13], that is a clustering technique working
with tensors; two approaches that use modularity for the
detection of latent dimensions for a multidimensional com-
munity discovery with a machine learning classifier that
maximize the number of common features ([11] and [12]);
a Bayesian approach to clustering based on the predictabil-
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ity of the features for nodes belonging to the same group
[14]; and an analysis of the shared attribute connections
in a bipartite graph entity-attribute [15].

An interesting clustering principle is the Minimum De-
scription Length principle [48]. In MDL the main concept
is that any regularity in the data (i.e. common features)
can be used to compress it, i.e. to describe it using fewer
symbols than the number of symbols needed to describe
the data literally (see also [58] and [59]). The more reg-
ularities there are, the more the data can be compressed.
This is a very interesting approach since it allows to per-
form the community discovery without setting any param-
eter at all. After considering the classical clustering ap-
proaches, in this Section we will also present three main
algorithms that implement an MDL community discovery
approach: Autopart [16] (that is, to the best of our knowl-
edge, the first popular community discovery that formu-
lates the ground theory for the MDL community detec-
tion), the Context-specific cluster tree [18] and Timefall
[17].

4.1. Evolutionary* [9]

In [9] authors tackle the classical clustering problem
adding the temporal dimension. This novel situation im-
plies some constraints:� Consistency. Any insights derived from a study of

previous clusters are more likely to apply to future
clusters.� Noise Removal. Historically consistent clustering
provides greater robustness against noise by taking
previous data points into effect.� Smoothing. The true clusters shift over time.� Cluster Correspondence. It is generally possi-
ble to place today’s clusters in correspondence with
yesterday’s clusters, so the user will still be situated
within the historical context.

In order to consider these constraints, some measures
of a proposed clustering division are defined: the snapshot
quality and the history cost. The snapshot quality of Ct, a
proposed cluster division, measures how well Ct represents
the data at time-step t. The history cost of the clustering
is a measure of the distance between Ct and Ct−1, the
clustering used during the previous time-step.

This setting can be considered similar, but with some
differences, to incremental clustering [60]. The main dif-
ferences are two. First: here the focus is upon optimizing
a new quality measure which incorporates deviation from
history. Second, it works on-line (i.e. it must provide a
clustering of the data during time-step t before seeing any
data for time-step t+ 1) while other frameworks works on
data streams [61].

This framework can be added to any clustering al-
gorithm. Particularly on the agglomerative hierarchical

clustering, used for the examples in the original paper,
the time complexity will be O(n2), although some authors
claim that it is possible a quasi-linear implementation [62].
However, this framework is presented here because it is
possible to apply its principles to any other community
discovery algorithm presented in this survey. In partic-
ular there are two framework application worth noting.
The first one is FacetNet [63], in which a framework for
evaluating the evolution of the communities is developed.
The second one is [64]. In this work are introduced the
concepts of nano-communities an k-clique-by-clique, use-
ful to evaluate the snapshots and historical quality of the
communities identified in various snapshots with any given
method.

4.2. RSN-BD [10]

RSN-BD (acronym for Relation Summary Network with
Bregman Divergence) is a community discovery approach
focused on that examples of real-world data that involve
objects of multiple types that are related to each other. A
natural representation of this setting is a k-partite graph
of heterogeneous types of nodes. This method is suitable
for general k-partite graph and not only some special cases
such as [65], that has the restriction that the numbers of
clusters for different types of nodes must be equal and the
clusters for different types of objects must have one-to-one
associations.

The key idea of Relation Summary Network is to add
a small number of hidden nodes to the original k-partite
graph to make the hidden structures of the graph explicit.
RSN must be as close as possible to the original graph.
To express this closeness a distance function D is given:
basically every original node can be linked only with one
hidden node and two hidden nodes are linked only if their
original node were linked. Then the distance function sum
up all the Euclidean distances between the weights of the
edges in the original graph and in the transformed graph.
It is also possible to choose as distance function any def-
inition that can be generalized as a Bregman divergence
[66].

Authors expect that in a sparse k-partite graph two
nodes are similar when they are connected to similar nodes
even though they are not connected to the same nodes.

Since RSN problem is NP-Hard, authors formulates
some approximations. They represent a k-partite graph
as a set of matrices. Then, the distance between the two
graphs (original and manipulated) can be formulated as
the distances between a set of matrices and a set of matrix
products: the distance between two matrices D(X,Y ) de-
notes the sum of the distances of each pair of elements, i.e.,
D(X,Y ) =

∑

h,lD(Xhl, Yhl). The proposed algorithm up-
dates each element of the matrix that represents the graph
and this updating involves only edges between vih and the
related nodes, not all the edges.
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4.3. MRGC [13]

In this model, each relation between a given set of en-
tity classes is represented as a multi-dimensional tensor
(or data cube) over an appropriate domain, with the di-
mensions being associated with the various entity classes.
Further, each cell in the tensor encodes the relation be-
tween a particular set of entities and can either take real
values, i.e., the relation has single attribute, or itself is a
vector of attributes.

Although defined for relations graphs, this model can
be used also for identify community structures in social
networks.

It is based on the minimum Bregman information prin-
ciple [67], which generalizes both least squares and max-
imum entropy principles, to the relation graph setting.
The result is a general framework in which previously co-
clustering approach, such as [68] can be viewed as special
cases.

MRGC stands for “Multi-way Relation Graphs Clus-
tering”. The multi-way clustering ρ is defined as a n-uple
(ρ1, ρ2, ..., ρn) where each ρi : {1, 2, ...,mi} → {1, 2, ..., ki}
denotes a mapping from the entities to their respective
clusters (mi is the cardinality of the entities and ki the
desired number of clusters). The quality of the multi-way
clustering ρ can be readily measured in terms of the ap-
proximation error or the expected Bregman distortion be-
tween the random variables Z (the original tensor) and
Ẑ (the approximate tensor that follows ω, the measure in-
ducted on Z). The multi-way clustering problem is then to
find the optimal ρ that minimizes the Bregman distortion.
To characterize Ẑ, one needs to specify what summary
statistics are to be preserved, and how to get an approxi-
mation based on the summary statistics.

The MBI principle [67] posits that the best approx-
imation Ẑ is the random variable that has the minimum
Bregman information, i.e. the “best” approximation given
certain information is one that does not make any extra as-
sumptions over the available information. In general, the
solution cannot be expressed in closed form as a function
of the summary statistics, except for certain special bases
(Block Multi-way Clustering and Bias-Adjusted Multi-way
Clustering).

The proposed algorithm is an alternate minimization
scheme for optimizing the multi-way clustering objective
function. The algorithm considers each dimension in turn,
finds the optimal clustering with respect to that dimension
keeping everything else fixed, and recomputes the MBI
solution, and this process is repeated till convergence.

4.4. SocDim [11]

SocDim is a relational learning framework whose aim
is to build a classifier of the interacting entities based on
latent social dimensions. Each dimension can be consid-
ered as the description of a likely affiliation between so-
cial actors. These affiliations have to be considered when
building the classifier, thus going beyond the Markov as-
sumption that the label of a node is only dependent on the

labels of all its neighbors. But affiliations are usually not
recorded in public available data, so this methods aims to
identify them even if they are latent.

SocDim is based on the concept of homophily [69]: ac-
tors sharing certain properties tend to form groups and
within-group interactions are more dense than interactions
with members outside the group.

SocDim has two steps. First: it extracts latent social
dimensions based on network connectivity: it uses modu-
larity (Section 5) in order to find in the structure of the
network the dimensions in which the nodes are placed.
Second, it constructs a discriminative classifier: the ex-
tracted social dimensions are considered as normal fea-
tures (including some possible other sources) in the classi-
cal supervised learning task. It is then possible to use the
predicted labels of the classifier in order to reconstruct the
community organization of the entities.

This is a multidimensional community discovery be-
cause the classifier will determine which dimensions are
relevant to a class label. Authors considered one-vs-rest
linear SVM due to its simplicity and scalability [70] and
more powerful methods like structural SVM [71].

This work is at the basis of a further evolution [72]
that has an edge-centric view of the communities. The
partition is not about nodes, but about edges. In this way
it is possible to have a more scalable clustering procedure.

4.5. PMM [12]

This work, presented in [73] and evolved in [12], presents
a variation of the modularity approach on a multidimen-
sional setting. The goal of PMM (the acronym stands
for “Principal modularity Maximization”) algorithm is to
infer the shared latent community structure among the
actors given a multi-dimensional network, taking into ac-
count all the dimension directly instead of applying the
modularity algorithm on one dimension at time. Since the
modularity is computed with Lanczos method [74], the ini-
tial time complexity is at least O(mn2).

There are two basic steps. The first is “Structural Fea-
ture Extraction”: for a multidimensional network, authors
extract social features from each dimension of the network,
i.e. those eigenvectors with a larger positive eigenvalue.
The second is “Cross-Dimension Integration” that starts
from the assumption that the structural features of dif-
ferent dimensions are highly correlated after transforma-
tion. To capture the correlations between multiple sets of
variables authors use (generalized) canonical correlation
analysis [75] (CCA attempts to find a transformation for
each set of variables such that the pairwise correlations are
maximized).

After this step, authors obtain the lower-dimensional
embedding which captures the principal pattern across all
the dimensions of the network. Then they can perform
k-means [53] on this embedding to find out the discrete
community assignment.
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4.6. Infinite Relational [14]

Suppose that are given one or more relations (i.e. edges)
involving one or more types (i.e. nodes). The goal of the
Infinite Relational Model is to partition each type into
clusters (i.e. communities), where a good set of partitions
allows relationships between entities to be predicted by
their cluster assignments. Authors goal is to organize the
entities into clusters that relate to each other in predictable
ways, by simultaneously clustering the entities and the re-
lations.

Formally, suppose that the observed data are m rela-
tions involving n types. Let Ri be the ith relation, T j

be the jth type, and zj be a vector of cluster assign-
ments for T j. The task is to infer the cluster assignments,
and the ultimate interest lays in the posterior distribution
P (z1, ..., zn | R1, ..., Rm).

To allow the IRM the ability to discover the number
of clusters in type T , authors use a prior [76] that assigns
some probability mass to all possible partitions of the type.

Consider an m dimensional relation R involving n dif-
ferent types. Let dk be the label of the type that occu-
pies dimension k: for example, the three place relation
R : T 1 × T 1 × T 2 → {0, 1} has d1 = d2 = 1, and d3 = 2.
The probability that the relation holds between a group
of entities depends only on the clusters of those entities:
R(i1, ..., im) | z1, ..., zn, η ∽ Bernoulli(η(zd1

i1
, ..., zdm

im

)). In
settings with multiple relations, authors introduce a pa-
rameter matrix ηi for each relation Ri. The parameter
η(a, b) specifies the probability that a link exists between
any given pair (i, j) where i belongs to cluster a and j

belongs to cluster b.
Inference can be carried out using Markov chain Monte

Carlo methods to sample from the posterior on cluster
assignments.

4.7. Find-Tribes [15]

Find-Tribes is an algorithm not explicitly developed
for community discovery purposes. However, the tech-
nique can still be used in order to identify some kind of
community. In particular, it is very close to our “action”
definition of a community: the entities in a group tend to
behave in the same way.

As input, authors require a bipartite graph G = (R ∪
A,E) of entities R and attributes A. The entities should
connect to at least several attributes. Aim of the algorithm
is to return those group sharing “unusual” combinations
of attributes. This restriction can be easily generalized in
order to obtain as output also the “usual” groups.

