Data Mining2 – Advanced Aspects and Applications

Fosca Giannotti and Mirco Nanni Pisa KDD Lab, ISTI-CNR & Univ. Pisa <u>http://www-kdd.isti.cnr.it/</u>

DIPARTIMENTO DI INFORMATICA - Università di Pisa anno accademico 2013/2014

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining by Tan, Steinbach, Kumar

Association rules - module outline

- What are association rules (AR) and what are they used for:
 - The paradigmatic application: Market Basket Analysis
 - The single dimensional AR (intra-attribute)
 - How to compute AR
 - Basic Apriori Algorithm and its optimizations
 - Multi-Dimension AR (inter-attribute)
 - Quantitative AR
 - Constrained AR
- How to reason on AR and how to evaluate their quality
 - Multiple-level AR
 - Interestingness
 - Correlation vs. Association

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
 - $\sigma(X) = |\{t_i|X \text{ contained in } t_i \text{ and } ti \text{ is a trasaction}\}|$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

An itemset whose support is greater
© Tan,Steibach, Kumar & Integration by (Glahnott&Nami) – DM2 2013-2014 (#)
than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:
 {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow Beer

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$$
$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

The Apriori Algorithm

• The classical Apriori algorithm [1994] exploits a nice property of frequency in order to prune the exponential search space of the problem:

"if an itemset is infrequent all its supersets will be infrequent as well"

- This property is known as "the antimonotonicity of frequency" (aka the "Apriori trick").
- This property suggests a breadth-first level-wise computation.

Apriori Execution Example (min_sup = 2)

The Apriori Algorithm

- Join Step: C_k is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k + +) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k'}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \end{cases}$

Generating Association Rules from Frequent Itemsets

- Only strong association rules are generated
- Frequent itemsets satisfy minimum support threshold
- Strong rules are those that satisfy minimun confidence threshold

For each frequent itemset, f, generate all non-empty subsets of
For every non-empty subset s of f do
 if support(f)/support(s) ≥ min_confidence then
 output rule s ==> (f-s)
end

10

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC →D,	ABD →C,	ACD →B,	BCD →A,
A →BCD,	B →ACD,	C →ABD,	D →ABC
AB →CD,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	BC →AD,
BD →AC,	CD →AB,		

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Multidimensional AR

Associations between values of different attributes :

CID	nationality	age	income
1	Italian	50	low
2	French	40	high
3	French	30	high
4	Italian	50	medium
5	Italian	45	high
6	French	35	high

RULES:

nationality = French	⇒ income = high [50%, 100%]
income = high	\Rightarrow nationality = French [50%, 75%]
age = 50	\Rightarrow nationality = Italian [33%, 100%]

Discretization of quantitative attributes

Solution: each value is replaced by the interval to which it belongs. height: 0-150cm, 151-170cm, 171-180cm, >180cm weight: 0-40kg, 41-60kg, 60-80kg, >80kg income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

Problem: the discretization may be useless (see weight).

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Multi-level Association Rules

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Multilevel AR

• Is difficult to find interesting patterns at a too primitive level

- high support = too few rules
- low support = too many rules, most uninteresting
- Approach: reason at suitable level of abstraction
- A common form of background knowledge is that an attribute may be generalized or specialized according to a hierarchy of concepts
- Dimensions and levels can be efficiently encoded in transactions
- Multilevel Association Rules : rules which combine associations with hierarchy of concepts

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/ rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Application of Interestingness Measure

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Computing Interestingness Measure

• Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

 $\begin{array}{c|c} \text{Contingency table for } X \rightarrow Y \\ \hline Y & \overline{Y} \end{array}$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
x	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 $\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of } \underline{X} \text{ and } \overline{Y} \\ f_{01} : \text{ support of } \underline{X} \text{ and } \underline{Y} \\ f_{00} : \text{ support of } \overline{X} \text{ and } \underline{Y} \end{array}$

Used to define various measures

support, confidence, lift, Gini,
 J-measure, etc.

Statistical-based Measures

 Measures that take into account statistical dependence

$$\begin{split} Lift &= \frac{P(Y \mid X)}{P(Y)} \\ Interest &= \frac{P(X,Y)}{P(X)P(Y)} \\ PS &= P(X,Y) - P(X)P(Y) \\ \phi - coefficient &= \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}} \end{split}$$

Conclusion (Market basket Analysis)

- MBA is a key factor of success in the competition of supermarket retailers.
- Knowledge of customers and their purchasing behavior brings potentially huge added value.

Which tools for market basket analysis?

• Association rule are needed but insufficient

Market analysts ask for business rules:

- Is supermarket assortment adequate for the company's target class of customers?
- Is a promotional campaign effective in establishing a desired purchasing habit?

Business rules: temporal reasoning on AR

Which rules are established by a promotion?
How do rules change along time?

Sequential Pattern Mining

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Sequential Pattern Mining

Lecture Notes for Chapter 7

Introduction to Data Mining by Tan, Steinbach, Kumar

Sequential Patterns- module outline

- What are Sequential Patterns(SP) and what are they used for
- From Itemset to sequences
- Formal Definiton
- Computing Sequential Patterns
- Timing Constraints

Sequential / Navigational Patterns

- Sequential patterns add an extra dimension to frequent itemsets and association rules - time.
 - Items can appear before, after, or at the same time as each other.
 - General form: "x% of the time, when A appears in a transaction, B appears within z transactions."

 note that other items may appear between A and B, so sequential patterns do not necessarily imply consecutive appearances of items (in terms of time)

- Examples
 - Renting "Star Wars", then "Empire Strikes Back", then "Return of the Jedi" in that order
 - Collection of ordered events within an interval
 - Most sequential pattern discovery algorithms are based on extensions of the Apriori algorithm for discovering itemsets
- Navigational Patterns
 - they can be viewed as a special form of sequential patterns which capture navigational patterns among users of a site
 - in this case a session is a consecutive sequence of pageview references for a user over a specified period of time

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences Eler	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C
(Transaction) Sequence (Transaction) Sequence (Transaction (E1 E2 E3 E3 E