The strategy for the desired task revolves around de-
veloping a good definition of “unusual”. For an entity
group to be considered anomalous, the shared attributes
themselves need not be unusual, but the particular config-
uration of them should be.

The algorithm begins with listing all node pairs. Au-
thors then summarize the direct entity relationships F ,

(a) The original matrix (b) Reordered matrix

Figure 3: An example of MDL principle for matrices: the matrix
at the left is exactly the same matrix at the right, but reordered
according to its simplest way to be described.

keeping track of the attributes where they coincide. Addi-
tional informations, such as dates, are noted. The result
of this step is a new, non bipartite, graph H ′(R,F ). The
algorithm proceeds by identifying all significant pairs in
H ′. For each edge a score cij is computed, measuring how
significant or unusual its sequence of shared attributes is.
Once the significance scores are computed, authors pick
a threshold d for the scores and remove all edges fij for
which cij < d. Then, authors compute the connected com-
ponents of H ′, which are the desired tribes.

Authors propose a number of possible scores: the num-
ber of attributes in the shared sequence, the number of
time steps of overlap, a probabilistic Markov chain of at-
tributes and so on.

4.8. AutoPart [16]

In Autopart we have the basic formulation of the MDL
approach to the community discovery problem. We have
a binary n × n matrix that represents associations be-
tween the n nodes of the graph (corresponding to rows and
columns in the adjacency matrix). In this binary matrix
there is a 1 at position (i, j) if node i is directly connected
to node j. An example of a possible adjacency matrix is
depicted in Figure 3(a).

The main idea is to reorder the adjacency matrix so
that similar nodes, i.e. nodes that are connected to the
same set of nodes, are grouped with each other. Then the
adjacency matrix would consist of homogeneous rectangu-
lar/square blocks of high (low) density, representing the
fact that certain node groups have more (less) connections
with other groups. The final output of the proposed pro-
cedure should be similar to the reordered matrix in Figure
3(b). Clearly the reordered matrix can be encoded with
a great compression of the data, especially when the node
blocks are very homogeneous.

Following this procedure one must identify a trade-off
point that indicates the best number of groups k. For
the identification of this trade-off authors rely on the ap-
plication of the overall MDL philosophy, that enables a
parameter free mining that is used in many applications
[77], where the compression costs are based on the num-
ber of bits required to transmit both the “summary” of
the node groups, as well as each block given the groups.
Therefore, a total encoding cost function is defined, and
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aim of the algorithm is to identify the best grouping that
minimize this function.

Authors solved this problem by a two-step iterative
process: first, they find a good node grouping G for a
given number of node groups k that minimize entropy;
and second, they search for the number of node groups k
by splitting the previous identified groups and verifying if
there is a possible gain in the total encoding cost function.

4.9. Context-specific Cluster Tree [18]

In this variant of the MDL approach the binary ns×nd

matrix represents a bipartite graph with ns source nodes
and nd destination nodes. This is a hierarchical evolution
of the existing flat method described in [55]. Please note
that here hierarchy will not be considered an overlapping
setting because it is only a particular overlapping case in
which at each level of the hierarchy the identified clusters
are completely disjoint.

In this work, aim of the authors is to automatically con-
struct a recursive community structure of a large bipartite
graph at multiple levels, namely, a Context-specific Clus-
ter Tree (CCT). The resulting CCT can identify relevant
context-specific clusters. The main idea is to subdivide
the adjacency matrix in tiles, or “contexts”, with possible
reordering of rows and columns, and compress them, ei-
ther as-is (if they are homogeneous enough) or by further
subdividing.

The process is the following. The entire graph is con-
sidered as a whole community. If the best representation of
the considered (sub)graph is the random graph then the
community cannot be split into two sub-community, be-
cause by definition the random graph has no community
structure at all. Otherwise, if the random graph cannot
describe the considered community, then this graph is split
and the algorithm is reapplied in a recursive fashion. In
order to verify if a community is almost random, its rep-
resenting graph is compressed using a total encoding cost
function.

The result is a tree of communities in which the bottom
levels are context specialization of the generic communi-
ties at the top of the tree. For instance in a co-authorship
network will identify at the top level the computer science
and sociology communities of authors, and at the lower
level inside computer science community may identify al-
gorithm and computer theory communities.

This idea of recursive clustering is also applied to stream-
ing setting [78, 79], although with a number of parameters.

4.10. Timefall [17]

Timefall is a MDL approach that can be described as a
parameter-free network evolution tracking. Given n time-
stamped events (like, e.g., papers published), each related
to several of m items (like, title-words), it finds simulta-
neously (a) the communities, that is, item-groups (e.g.,
research topics and/or research communities) and (b) a
description of how the communities evolve over time (e.g.,

Figure 4: An example of graph which can be partitioned with a
notion of internal density among its nodes.

appear, disappear, split, merge) and (c) a selection of the
appropriate cut-points in time when existing community
structure change abruptly.

With this approach, authors first represent the graph
in the form of an adjacency matrix (step 1). The algorithm
then splits the rows according to their time stamps (step
2) and uses the Cross Association algorithm [55], a MDL
based algorithm similar to the previously presented, to
cluster the columns of the connection matrices (step 3).
It then utilizes the MDL principle to connect the column
clusters of the matrices (step 4): if two column clusters
can be encoded together with a low encoding cost then
they are connected. Finally it reduces the unimportant
time points in the graph evolution history (step 5).

The differences in clustering of two matrices can be
efficiently described by using mutual information between
the matrices, i.e., authors use the clusters (communities)
at time t to efficiently describe the communities at time
t+ 1.

5. Internal Density

For this group of approaches, the underlying meta def-
inition is the following:

Meta Definition 3 (Community). A community in a
complex network is a set of entities that are densely con-
nected. In order to be densely connected a group of vertices
must have a number of edges significantly higher than the
expected number of edges in a random graph (which has no
community structure).

In Figure 4 we have depicted a network in which the
identified communities are significantly denser than a ran-
dom graph with the same degree distribution.

A key concept for satisfying this meta definition is mod-
ularity [80]. Briefly, consider dividing the graph into c

non-overlapping communities. Let ci denote the commu-
nity membership of vertex vi , ki represents the degree
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of vertex i. Modularity is like a statistical test in which
the null model is a uniform random graph model: in this
model one entity connects to others with uniform proba-
bility. For two nodes with degree ki and kj respectively,
the expected number of edges between the two in a uni-

form random graph model is
kikj

2m
, where m is the number

of edges in the graph. Modularity measures how far the
interaction deviates from a uniform random graph with
the same degree distribution. It is defined as:

Q =
1

2m

∑

ij

[

Aij −
kikj

2m

]

δ(ci, cj),

where δ(ci, cj) = 1 if ci = cj (i.e. the two nodes are in the
same community), and 0 otherwise, and Aij is the number
of edges between nodes i and j. A larger modularity indi-
cates denser within-group interaction. Note that Q could
be negative if the vertices are split into bad clusters. Q > 0
indicates the clustering captures some degree of commu-
nity structure. In general, one aims to find a community
structure such that Q is maximized.

Modularity is involved in the community discovery prob-
lems at two level. First: it is a measure able to quantify
how good is a given network partition. It is a very good
quantitative evaluation of the performance of a commu-
nity discovery algorithm because it can be applied to any
kind of graph (single graph, multi graph, weighted graph
and so on). Furthermore, it gives a result of the quality of
the partition even without any knowledge about the actual
communities of the network. This is suitable especially for
very large networks. On the other hand, modularity is not
the perfect solution for evaluating a proposed community
partition. It suffers of well known problems, in partic-
ular the resolution problem: modularity fails to identify
communities smaller than a scale which depends on the
total size of the network and on the degree of intercon-
nectedness of the communities, even in cases where mod-
ules are unambiguously defined. Further, with modularity
you can only evaluate communities extracted according to
the meta definition proposed in this section. Any other
kind of definition of communities will result in meaning-
less evaluations by applying modularity. For an extensive
review of the known problems of modularity please see [6]
and [81].

The second level of the modularity usage in the graph
partitioning task is represented by community discovery
algorithms that are based on modularity maximization.
These algorithms suffers of the aforementioned problems
of the usage of modularity as quality measure. However,
modularity maximization is a very prolific field of research,
and there are many algorithms relying on some heuristics
and strategies for finding the best network partition.

We will now present some of the main examples of
modularity-based approaches, whose number is intractable
in this survey (we will, however, provide also references
for minor modularity maximization algorithms. A good

review of the eigenvector modularity based works is pre-
sented in [82]). We will focus particularly on: the first
classical efficient modularity approach by Clauset et al.
[19], an extension of modularity for directed networks [20]
and some heuristic strategies developed to tackle the NP-
completeness characteristics of the modularity maximiza-
tion problem (the external optimization [21], the local mod-
ularity computation [22] and the very efficient modularity
unfolding [23]). A very recent work [24] extends modular-
ity in order to be able to extract multidimensional com-
munities.

Modularity is not the only cost function able to quan-
tify if a set of entities are more related than expected
and thus has to be considered a community. The other
reviewed methods that rely on different techniques, but
share the same meta definition of community proposed
in this Section, are: MetaFac [25], an hypergraph factor-
ization technique; a physical-chemical algorithm using a
Bayesian approach [26]; a local density-based approach
called LA→ IS2 [27]; and another proposed function used
to measure the internal local density of a cluster [28].

5.1. Classical modularity [19]

This is the first efficient algorithm that is based on the
modularity maximization strategy. To find the partition
providing the maximum value of modularity is an NP-
complete problem. Therefore, many heuristics has been
proposed. The presented “Classical modularity” is an ad-
vanced implementation of the very first proposed heuristic,
presented in [83].

In the previous work, Newman proposed an efficient
strategy for modularity maximization. The algorithm pro-
posed uses a greedy optimization in which, starting with
each vertex being the sole member of a community of one,
repeatedly join together the two communities whose amal-
gamation produces the largest increase inQ. For a network
of n vertices, after n − 1 such joins the result is a single
community and the algorithm stops. The entire process
can be represented as a tree whose leaves are the vertices
of the original network and whose internal nodes corre-
spond to the joins. This dendrogram represents a hier-
archical decomposition of the network into communities
at all levels. Since a partition grouping all vertices in a
single community provides a modularity equal to 0, the
dendrogram must be cut in the modularity peak in or-
der to obtain the communities, as depicted in Figure 5.
Please note that Figure 5 also depicts another problem of
modularity maximization heuristics: it has been discov-
ered that modularity has not a single peak given all the
possible partitions, but there are several local optima, thus
making more complex the task of finding the actual par-
tition with the largest modularity value. Moreover, real
networks have many near-global-optima at various places
[81] (in Figure 5 the rightmost peak) and we cannot know
where the algorithm locates its solution.

In the first algorithm this operation is done explicitly
on the entire matrix. Here, the idea is to store a matrix
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Figure 5: A dendrogram result for the modularity maximization al-
gorithm, with a plot of resulting values of modularity given the par-
tition.

containing only the ∆Qi,j values of the communities, i.e.
the modularity change when joining the communities i and
j. The algorithm can now be defined as follows. Calculate
the initial values of ∆Qi,j and keep track of the largest
element of each row of the matrix ∆Q. Select the largest
∆Qi,j among these largest elements, join the correspond-
ing communities, update the matrix ∆Q and the collection
of the largest elements and increment Q by ∆Qi,j . Repeat
this last step until the dendrogram is complete.

This was, at the time of publication, the quickest of
modularity-based methods.

5.2. Directed modularity [20]

This modularity maximization approach is adapted in
the case of a directed network. Therefore, in this case we
have a matrix representation of the graph, but the matrix
is not symmetric.

The algorithm is based on [84]. Authors consider first
the simplified problem of dividing a directed network into
just two communities, with a restored symmetric adja-
cency matrix. The basic idea is to calculate the eigenvec-
tor corresponding to the largest positive eigenvalue of the
symmetrized matrix and then assign communities based
on the signs of the elements of the eigenvector.

This spectral method typically provides an excellent
guide to the broad outlines of the optimal partition, but
may err in the case of individual vertices, a situation that

can be remedied by adding a “fine-tuning” stage to the
algorithm in which the vertices are moved back and forth
between communities in an effort to increase the modular-
ity, until no further improvements can be made.

There are a variety of ways of generalizing the approach
to more than two communities but the simplest, adopted
by the authors, is repeated bisection. Further, more re-
cent works point to apply also the modularity approach to
directed and overlapping communities [85].

5.3. External Optimization [21]

This algorithm represents an evolution and optimiza-
tion of modularity-based approaches. Is basically a divi-
sive algorithm that optimizes the modularity Q using a
heuristic search. This search is based on a measure that
depends on the node degree, and its normalization involve
all the links in the network after summation. This mea-
sure is called λi, and it is related to the contribution of
individual nodes i to the final computation of the global
modularity value (for more details see [21]).

The node selected, in original EO algorithm [86] is al-
ways the node with the worst λi-value. There is a τ -EO
version [87] that is less sensitive to different initializations
and allows escape from local maxima (for what is a local
maximum in modularity maximization, consider again the
rightmost peak in Figure 5).

A number of other optimization strategies has been
proposed. Most efficient is the size reduction [88], that
works better than simulated annealing [89].

5.4. Local modularity [22]

Intuitively, in order to obtain a local modularity evalu-
ation, there should be no need to know nothing about the
global structure of the network. The local version of mod-
ularity was developed in order to tackle its high complexity
in maximization for huge networks.

Authors define a core of vertices and they know every-
thing about this core C. Around C there is a boundary
zone B. In B we have all the nodes adjacent to the ones
present in C, and we know only the edges that are directly
connected to C. We don’t know nothing about the other
edges that connect the boundary to the remaining part of
the network, unexplored U (C ∪ B is a sort of ego-network
[90] of C).

The local modularity measure QC (generalizable for
weighted networks) takes into account the number of edges
with one or more endpoints in B on the number of those
edges with neither endpoint in U .

Initially, the algorithm places the source vertex in the
community, v0 = C, and places its neighbors in U . At each
step, the algorithm adds to C (and to B, if necessary) the
neighboring vertex that results in the largest increase (or
smallest decrease) in QC , breaking ties randomly. Finally,
it adds to U any newly discovered vertices, and updates
its estimate of QC . This process continues until it has
agglomerated either a given number of vertices k, or it
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has discovered the entire enclosing component, whichever
happens first.

5.5. Modularity Unfolding [23]

This algorithm was developed to be applicable to huge
graphs. The previous largest graph used for modularity
testing was 5.5 millions nodes [91], with this improvement
it is possible to scale up to 100 millions nodes.

The algorithm is divided in two phases that are re-
peated iteratively. It starts with a weighted network of n
nodes. It assigns a different community to each node of
the network. Then, for each node i authors consider the
neighbors J of i and evaluate the gain of modularity that
would take place by removing i from its community and
by placing it in the community of J . The node i is then
placed in the community for which this gain is maximum,
but only if this gain is positive. If no positive gain is pos-
sible (or if it is not greater than a given threshold, used
to reduce the running time), i stays in its original com-
munity. This first phase stops when a local maximum of
the modularity is attained, i.e. when no individual move
can improve the modularity. The output of the algorithm
depends on the order in which the nodes are considered.

The second phase of the algorithm consists in build-
ing a new network whose nodes are now the communities
found during the first phase. To do so, the weights of the
links between the new nodes are given by the sum of the
weight of the links between nodes in the corresponding two
communities. Once this second phase is completed, it is
then possible to reapply the first phase of the algorithm to
the resulting weighted network and to iterate.

This method has been tested on the Uk-Union Web-
Graph [92], and it has been used also for co-citation net-
works [93].

5.6. Multislice modularity [24]

The multislice modularity framework was developed
starting from the assumption that none of the available
community-detection methods is directly applicable to dy-
namic and/or multidimensional networks. In these cases
the analyst was forced to rely on detecting communities
separately at each time and then to use ad hoc methods
or special constraints to piece together the structures ob-
tained at different times/dimensions (and this is consistent
with this survey, please check Table 2).

In order to generalize modularity for multidimensional
and dynamic networks, authors extend the null model of
modularity (the random graph) to this novel setting. In
order to do so, they use several generalizations, like an
additional parameter that controls the coupling between
dimensions, basing their operation on the equivalence be-
tween modularity-like quality functions and Laplacian dy-
namics of populations of random walkers [51]. In that work
a quality function equivalent to modularity was derived
for unipartite, undirected and monodimensional networks.
In the multislice formulation authors extend the work of
Lambiotte et al. in three directions.

First, they restrict the independent joint probability
contribution to one that is conditional on the type of con-
nection (dimension or temporal link to pass from a net-
work snapshot to another) necessary to step between two
nodes. This yields to some known null model generaliza-
tions for bipartite networks [94]. Second, they generalize
the Laplacian dynamics to include motion along multiple
types of connections. Also in this case, the generalization
of the Laplacian dynamics recovers, via a similar deriva-
tion, a recently-developed null model for signed networks
[95]. Third, they interpret the Laplacian dynamics flexibly
to permit different spreading weights on the different di-
mensions and temporal snapshots. Also in this third case
there is another different equivalent generalization [96].

In order to represent both snapshots and dimensions of
the network, authors use the concept of slice. Each slice
s of a network is represented by adjacencies Aijs between
nodes i and j. Authors specify also inter-slice couplings
Cjrs that connect node j in slice r to itself in slice s. They
notate the strengths of each node individually in each slice,
so that kjs =

∑

i Aijs and cjs =
∑

r Cjsr , and define the
multislice strength κjs = kjs + cjs. Authors then specify
the associated multislice null model using the probability
ρ(is|jr) of sampling node-slice is conditional on whether
the multislice structure allows one to step from node-slice
jr to node-slice is (considering intra- and inter-slice steps
separately). The resulting multislice extended definition
of modularity is the following:

Q =
1

2µ

∑

ijsr

{(

Aijs − γs

kiskjs

2ms

δsr

)

+ δijCjsr

}

δ(cis, cjr).

In this extension γs is the resolution parameter, that may
be or may be not different for each slice. If ∀sγs = 1
then this formula degenerates on the usual interpretation
of modularity as a count of the total weight of intra-slice
edges minus the weight expected at random. Otherwise
the inter-slice coupling Cjsr are considered. Cjsr takes
values from 0 to ∞. If Cjsr = 0 we degenerate again in
the usual modularity definition. Otherwise the quality-
optimizing partitions force the community assignment of
a node to remain the same across all slices in which that
node appears, and the multislice quality reduces to that of
an adjacency matrix summed over the contributions from
the individual slices with a null model that respects the
degree distributions of the individual contributions. The
generality of this framework also allows one to include dif-
ferent weights across the Cjsr couplings.

After defined the new quality function, the algorithm
needed to extract communities can be one of the many
modularity based algorithm, thus using the modularity
unfolding technique [23] the complexity drops to O(mk)
per dimension.

5.7. MetaFac [25]
In this work, authors introduce the concept of meta-

graph. The metagraph is a relational hypergraph for repre-
senting multi-relational and multi-dimensional social data.
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Figure 6: A third-order tensor.

First authors begin to define the elements of the meta-
graph. In this model, a set of entities of the same type is
called a facet. The interaction among (two or more) facets
is called a relation.

An hypergraph is a well know graph generalization. In
this representation the edges, called hyperedges, connect
any number of vertices. The idea of the authors is to
use an M -way hyperedge to represent the interactions of
M facets: each facet as a vertex and each relation as an
hyperedge on an hypergraph. A metagraph defines a par-
ticular structure of interactions among facets (groups of
entities of the same type), not among facet elements (the
entities themselves).

The goal of the authors is to discover latent community
structures in the metagraph that represent the context of
user actions in social media networks. They are interested
in clusters of people who interact with each other in a
coherent manner.

In order to do so, the metagraph is defined as a set of
data tensors. A tensor is an array with N dimensions. In
these N dimensions we can identify the Nth-order tensor
as an element of the tensor product of N vector spaces,
each of which has its own coordinate system. This is a
mathematical and computer science definition of tensors,
for the tensor notion in physics and engineering please refer
to [97]. A “third-order” tensor has three indexes, as shown
in Figure 6; a “first-order” tensor is a vector; a “second-
order” tensor is a matrix, and tensors of order three or
higher are called higher-order tensors. For an extensive
review about tensors, tensor decomposition and their ap-
plications and tools please refer to [98] (in this work there
are also provided some examples of possible applications
of tensor decomposition: signal processing [99], numerical
linear algebra [100] and, more close to our area of interest,
data mining [101, 102], graph analysis tasks [103, 104] and
recommendation systems [105]).

Given the metagraph and its defined data tensors, au-

thors want to find a non negative core tensor and factors
for a corresponding set of facets. The tensor decomposi-
tion and factorization is a very hard task with a known
number of issues. To the best of our knowledge, only re-
cently some memory and time efficient techniques have
been developed, such as [106]. In the metagraph approach
the tensor decomposition can also be viewed as a dynamic
analysis, when the set of tensors are temporally annotated
and the resulting core tensor refers to a specific time-step
t. This is called metagraph factorization (for time evolving
data).

Finally, the MF problem can be stated in terms of op-
timization, i.e. minimizing a given cost function, thus ob-
taining facet communities.

5.8. Variational Bayes [26]

In this work, authors specify an N − node network by
its adjacency matrix A and define σi ∈ {1, ...,K} to be the
unobserved module membership of the ith node.

Authors define a joint probability by considering the
number of edges present and absent within and among
the K communities of a network. Traditional methods
[107] needs to specify K, this one is parameter free, using
particular distributions on the vectors.

Given the adjacency matrix, authors determine the
most probable number of modules (i.e. occupied spin states)
K = argmaxKp(K|A) and infer posterior distributions
over the model parameters (i.e. coupling constants and
chemical potentials) p(π, θ|A) and the latent module as-
signments (i.e. spin states) p(σ|A). The problem to assign
each node to a module in the network is tackled by solv-
ing the disorder-averaged partition function of a spin-glass,
calculated by marginalizing over the possible quenched val-
ues of the parameters of the system.

The computationally intensive solution is tackled using
the variational Bayes approach [108].

To minimize the given confusion parameter the algo-
rithm needs multiple random-chosen initialization of the
parameters.

5.9. LA→ IS2* [27]

In this work, authors adopt this definition of commu-
nity: a group C of actors in a social network forms a com-
munity if its communication density function achieves a
local maximum in the collection of groups that are close to
C [109]. Basically, a group is a community if adding any
new member to, or removing any current member from,
the group decreases the average of the communication ex-
changes.

This work is an evolution of [110]. It is build on two
distinct phases: Link Aggregate (LA) and the real core
of the community detection (IS2). Authors need a two
steps approach because the IS2 algorithm performs well
at discovering communities given a good initial guess, for
example when its initial guesses are the outputs of another
clustering algorithm, in this case called Link Aggregate
(LA).
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In LA, the nodes are ordered according to some cri-
terion, for example decreasing Page Rank [111], and then
processed sequentially according to this ordering. A node
is added to any cluster if adding it improves the cluster
density. If the node is not added to any cluster, it creates
a new cluster. The complexity of this stage is O(mk+n).

IS2 explicitly constructs a cluster that is a local max-
imum w.r.t. a density metric by starting at a seed can-
didate cluster and updating it by adding or deleting one
node at a time as long as the metric strictly improves.
The algorithm stops when no further improvement can be
obtained with a single change. The nodes capable of in-
creasing the cluster density are the members of the cluster
itself (which could be removed) or members of the cluster
immediate neighborhood, defined by those nodes adjacent
to a node inside the cluster.

As one can see, the IS2 algorithm can be applied to
the results of any other clustering technique, thus making
this approach a general framework useful to improve some
incomplete results.

5.10. Local Density [28]

In order to compute the “Local Density”, authors de-
fine the internal degree of a cluster C to be the number of
edges connecting vertices in C to each other, degint(C) =
|{(u, v) ∈ E|u, v ∈ C}|. Thus it is possible to define the
local density of cluster as

δl(C) =
2degint(C)

|C|(|C| − 1)
.

Optimizing δ ∈ [0, 1] alone makes small cliques superior
to larger but slightly sparser sub-graphs, which is often
impractical. For clusters to have only a few connections
to the rest of the graph, one may optimize the relative
density

δr(C) =
degint(C)

degint(C) + degext(C)
,

where degext(C) = |{(u, v) ∈ E|u ∈ C, v ∈ V \ C}|. The
final quality measure used is f(C) = δl(C)δr(C).

A good approximation of the optimal cluster for a given
vertex can be obtained by local search. To locate a cluster
containing a given vertex v ∈ V from a graph G = (V,E),
authors stochastically examine subsets of V containing v,
and choose the candidate with maximal f as C(v). The
initial cluster C(v) of a vertex v contains v itself and all
vertices adjacent to v. Each search step may either add a
new vertex that is adjacent to an already included vertex,
or remove an included vertex.

Authors guide the local search with simulated anneal-
ing [112].

6. Bridge Detection

The meta definition of community for the algorithms
in this Section is the following:

Figure 7: An example of graph which can be partitioned identifying
a “bridge”.

Meta Definition 4 (Community). A community in a
complex network is a component of the network obtained
by removing from the structure all the sparse bridges that
connects the dense parts of the network.

The bridge identified by the arrow in Figure 7 is a per-
fect example of edge to be removed in order to decompose
the network into disconnected components which represent
our communities.

The main focus for these approaches is how to find
these bridges (that can be both nodes or edges) inside the
network. The most popular approach in this category is
to use a centrality measure.

In social network analysis a centrality measure is a met-
ric defined in order to obtain a quantitative evaluation of
the structural power of an entity in a network [113]. An
entity does not have power in the abstract, it has power
because it can dominate others: ego’s power is alter’s de-
pendence. There are a number of measures defined to
capture the power of an entity in a network. Some of
them are: Degree centrality, actors who have more ties
to other actors may be advantaged positions; Closeness
centrality, the more close an entity is to any other en-
tity in the network, the more power it has; Betweenness
centrality, the most important entity in the network is
the entity present in the majority of the shortest paths
among all other entities.

Here we will focus on two methods based on an edge
definition of the traditional node betweenness centrality:
the very first edge betweenness community discovery algo-
rithm [4], that recently has been object of further evolu-
tions, and a general approach that uses the split between-
ness concept in order to obtain an overlapping community
discovery framework [29]. We then consider also two al-
ternative methods [30, 31] that try to detect the bridges
by expanding the community structure and computing a
community fitness function.
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Figure 8: An intuitive example of bridge detection approach. In this
graph the edge width is proportional to the edge betweenness value.
Wider edges are more likely to be a bridge among communities.

6.1. Edge Betweenness [4]

This is one of the first community discovery algorithms
developed after the renew interest in social network analy-
sis started at the end of the 90s. Previously the traditional
graph partitioning approach was constructing communi-
ties by adding the strongest edges to an initially empty
vertex set (such as in hierarchical clustering [114]). Here,
authors construct communities by progressively removing
edges from the original graph.

In order to find which edges in a network are most be-
tween other pairs of vertices, authors generalize Freeman’s
betweenness centrality [115] to edges and define the “edge
betweenness” of an edge as the number of shortest paths
between pairs of vertices that run along it.

If a network contains communities or groups that are
only loosely connected by a few inter-group edges, then
all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. In Figure 8
we have depicted an example. In this Figure, the size of
the edges is proportional to their edge betweenness. As one
can notice, the higher edge betweenness values are taken
by the edges between communities. By removing these
edges, it is possible to separate a group from one another
and so reveal the underlying community structure of the
graph

While the classical implementation of the edge between-
ness algorithm is O(mn), recently has been proposed a
speed-up for parallel systems that is linear [116]. Thus
without the parallel algorithm the worst case time com-
plexity is O(m2n).

A slight variation of this method instead of edge be-
tweenness centrality uses a local measure called edge clus-
tering coefficient as a criterion for removing edges [117],
or other definitions [118]. The edge clustering coefficient
is defined as the fraction of number of triangles a given
edge participates in, to the total number of possible such
triangles. The clustering coefficient of an edge is expected

to be the least for those running between communities and
hence the algorithm proceeds by removing edges with low
clustering coefficients. The total running time of this di-

visive algorithm is O(
m4

n2
).

6.2. CONGA [29]

CONGA (Cluster-Overlap Newman Girvan Algorithm)
is based on the well known edge betweenness community
discovery algorithm [4], described in Section 6.1. It adds
to this algorithm the ability to split vertices between com-
munities, based on the new concept of “split betweenness”.

The split betweenness [119] of a vertex v is the number
of shortest paths that would pass between the two parts
of v if it was split. There are many ways to split a vertex
into two, the best split is the one that maximizes the split
betweenness.

The proposed algorithm:

1. Calculate edge betweenness of edges and split be-
tweenness of vertices.

2. Remove edge with maximum edge betweenness or
split vertex with maximum split betweenness, if greater.

3. Recalculate edge betweenness and split betweenness.

4. Repeat from step 2 until no edges remain.

In CONGA, edge betweenness and split betweenness
are calculated by counting the number of short paths. This
is not an exact solution, but it is defined a greedy heuristic.
In particular, the shortest path considered are those no
longer than h (a parameter).

CONGA is also used in the Peacock framework in which
it is possible to use a classical disjoint community discov-
ery algorithm in order to find overlapping communities
[120]. The network is transformed to a new, larger, net-
work. Each step of the transformation splits a vertex into
two vertices and one edge, then it is applied a classical
CD algorithm and the result is a (possible) overlapping
community structure of the network.

6.3. L-Shell [30]

The strategy of this method consists of an l − shell

spreading outward from a starting vertex. An l − shell is
a group of l vertices whose aim is to grow and occupy an
entire community. As the starting vertex’s nearest neigh-
bors and next nearest neighbors (and so on) are visited by
the l − shell, two quantities are computed: the emerging
degree and total emerging degree. The emerging degree of
a vertex is defined as the number of edges that connect
that vertex to vertices the l − shell has not already vis-
ited as it expanded from the previous (l − 1), (l − 2), ...
−shells. The total emerging degree Kj of an l − shell is
then the sum of the emerging degrees of all vertices on the
leading edge of the l− shell.

For a starting vertex j the algorithm starts an l−shell,
l = 0, at vertex j (add j to the list of community members)
and compute the total emerging degree of the shell. Then
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it spreads the l− shell, l = 1, it adds the neighbors of j to
the list, and compute the new total emerging degree. Now
it is able to compute the change in the emerging degree of
the shell. If the total emerging degree is increased less than
a given threshold α, then a community has been found.
Otherwise it increases the size of the shell (posing l =
l+1) until α is crossed or the entire connected component
is added to the community list. The assumption is that
a community is a structure in which the total emerging
degree cannot be significantly increased, i.e. the vertices at
the border of the community have few edges outside it and
these edges are the bridges among different communities.

It is possible for the l−shell to spill over the community
it is detecting. This is dependent on how the starting ver-
tex is situated within the graph: if it is closer (or equally
close) to some non-community vertex, the l − shell may
spread along two or more communities at the same time.
To alleviate this effect, one can run the algorithm n times,
using each vertex as a starting vertex, and then achieve
a group consensus as to which vertices belong to which
communities.

6.4. Internal-External Degree [31]

An approach close to l − shell starts from the simi-
lar basic assumption that communities are essentially lo-
cal structures, involving the nodes belonging to the mod-
ules themselves plus at most an extended neighborhood
of them. A community is a sub-graph identified by the
maximization of a property or fitness of its nodes. The
fitness chosen here is the total internal degree of nodes on
the sum of internal and external degrees to the power of a
positive real-valued parameter (α).

The internal degree of a module equals the double of
the number of internal links of the module. The external
degree is the number of links joining each member of the
module with the rest of the graph.

Given a fitness function, the fitness of a node A with
respect to sub-graph G, fG, is defined as the variation of
the fitness of sub-graph G with and without node A.

The steps of the algorithm are significantly different
from the l−shell formulation. A loop is performed over all
neighboring nodes of G not included in G. Then neighbor
with the largest fitness is added to G, yielding a larger
sub-graph G’. After the new node is added, the fitness
of each node in G’ is recalculated. If a node turns out
to have negative fitness, it is removed from G’, yielding
a new sub-graph G”. In this case the fitness needs to be
recomputed for each node, otherwise a new neighboring
node of the new G is added. The process stops when the
nodes examined in the neighborhood of G all have negative
fitness, i.e. their external edges are all bridges.

To cover all the network one pick at random a node,
compute and then pick at random another node that is
not in the first community and so on.

Large values of α yield very small communities, small
values instead deliver large modules. For α = 1 this

Figure 9: An example of graph partitioned with a diffusion process.

method is equivalent to [117], another algorithm that falls
in this category. By going from α = 0.5 to α = 2 one can
discover the hierarchical structure of the network.

7. Diffusion

A diffusion is a process in which vertices or edges of a
graph are randomly designated either “occupied” or “un-
occupied” and one asks about various properties of the
resulting patterns of vertices [121] (see Figure 9). A gen-
eralization of a diffusion process can be used as technique
for community discovery in complex networks, according
to the following definition of community:

Meta Definition 5 (Community). A community in a
complex network is a set of nodes who are grouped together
by the propagation of the same property, action or infor-
mation in the network.

We recall that, according to this meta definition, a
community can be also defined as a set of entities in-
fluenced by a fixed set of sources. This consideration
is important because consider as a community discovery
method also algorithms which are not explicitly developed
as approaches for the graph partitioning. Basically, this
definition of the problem overlaps with another well known
data mining problem: influence spread and flow maximiza-
tion [1], often for viral marketing purposes [122]. In this
field some preliminary ideas can be found in [123], but
in this work only a novel centrality measure is defined,
and the approach can be mapped in the Newman edge
betweenness algorithm [4].

Other interesting works in viral marketing are, given a
community partition, the analysis of the group character-
istics in order to predict their evolution [124]. Moreover,
it is possible to predict if a single vertex will be attached

18



to that group, or even classify some features (and the evo-
lution of these features) of a group. While it is not a com-
munity discovery work, this can be used as a framework
after a community detection algorithm in order to obtain
a temporal evolving description of the identified groups.

To sum up, the classical community discovery diffusion-
based algorithms here presented are: a label propagation
technique [32], dynamic node coloring for temporal evolv-
ing communities [33] and an edge resistor algorithms that
consider the original graph as an electric circuit [34].

The influence propagation approaches here reviewed
are: an analytical description of a network representing
an exchange of information [35]; GuruMine [8], a frame-
work whose aim is to analyze the so called “tribes”, De-
greeDiscountIC [36], a classical spread maximization al-
gorithm and a mixed membership stochastic blockmodels
algorithm [37], which uses Bayesian inferences in order to
compute the final state of the influence vectors for each
node in the network.

7.1. Label Propagation [32]

Suppose that a node x has neighbors x1, x2, ..., xk and
that each neighbor carries a label denoting the community
to which it belongs to. Then x determines its community
based on the labels of its neighbors. A three step example
of this principle is depicted in Figure 10.

Authors assume that each node in the network chooses
to join the community to which the maximum number of
its neighbors belong to. As the labels propagate, densely
connected groups of nodes quickly reach a consensus on
a unique label. At the end of the propagation process,
nodes having the same labels are grouped together as one
community.

Ideally the iterative process should continue until no
node in the network changes its label. However, there
could be nodes in the network that have an equal max-
imum number of neighbors in two or more communities.
Authors perform the iterative process until every node in
the network has a label to which the maximum number
of its neighbors belong to. The stop criterion is only a
condition and not a measure that is being maximized or
minimized. Consequently there is no unique solution and
more than one distinct partition of a network into groups
satisfies the stop criterion.

As one can expect, an equal maximum number of neigh-
bors in two or more communities can belong to both com-
munities, thus identifying overlapping communities. It is
easy to define an overlapping version of this algorithm.
Recently, this overlapping formulation has been proposed
[125].

7.2. Node coloring [33]

In this approach, that represents an evolution of [126],
the base input representation is a bipartite graph of in-
dividuals connected to events. At each snapshot of the
graph some individuals form groups by attending at the
same event. The rules to identify a community are:

1. In each time step, every group is a representative of
a distinct community;

2. An individual is a member of exactly one community
at any one time (but can change community affilia-
tion over time);

3. An individual tends not to change its community
affiliation very frequently;

4. If an individual keeps changing its affiliations among
many different communities, then it is not a true
member of any of those communities;

5. An individual is frequently present in the group rep-
resenting the community with which it is affiliated.

Authors define the community interpretation of a graph
G a function f : V → N. Each individual belongs to ex-
actly one community in each time-step, and each group
represents exactly one community. Thus, even if the affil-
iation can change over time, this is a disjoint community
detection algorithm, not an overlapping one.

To measure the quality of a community interpretation,
authors use costs to penalize violations of Postulates 3
and 5. There are three different types of costs: individual
(incurred whenever an individual changes its color), group
(if an individual vertex does not have an edge to the group
of the same color or if an individual vertex has an edge
to a group of a color different from its own) and color
(for each color an individual uses beyond its first). The
optimization problem is then to find the valid community
interpretation minimizing the total cost resulting from the
individual edges, group edges and color usage.

Authors present an exhaustive global optimum algo-
rithm with exponential time complexity (that with dy-
namic programming tries all possible coloring of the graph)
and then some heuristics. First one: a group coloring is
good if most of the individuals can retain their color from
one step to the next. Thus it is possible to enumerate all or
many maximal matchings, and choose from among them
based on the actual coloring cost. Second: the matching
algorithm tries to maximize the amount of similarity (us-
ing Jaccard index) preserved from one time step to the
next. The greedy algorithm repeatedly selects the groups
pair (g, g′) with the highest similarity, and decide that g, g′

should have the same color.
In a further work [127] the authors present a set of

heuristics and optimizations that can lead to lower time
complexity of their algorithm.

7.3. Kirchhoff [34]

In this paper, the basic idea is to imagine each edge to
be a resistor with the same resistance. It is then possible
to connect a “virtual battery” between some chosen ver-
tices so that they have fixed voltages. Having made these
assumptions the graph can be viewed as an electric cir-
cuit with current flowing through each edge (resistor). By
solving Kirchhoff equations authors can obtain the volt-
age value of each node. Authors claim that, from a node’s
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Figure 10: Possible steps of a label propagations-based community discoverer.

voltage value they are able to judge whether it belongs to
one community or another.

There are three critical questions. In order to answer to
these questions authors enumerates a series of heuristics.
Main issues and solutions are the following:

1. How to pick the two poles so that they lie in differ-
ent communities? The proposed solution is to pick
poles randomly using some characteristics (such as
geodesic distance) to be sure that the two nodes lies
in different communities.

2. What threshold should be used to separate the two
communities? A tolerance parameter is defined. It
expresses how much a node belongs to a particular
community. This can also be generalized for over-
lapping community discovery.

3. How to generalize this method to networks with more
than two communities? Authors propose to repeat
the process in order to find the maximum voltage
gap and apply a majority vote.

A further expansion [128] apply a walk-based approach
in order to unveil the hidden hierarchical structure of the
network and identify good choices for the seed poles. Then
authors apply a very similar implementation of this method
using a Kirchhoff matrix.

7.4. Communication Dynamic [35]

The focus of the paper is on an analytical description
of the evolution of a network, whose size is stable over
time and represent the exchange of communication among
individuals. The authors present a locality based model
for communication dynamics, that can be used in order to
identify the mechanisms of community creation and evo-
lution over time in a social network.

Existing similar approaches, such as preferential at-
tachment [129], are applicable only when the communica-
tions are open (observable to all nodes). Authors instead
present a locality based model which relies on two funda-
mental principles: first the concept of locality reduces the
set of nodes a node can attach to in the next time step, and

second after obtaining a node’s locality, one must specify
the attachment mechanism, used by the individual to se-
lect the nodes in its locality to which it will connect at the
next time step. This is a Markov chain-like approach.

For the preliminary community structure that identi-
fies the local environment of a node authors use an existing
method based on density [27]. Authors define the blogo-
graph as a directed, unweighted graph representing the
communication of the blog network within a fixed time-
period. There is a vertex in the blogograph representing
each blogger and a directed edge from the author of any
comment to the owner of the blog. Authors consider con-
secutive weekly snapshots of the network.

Authors recorded statistics as number of vertices, edges,
power-law degree distribution exponent, giant component
size and so on, observing that they are stable over time,
consistent with previous observation (like in [130] and [131]).
They also provide an indicator of a community vitality
over time.

The goal of the model is to produce a sequence of
graphs which simulate the connection and reconnection
of vertices and can be used for community validation.

7.5. GuruMine [8]

Aim of GuruMine is to investigate how influence (for
performing certain actions) propagates from users to their
network friends, potentially recursively, thus identifying a
group of users that behaves homogeneously (i.e. a tribe,
or a community). A node u is a leader if u performed
a and within a chosen time bound after u performed a, a
sufficient number of other users performed a. Furthermore
these other users must be reachable from u thus capturing
the role social ties may have played.

For instance, in Table 3 we have a possible action table
with two actions, α and β, and five users. Figure 11(b)
and 11(c) represent the influence graphs of these two ac-
tions. U1 can be considered a tribe leader in both cases.
However, for action α, U1 can be considered not a leader
if the threshold regarding the minimum number of influ-
enced users is equal to 4.
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User Action Time
U1 β 12
U5 β 14
U1 α 15
U2 β 15
U3 β 16
U4 β 17
U2 α 18
U4 α 19
U3 α 19

(a) Action Table
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(b) Influence Graph, Ac-
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(c) Influence Graph, Action β

Figure 11: The GuruMine data structures.

A stronger notion of leadership might be based on re-
quiring that w.r.t. each of a class of actions of interest, the
set of influenced users must be the same: this will iden-
tify a tribe leader, meaning the user leads a fixed set of
users (tribe) w.r.t. a set of actions, that can be consid-
ered a community. The general goal is similar to some re-
cent works (such as [132], [133] and [134]). However, here
the input includes not just a graph (which is not edge-
weighted) but an action table which plays a central role
in the definition of leaders. Secondly, the focus is on find-
ing all leaders based on the frequent pattern mining ap-
proach, which is different from the approaches employed
in the above works.

Besides a classical social network, the method has as
input an action log, which contains a tuple (u; t; a) indicat-
ing that user u performed action a at time t. Users in the
Actions table correspond to nodes of the graph. For each
action, authors define a propagation graph whose nodes
are users who had performed the action at least once, and
directed edges whenever the action propagates from user i
to user j. Each propagation graph can have more than one
source node; it is directed, and cycles are impossible due
to the time constraint which is the basis for the definition
of propagation. Authors also define a maximum propaga-
tion time threshold π, at the basis of the influence graph
of each node (all nodes in the propagation graph that are
reachable from u with a maximum elapsed time equal to
π). To be a leader the influence graph must be greater
than a threshold ψ (for a number of actions greater than
σ), to be a tribe leader the composition of the influenced
graph must be the same.

Authors introduce also other constraints such as the
confidence threshold, similar to the confidence of the as-
sociation rules [135], and the genuine leader concept, i.e.
leaders that are not influenced by another leader. All
thresholds and parameters are optional.

Any algorithm for extracting leaders must scan the ac-
tion log table and traverse the graph. The implementa-
tion works with only one scan, with the action log stored
in chronological order, thus it is possible to use a (back-

ward moving) time window of size π. With this scan one
can compute the influence matrix IMπ(U ;A). (Genuine)
Leaders are easily computed from this matrix.

For tribe leaders one needs the influence cube Users×
Actions × Users, with cells containing boolean entries if
user v was influenced by user u w.r.t. action a. We can
see a tribe as an item-set, and finding tribe leaders as
finding frequent item-sets larger than a given threshold
ψ minimum acceptable tribe size, that is the definition of
common behavior community. The implementation of this
phase is provided with ExAMiner [136]. Once obtained the
tribes and the tribe leaders it is possible to merge tribes
influenced by the same group of leaders thus obtaining the
communities. Even if this step is not provided by Guru-
Mine, the idea can be easily implemented with a brute
force approach. Some efficient techniques can be devel-
oped.

This work is part of a bigger framework that supports
also a query interface [137].

7.6. DegreeDiscountIC [36]

In this work we are in the classical data mining in-
fluence spread setting. The problem definition consists
in defining whom to include in the initial set of targeted
users so that they eventually influence the largest num-
ber of people in the network. This knowledge can be used
for community discovery: each seed node is the head of a
community that acts uniformly and the set of these influ-
enced nodes are the community members. This work is an
implementation of the idea in [134] and the improvement
of the algorithm proposed in [133].

Influence is propagated in the classical network repre-
sentation of social interactions according to a stochastic
cascade model. The influence maximization problem is
to find k vertices in the graph (referred to as “seeds”)
such that under the influence cascade model, the expected
number of vertices influenced by the k seeds is the largest
possible.

Let S be the subset of vertices selected to initiate the
influence propagation. First optimization lays in the cas-
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cade model (IC). Let Ai be the set of vertices that are
activated in the i-th round, and A0 = S. For any uv ∈ E

such that u ∈ Ai and v is not yet activated, v is activated
by u in the (i + 1)-th round with an independent prob-
ability p, which authors call the propagation probability.
In other words, if there are neighbors of v that are in Ai,
v ∈ Ai+1 with probability p. This process is repeated un-
til Ai+1 is empty. Then authors remove all edges not for
propagation from G to obtain a new graph G′. With this
treatment, the set of influenced vertices is simply the set
of vertices reachable from S in G′.

A second optimization is applied in the weighted cas-
cade (WC) model. If u is activated in round i, then with
probability 1

dv

, v is activated by u in round i+1. Similar to
the IC model, each neighbor can activate v independently.
Therefore, if a not-yet-activated vertex v has neighbors
activated during the i-th round, the probability that v is
activated in round i+ 1 is 1

dv

.
As last optimization, if u has been selected as a seed,

then when considering selecting v as a new seed based on
its degree, authors not count the edge vu towards its de-
gree. Thus authors discount v degree by one due to the
presence of u in the seed set, and do the same discount
on v degree for every neighbor of v that is already in the
seed set. With this and more fine tuned heuristics on de-
gree, authors can develop a well performing algorithm in
reasonable complexity.

7.7. MMSB [37]

In the mixed membership stochastic blockmodels ap-
proach (in short MMSB) each node is associated with a
randomly drawn vector, say −→πi for node i, where πi,g de-
notes the probability of node i belonging to group g. Each
node can simultaneously belong to multiple groups with
different degrees of affiliation strength. The indicator vec-
tor −→z p→q denotes the group membership of node p when
it is approached by node q and −→z p←q denotes the group
membership of node q when it is approached by node p.

If the network has K groups, the algorithm is the fol-
lowing: for each node i draw a K dimensional mixed mem-
bership vector −→πi . For each node couple draw a mem-
bership indicator for the initiator, −→z p→q and one for the
initiator −→z p←q and finally sample the value of their inter-
action.

Each node may assume different membership when in-
teracting to or being interacted by different peers. Au-
thors also introduce a sparsity parameter to calibrate the
importance of non-interaction.

As for other mixed membership models, this is in-
tractable to compute. The normalizing constant of the
posterior is the marginal probability of the data, which
requires an intractable integral over the simplicial vectors
−→πi . A number of approximate inference algorithms for
mixed membership models have appeared in recent years
such as mean-field variational methods [138], expectation
propagation [139] and Monte Carlo Markov chain sampling

Figure 12: An example of graph which can be partitioned considering
the relative distance, in terms of number of edges, among its vertices.

[140]. In this work authors apply mean-field variational
methods to approximate the posterior of interest.

8. Closeness

A very intuitive notion of community in a complex net-
work is based on the concept of reachability of its members.
A community in practice is a set of individuals who can
communicate each other very easily because they have a
direct link with almost anybody in the community. We
have depicted a simple example for this configuration in
Figure 12. The underlying definition of community in this
case is the following:

Meta Definition 6 (Community). A community in a
complex network is a set of nodes who can reach any mem-
ber of its group usually crossing a very low number of
edges, significantly lower than the average shortest path
in the network.

A very efficient approach used with this problem def-
inition relies on random walks. In a network a random
walk is a process in which at each time step a walker is
on a vertex and moves to a vertex chosen randomly and
uniformly among its neighbors. The same procedure is
followed for the new selected vertex. This is a Markov
process. However, some different strategies has been for-
mulated in the past in order to obtain very sophisticated
random walk based application. Just as an example, the
popular link analysis PageRank algorithm [111] is based
on random walks.

To the best of our knowledge there are three main com-
munity discoverer which use random walks in order to find
community whose members are very close to each other:
Walktrap [38], based on the assumption that when per-
forming random walks the virtual surfer is trapped in the
high density regions of the graph (i.e. the communities);
DOCS [39], a more complex framework that uses also mod-
ularity as a fitness function; and Infomap [40], which ap-
plies an information-theoretic approach.
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8.1. Walktrap [38]

Walktrap approach is based on the following intuition:
random walks on a graph tend to get “trapped” into densely
connected parts corresponding to communities. Authors
consider some properties of random walks on graphs. With
there properties it is possible to define a measurement
of the structural similarity between vertices and between
communities, thus defining a distance function. With this
approach, one can merge iteratively the vertices into com-
munities. The final output is a hierarchical community
structure that may be represented in a dendrogram.

The key problem is the definition of the distance func-
tion, computed from the information given by random
walks in the graph. This distance must be large if the two
vertices are in different communities, and small otherwise.
In the original paper this distance is defined as:

rij =

√

√

√

√

n
∑

k=1

(P t
ik − P t

jk)2

d(k)

where P t
ik is the probability to go from i to j in t steps

and d(k) is the degree of vertex k.
A critical parameter is the length t of the random

walks: it must be sufficiently long to gather enough infor-
mation about the topology of the graph, but on the other
hand it must not be too long because when the length of
a random walk starting at vertex i tends towards infinity,
the probability of being on a vertex j only depends on the
degree of vertex j (and not on the starting vertex i).

High values of this measure mean that the two vertices
i and j “see” the network in a very similar way, thus they
belong to the same community.

Similar random walk approaches are [141, 142]. How-
ever they are more inefficient comparing the medium case
complexity of Walktrap.

8.2. DOCS [39]

This method is based on spectral partition and random
walk expansion, and represent an extension of [143].

The first step is to create the “seed groups”. DOCS
coarsens the original graph into a series of higher coarsen-
ing level graphs. Then the algorithm starts to agglomerate
these graphs. Agglomeration is measured by modularity:
if merging two neighbor groups brings good change to the
modularity value of whole graph, they will be collapsed.
The coarsest graph is split into two groups. The recur-
sive partition is executed until there is no possible further
partitioning step. Finally, the partition is projected back
to the original vertices by going through a series of lower
level graphs.

As second step, the seed groups are expanded with a
lazy random walks technique. The fixed-depth expansion
corresponds to a Breadth First Search tree. Its expan-
sion process never considers the vertex filtering conditions
and make the low-probability vertices have same expan-
sion weights with high-probability ones, which easily lead

to skewed community structures. The random walks tech-
nique extend the neighbors of a vertex with random proba-
bilities. The probabilities measure the expansion weights.
At each add the modularity [19] change is computed. If
the value is above zero, the new vertex is named as con-
tributing vertex. Otherwise, it is called non-contributing
one. In random walks, the algorithm also sorts all the ex-
panded vertices in a descending order by their contributing
values. Now the target communities can be extracted.

In order to perform this partition strategy, authors in-
troduce several concepts in their work. They define the
volume of a community as the total degrees of its mem-
bers; and the edge border as a set of those edges whose
vertices do not both belong to the community (but one
of them does). Closely related to te community volume,
another concept used by the authors is the community
sparsity (presented in [144] with a number of community
discovery algorithms). Also the concept of “Community
Overlapping Rate” is introduced as the fractions of the
cardinality of all the intersections of a given community
with all other communities on the cardinality of the given
community.

8.3. Infomap [40]

Infomap algorithm is considered one of the most accu-
rate community discovery methods currently available. It
is based on a combination of information-theoretic tech-
niques and random walks. Authors want to explore the
graph structure with a number of random walks of a given
length and with a given probability of jumping to a ran-
dom node. This approach is equivalent to the random
surfer of the PageRank algorithm [111]. Intuitively, the
random walkers are trapped into a community and exit
from it very rarely. Thus if we have a division in com-
munities we can efficiently describe these random walks
as a series of intra community steps followed by an inter
community jump. The formal equation described by these
concepts is the following:

L(M) = qH(Q) +

m
∑

i=1

piH(Pi)

where L is the lower bound for the number of bits
needed in the description of the nodes of the network, M
is the community partition, q is the probability that the
random walk jumps from a community to another on any
given step, H(Q) is the entropy of the description of the
community, m is the number of communities in the net-
work, pi is the fraction of within-community movements
that occur in community i and H(Pi) is the entropy of the
within-community movements, including the exit code for
community i.

Trying any possible community partition in order to
minimize L(M) is inefficient and intractable. Authors nar-
row the space of the candidate partitions with several it-
eration of a greedy modularity community discoverer [19].
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They then refine the partition of the graph with simu-
lated annealing [2]. This optimization is driven by the
information-theoretic principle of reducing the number of
bits needed to encode the information of the structure (i.e.
they minimize L(M)). This is done by assigning an Huff-
man coding to the nodes of the network.

The description of the nodes of the network is divided
into two levels. Authors retain unique names for large-
scale objects, the communities identified within the net-
work in the first step, and they reuse the names associ-
ated with fine-grain details, the individual nodes within
each community. This two-level description allows to de-
scribe the path in fewer bits, relying on the fact that a
random walker is statistically likely to spend long periods
of time within certain clusters of nodes.

9. Structure Definition

A number of works tackle the community discovery
with a very strong assumption: to be called a community a
group of vertices must follow a very strict structural prop-
erty. In other words, they use the following meta definition
of community:

Meta Definition 7 (Community). A community in a
complex network is a set of nodes with a precise number of
the edges among them, distributed in a very precise topol-
ogy defined by a number of rules. Set of nodes which do
not satisfy these structural rules are not communities.

Aim of the community discovery algorithm is to find
all the maximal structures in the network satisfying the
desired constraints.

This task can be considered very similar to a very well
known data mining problem in network analysis: the graph
mining. Some examples of graph mining algorithms are
[5, 145, 146, 147]. However, traditional graph mining al-
gorithms only returns all the single different structure pat-
terns with their support. In community discovery there is
only one important structure and the desired result is the
list of all vertex groups forming that structure in the net-
work.

Thus in this survey we will ignore the pure graph min-
ing algorithms and we will focus on the structural com-
munity discovery approaches. The methods here reviewed
are: clique percolation [3] and its evolution for bipartite
graphs [42], the s-plexes detection [41] (s-plexes are par-
ticular structures later defined) and a maximal clique ap-
proach [43]. We will not focus on other minor evolutions,
like the k-dense approaches ([148]).

9.1. K-Cliques [3]

Palla et al. suggest that community can be inter-
preted as a union of smaller complete (fully connected)
sub-graphs that share nodes. Authors define a k-clique-
community as the union of all k-cliques that can be reached
from each other through a series of adjacent k-cliques. Two

Figure 13: The overlapping community structure detected by a
clique-percolation approach.

k-cliques are said to be adjacent if they share k− 1 nodes.
Authors define also a k-clique chain as the union of a se-
quence of adjacent k-cliques. Further they introduce the
concept of k-clique connectedness: two k-cliques are k-
clique-connected if they are parts of a k-clique chain.

A 2-clique is simply an edge and a 2-clique-community
is the union of those edges that can be reached from each
other through a series of shared nodes. Similarly, a 3-
clique-community is given by the union of triangles that
can be reached from one an other through a series of shared
edges.

Consider Figure 13. In this case the clique percolation
approach detects {0, 1, 2, 3} as a 4-clique. Then it consid-
ers {1, 2, 3, 4}: it is again a 4-clique and it shares 3 vertices
with the previous one. Thus the two cliques are joined in
one community. Same considerations can be done for the
4-cliques {2, 3, 4, 6} and {2, 4, 5, 6}, thus identifying the
community {0, 1, 2, 3, 4, 5, 6}. Please notice that with this
process two communities can have an overlap of some ver-
tices. In this example both vertices 5 and 9 belongs to two
overlapping communities.

The algorithm first extracts all complete sub-graphs
of the network that are not parts of larger complete sub-
graphs. Aim of the first phase is to populate a clique-
clique overlap matrix. In this data structure each row
(and column) represents a clique and the matrix elements
are equal to the number of common nodes between the
corresponding two cliques. The diagonal entries are equal
to the size of the clique. The k-clique-communities can
be found by erasing every off-diagonal entry smaller than
k − 1.

9.2. S-Plexes Enumeration [41]

An s-plex is a relaxed concept of the c-isolated clique
[149]. Let G = (V,E) be an undirected graph. A set
S ⊆ V of k vertices is called c-isolated if it has less than ck
outgoing edges, where an outgoing edge is an edge between
a vertex in S and a vertex in V \S. Clearly, a c-isolated
clique is a concept close to a community, but it is consid-
ered too restrictive. The c-isolated cliques problem has a
known solution linear on number of edges and exponential
on the c isolation parameter [150].
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Instead of this concept authors use a relaxed version
of a c-isolated clique called s-plex [151]: in an undirected
graph G = (V,E), a vertex subset S ⊆ V of size k is
called an s-plex if the minimum degree in G[S] is at least
k − s. Hence, cliques are exactly 1-plexes. Authors also
define novel and different isolation concepts that make the
s-plexes enumeration closer to the community discovery
problem.

Since in an s-plex S of size k every vertex v ∈ S is adja-
cent to at least k− s vertices, the sub-graph induced by S
in the complement graph (the graph with the same set of
vertices and complementary edge set) G[S] is a graph with
a maximum degree of at most s−1. The idea is to enumer-
ate maximal s-plexes in G by deleting minimal sub-graph
with maximal degree equal to s − 1 in the complement
graph.

Another key concept for this solution is the pivot set
P . The pivot set contains the pivot vertex v and those
vertices that belong to the s-plex but are not adjacent to
v. The pivot vertex is defined as the vertex with the lowest
index among the vertices with less than c outgoing edges.

There is already a slower similar algorithm [152]. Here,
the simple idea is to pick a vertex v with more than d

neighbors, and then to branch into d+2 cases correspond-
ing to the deletion of v or the deletion of one vertex of an
arbitrary set of d+ 1 neighbors of v.

The algorithm removes vertices from candidate set C
having too few neighbors in C. It builds the comple-
ment graph, then for each possible pivot set P applies the
deletion of minimal sub-graph in the complement graph.
Finally, it removes enumerated s-plexes that either have
pivot u 6= v or are not maximal.

9.3. Bi-Clique [42]

This is a bipartite graph version that solves some issues
about the k-clique approach [3]. The k-clique algorithm
is unable to analyze sparse network regions, due to the
fact that 2-clique communities are simply the connected
components of the network. The first non-trivial k-clique
has size k = 3 and nodes must have at least two links in
order to qualify for participation in a 3-clique. In networks
with heavy tailed degree distributions, a large fraction of
the nodes have degree less than two and an even larger
fraction of nodes do not participate in cliques of size three
or greater.

Bi-clique is a natural approach for affiliation networks,
where a one-mode projection disregards important net-
work information: all (sparse) information about the bi-
partite linkages is reduced to a dense network of two-point
correlations; and all of the information contained in the
weights is typically discarded in a subsequent threshold-
ing operation. The presented Bi-Clique algorithm is able
to detect structures between 2-clique communities and 3-
clique communities where the k-clique algorithm fails to
locate structure. By changing two parameters the analyst
can identify both large groups of users with few interac-

tions among them and small groups that belongs to many
common affiliations.

Algorithm begins isolating the N maximal bi-cliques
in the bipartite network using [153]. Using this list the
authors create two symmetric clique overlap matrix for
the two classes of nodes. Then for both matrix diagonal
elements respectively greater than or equal to a and b,
the two parameters of the algorithm, are set to one. All
other diagonal elements are set to zero. All off-diagonal
elements that correspond to a zero diagonal element are
set to zero. Thus, only elements respectively greater than
or equal to a − 1 and b − 1 are kept. The final overlap-
ping matrix is obtained by the matrix intersection, using
the AND operator. The final step is to determine the con-
nected components of L; each component corresponds to
a bi-clique community

It is possible to construct a network consisting of the
bi-clique communities. In this network, each community is
a node and two communities are linked if they have nodes
in common.

9.4. EAGLE [43]

A community is commonly defined as an high link-
density portion of the graph. EAGLE starts from the
assumption of the presence of a large clique in a dense-
linked community. This clique could be considered the
core of the community. EAGLE algorithm deals with the
set of maximal cliques, a clique which is not a subset of
any other cliques, rather than the set of sole vertices.

Firstly find out all the maximal cliques in the network
with Bron-Kerbosch algorithm [154] (complexity O(3

n

3 )).
The maximal cliques, whose vertices are from some other
larger maximal cliques, are called subordinate maximal
cliques (discarded). Authors also set a threshold k and
neglect all the maximal cliques with the size smaller than
k (between 3 and 6). Some vertices (subordinate vertices)
do not belong to any remaining maximal cliques.

First stage: build the dendrogram. EAGLE finds out
all maximal cliques in the network, neglecting, as we said,
subordinate maximal cliques. The remainder cliques are
the set of the initial communities. Each subordinate ver-
tex is also considered an initial community comprising the
sole vertex. EAGLE then calculates the similarity between
each pair of communities. After this step it selects the
pair of communities with the maximum similarity, incor-
porating them into a new one community and calculate the
similarity between the new community and other commu-
nities. The similarity measure is the modularity [19]. This
calculation is repeated until only one community remains,
thus completing the dendrogram.

The second stage is the cut of the dendrogram. Any
cut through the dendrogram produces a cover of the net-
work. To determine the place of the cut, a measurement
is required to judge the quality of a cover, computed with
a given variant of modularity.
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10. Link Clustering

In literature there are some recent approaches based
on the idea that the community is not a partition of the
nodes of the network, but a partition of the links. In other
words, is the relationship between two entities that belongs
to a particular environment and the entities belong to all
the communities of their edges (or a subset of them). The
meta definition is the following

Meta Definition 8 (Community). A community in a
complex network is a set of nodes which share a number of
relations clustered together since they belong to a particular
relational environment.

The basic approaches to the link clustering problem is
to define a projection graph in which the nodes represent
the links of the original graph and the definition of a prox-
imity value in order to understand how close two edges
of the network are. In both cases the critical point is to
measure the relations among the edges. Then a classical
clustering algorithm could be applied.

The two methods here reviewed reflect both approaches.
The first one [44] define the projection graph with a ran-
dom walk measure for the proximity of the projected edges,
then uses modularity to compute the modules of the net-
work. The second one [45] is a general framework in which
it is possible to define any distance measure for the nodes
(such as the Jaccard index) and then apply a classical hi-
erarchical clustering technique based on this distance def-
inition.

10.1. Link modularity [44]

In this first link modularity work, authors suggest that
it is possible to define communities as a partition of the
links rather than of the set of nodes. A node may then
have links belonging to several communities and in this
case it belongs to several communities.

Authors interpret the usual modularity Q in terms of
a random walker moving on the nodes. They further de-
fine two walking strategy: a link-link and a link-node-link
random walk. They project the adjacency matrix into a
bipartite incidence matrix. The elements Biα of this n×m
matrix are equal to 1 if link α is related to node i and 0
otherwise.

The incidence matrix is then projected into a line graph:
a link is added between two nodes in this projected graph
if these two nodes had at least one node of the other type
in common in the original incidence bipartite graph. Then,
modularity is computed on this line graph.

10.2. Link Jaccard* [45]

In this approach, authors start from the assumption
that whereas nodes belong to multiple groups (individuals
have families, co-workers and friends), links often exist for
one dominant reason (two people are in the same family,

work together or have common interests). Instead of as-
suming that a community is a set of nodes with many links
between them, they consider a community to be a set of
closely interrelated links.

They define a similarity measure as the Jaccard coeffi-
cient. This measure is computed on the sets of neighbors
of each edges sharing one node (i.e. only adjacent edges).
The formula used is:

S(eik, ejk) =
|n+(i) ∩ n+(j)|

|n+(i) ∪ n+(j)|

where eik is an edge between nodes i and k and n+(i)
is the set of neighbors of node i. It is important to note
that the approach can be used with an arbitrary similar-
ity function for the edges. Furthermore, even if with this
formula weights and multipartite structures are not con-
sidered, authors claim that it is possible to extend the
approach in order to obtain these features.

Authors then build a dendrogram with a classical hi-
erarchical clustering approach using the defined similar-
ity measure. In the dendrogram each leaf is a link from
the original network and branches represent link commu-
nities. In the identified hierarchical structure, links oc-
cupy unique communities whereas nodes naturally occupy
multiple communities, owing to their links. Thus the ex-
tracted network structure is both hierarchical and overlap-
ping. The dendrogram is then cut optimizing the partition
density objective function [155].

Authors confront their approach with three state-of-
the-art algorithms (clique percolation [3], fast greedy mod-
ularity [19] and Infomap [40], each of them reviewed in this
survey) using four different evaluation metrics (overlap and
community coverage, and overlap and community quality)
obtaining on average better results.

11. No Definition

There exist in literature a number of frameworks for
community discovery which use a very trivial definition of
community or they have no definition at all. These meth-
ods often start from the assumption that there are some
desirable features for the community not provided by many
algorithms. They define some preprocessing and/or post-
processing operations and then apply them to a number
of different known other methods which do not extract
communities with the desired features. In this way they
improve the results.

Basically, the meta definition adopted is the following:

Meta Definition 9 (Community). Communities in a
complex network are sets which present a number of par-
ticular features regardless why their nodes are grouped to-
gether.

The works which present a proper community defini-
tion are, for instance, the evolutionary clustering [9] or the
CONGA algorithm [29], already presented in this survey.
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By presenting their desired common features for the sets
in the form of an independent community definition, these
methods are not included in this category.

Instead we focus on two methods: the first one is an
hybrid framework who combine bayesian and non-bayesian
approaches [46], the second one is a method that relies on
a custom definition of community given by the analyst
and then performs a multidimensional community discov-
ery identifying the noisy relations inside the network [47].

11.1. Hybrid* [46]

For this framework, authors start from the point that
overlapping communities are a more precise description for
the multiplicity of node’s links, compared to non-overlapping
approaches. If a node’s links cannot be explained by a
single membership, then the community discovery prob-
lem has to be solved in an overlapping formulation. On
the other hand, if a node’s links can be explained almost
equally well by a number of single and mixed memberships,
hard clustering may make a simpler assignment. The con-
clusion is that a combination of an overlapping community
discoverer that takes as input already hard defined com-
munity by a non overlapping methods should have better
performances.

From these assumptions HFCD framework is built. It
is made of three parts: the Bayesian core, the hint
source procedure and the coalescing strategies.

The Bayesian core is the overlapping community dis-
covery algorithm that collects the hint from the other non
overlapping method and outputs the final communities
partition. In this work authors use a Latent Dirichlet Al-
location on Graphs [156] as their core method. The reason
of the choice is the non parametric and robust nature of
the method on small perturbations. Authors claim that it
is possible to choose any other Bayesian model based on
Latent Dirichlet Allocation [157].

The Bayesian core needs some hints in order to per-
form the community discovery procedure. These hints are
provided by any other non overlapping community detec-
tion algorithm, called by the author “hard clustering”. In
the article, authors use two different hard clustering tech-
niques: modularity [19] and Cross Associations [55] (here
reviewed in its evolution as Context-specific Cluster Tree
[18]).

The most important contribution of this approach is
creating a procedure solving the problem of how to in-
corporate the hints into the core model. This is done by
the coalescing strategies. Authors propose three dif-
ferent strategies: attribute, seeds and prior. In the at-
tribute strategy the community to which a node belongs
is recorded as one attribute of the node itself. The LDA
algorithm is then extended and it will consider the values
of the community attribute as input for the community
detection. In seeds the community extracted by the hard
clustering method are used as the initial configuration of
the communities in the first step of LDA process. This in-
formation is then completely forgotten in the subsequent
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Figure 14: A multidimensional network. Solid, dashed and tick lines
represent edges in three different dimensions.

LDA loops. Prior is a strategy similar to seeds: the com-
munities are used as initial configuration, but in this case
the old community affiliations are retained and the final
result is a sort of average among the old hard communities
and the new overlapping structure. In order to make the
inference procedure both from attributes and for the initial
configuration, authors use the Gibbs sampling technique
[158].

11.2. Multi-relational Regression [47]

This algorithm aims mainly to discover hidden mul-
tidimensional communities. Authors call “relation” a di-
mension, i.e. a criterion to connect entities. They define
some relation networks, group them together and create
a kind of social network, calling it multi-relational social
network or heterogeneous social network, another name
for a multidimensional network. The basic assumption is
the following: each relation (explicit or implicit) plays dif-
ferent roles in different tasks.

For instance consider the multidimensional network de-
picted in Figure 14. Authors suppose that an analyst
might want to specify that nodes 8, 9, 10 and 11 belong
to the same community. Then the three dimensions (rep-
resented by solid, dashed and tick edges) have different
importance in reflecting the user information need. In par-
ticular the tick dimension can be considered noise, and the
most important dimension is obviously the dashed dimen-
sion. The community discovery process should take this
situation into account in order to provide an output close
to the user information needs.

To this end, authors represent each relation with a
weighted matrix. Each element in the matrix reflects the
relation strength between the two corresponding entities.
This matrix is then mined depending on a user example
(or information need): the user submits a query defining
the desired community structure. From this structure, the
algorithm reconstruct the possible hidden relation, com-
bining with linear techniques the single relation graphs,
and then perform the community discovery on the result-
ing hidden graph.
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The hidden relation is tackled as a prediction problem:
once the combination coefficients of the desired entities
and the desired relations are computed, the hidden rela-
tion strength between any object pair can be predicted.
This is a regression problem that can be solved with a
number of techniques [159]. For a discussion of the issues
in this solution based on unconstrained linear regression
please see [160]. The exact regression used is the Ridge
Regression.

12. Related Works

In the last decade, several reviews of community dis-
covery methods have been published in literature. To
the best of our knowledge, the most important works are
[161, 162, 163, 164, 165, 166].

Fortunato and Castellano [164], hugely extended by
Fortunato in [6], have published the most recent and prob-
ably the most comprehensive review on the community dis-
covery problem. They consider various definitions of com-
munity (local, global and vertex similarity), some features
of the communities to be extracted and different categories
for tackling the problem. The amount of algorithms and
references considered in this review is impressive. We be-
lieve that a novel review on this topic is needed because
authors analyze the main techniques of each method for
community detection, but they do not build an organiza-
tion of community definitions. Thus, they do not consider
what is the main contribution of the present work: the cre-
ation of a community definition based classification of the
state of the art algorithms. Not having our “inverted in-
dex” of community definitions, this review cannot be used
by a researcher with his/hers own definition of what is a
community in order to find the set of methods most close
to his/hers problem. The aim of this review is to talk
to people interested in build a new community detection
algorithm, not to people who want to use the methods
present in literature. Further, their work does not include
some more advanced features and definitions of commu-
nity present in literature, such as multidimensionality or
an influence spread formulation of the problem.

Also Porter et al. [165] and Schaeffer [166] provide a
very recent review of community discovery methods. In
this last work it is also introduced the problem of a com-
prehensive meta definition of community in a graph. How-
ever, they suffer of the same problem previously exposed:
although authors begin to provide different definitions of
community, they do not create the classification of the
community discovery algorithm based on it.

Newman [161] provides a pioneering work, in which or-
ganizes the historical approaches to the community discov-
ery in complex networks following their traditional fields
of application. Newman presents the most important clas-
sical approaches in computer science and sociology, enu-
merating algorithms such as spectral bisection [50] or hi-
erarchical clustering [167]. The paper then is devoted to

the review of the novel physic approaches to the commu-
nity discovery problem. Such methods are the known edge
betweenness [4] and modularity [80] approaches. This pa-
per is very useful in order to have an historical view of
the approaches to the problem, but it records few works
and it cannot consider all the algorithms and categories of
methods developed from its publication.

Chakrabarti and Faloutsos [162] present a complete
survey of many aspects in the task of graph mining. In
their review one important chapter is dedicated to com-
munity detection concepts, techniques and tools. Authors
introduce the basic concepts of the classical notion of com-
munity structure based on edge density, along with other
key concepts such as transitivity, edge betweenness and re-
silience. However, this survey is not explicitly devoted to
the community discovery problem. Thus the survey is lim-
ited to the description of the existing methods and does
not investigate further the possibility of different defini-
tions of community or more complex analysis setting.

Danon et al. [163] test an impressive number of dif-
ferent community discovery algorithms. Their work is
based on the comparison of the time complexity and per-
formances of the considered methods. Further, they define
an heuristic to evaluate the results of each algorithm and
compare also their performances. However, this work is
more focused on a practical comparison of the methods,
and not on a truly classification, both in the community
definition and in the feature considered for the input net-
work, of the existing techniques present in literature.

Recently, some authors also proposed a benchmark graph,
useful to test the community discovery algorithms [168].

13. Conclusions

In this work we have presented a survey on community
discovery algorithms. Aim of this survey was to create
a manual for the community discovery problem, useful to
answer the question: “Given what is for the analyst a
community, which community detection algorithm should
he/she use?”. This is a sort of “inverted index” in respect
to the classical approach of the community discovery re-
views, which are meant for an analyst already inside the
community discovery problem.

In order to do so, we have firstly tackled the main prob-
lem in this field of research: the lack of an universal ac-
cepted definition of what is a community. As pointed out
by Fortunato [6], this lack of a theoretical framework has
some important consequences not only in the community
detection task itself (if we do not agree on the meaning of
“community” how can we extract a community from the
network?) but also in other aspects. One of these aspects
is, for instance, the evaluation of an algorithm w.r.t. the
results from another approach with a different community
definition.

We have proposed a meta definition of community, and
on this basis we have built a novel classification of the
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community discovery methods based on the relationships
of each community definition with the general meta defini-
tion. The reviewed approaches are clustered under general
categories such as internal density, community structure
definition and so on. This classification is a proposed an-
swer to the problems pointed out by the review of Fortu-
nato. Each main method is then presented in details along
with its relationships with other algorithms.

A crucial open problem we identify is to deeply study
the overlap among the definitions of community. As pointed
out in Section 3.1 there are several complex connections
among different definitions and different algorithms. It is
worthwhile to create an accurate graph representation of
this overlap, in which the nodes are the algorithms con-
nected if they share part of their community definition,
some features of the input/output, some quality functions
or a search space exploration approach. This multidimen-
sional complex network can be studied in order to have a
more clear and detailed view on the community discovery
problem.

Another contribution of this paper is the inclusion of
novel important features of a graph partition algorithm,
not considered by other reviews. The definition of differ-
ent features is critical because, as one can expect, there
is no “perfect method” in general, but methods able to
consider multidimensionality or not, algorithms treating
overlapping communities or not, and so on. Including
novel features like the multidimensionality is important
because they add a fundamental analytical power to bet-
ter describe real world phenomena. Moreover, an approach
is not better if it has a longer list of supported features: in
some cases a specialized method can achieve better perfor-
mances of a general one. To this aim, we have designed the
Table 2 as a useful tool in order to check the features of all
algorithms, which helps the analyst in finding the desired
algorithm also at the level of the features and not only at
the level of the underlying comunity definition, presented
previously.

To define and predict what will be the most impor-
tant features in future is another open problem we leave
as a future work. There is interest especially in multidi-
mensionality, seen as a feature considered as part of the
solution of the problem and not only as an input to be pre-
processed. In other words, we want not only to consider
the multidimensionality as an input, but also to extract
truly multidimensional communities. Another interesting
feature could be the presence of both hierarchical and over-
lapping organization of the community structure at the
same time, since these two features were recently seen no
more as exclusive features [45].
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[118] I. Vragović and E. Louis, “Network community structure and
loop coefficient method,” Phys. Rev. E, vol. 74, p. 016105, Jul
2006.

[119] S. Gregory, “An algorithm to find overlapping community
structure in networks,” in Proceedings of the 11th European
Conference on Principles and Practice of Knowledge Discov-
ery in Databases (PKDD 2007), pp. 91–102, Springer-Verlag,
September 2007.

[120] S. Gregory, “Finding overlapping communities using dis-
joint community detection algorithms,” in Complex Networks:
CompleNet 2009, pp. 47–61, Springer-Verlag, May 2009.

[121] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Review, vol. 45, p. 167, 2003.

[122] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dy-
namics of viral marketing,” ACM Trans. Web, vol. 1, no. 1,
p. 5, 2007.

[123] S. Fortunato, V. Latora, and M. Marchiori, “A method to find
community structures based on information centrality,” 2004.

[124] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
“Group formation in large social networks: membership,
growth, and evolution,” in KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, (New York, NY, USA), pp. 44–54,
ACM, 2006.

[125] S. Gregory, “Finding overlapping communities in networks by
label propagation,” 2009.

[126] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of
dynamic social networks,” in KDD ’06: Proceedings of the
12th ACM SIGKDD international conference on Knowledge
discovery and data mining, (New York, NY, USA), pp. 523–
528, ACM, 2006.

[127] C. Tantipathananandh and T. Berger-Wolf, “Constant-factor
approximation algorithms for identifying dynamic communi-
ties,” in KDD ’09: Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data min-
ing, (New York, NY, USA), pp. 827–836, ACM, 2009.

[128] N. A. Alves, “Unveiling community structures in weighted net-
works,” Physical Review E, vol. 76, p. 036101, 2007.

[129] A.-L. Barabasi and R. Albert, “Emergence of scaling in ran-
dom networks,” Science, vol. 286, p. 509, 1999.

[130] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,
and T. Vicsek, “Evolution of the social network of scientific
collaborations,” PHYSICA A, vol. 311, p. 3, 2002.

[131] G. Kossinets and D. J. Watts, “Empirical analysis of an evolv-
ing social network,” Science, vol. 311, no. 5757, pp. 88–90,
2006.

[132] N. Agarwal, H. Liu, L. Tang, and P. S. Yu, “Identifying the
influential bloggers in a community,” in WSDM ’08: Proceed-
ings of the international conference on Web search and web
data mining, (New York, NY, USA), pp. 207–218, ACM, 2008.

[133] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and N. Glance, “Cost-effective outbreak detection
in networks,” in KDD ’07: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pp. 420–429, ACM, 2007.

[134] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the
spread of influence through a social network,” in KDD ’03:
Proceedings of the ninth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp. 137–146,
ACM, 2003.
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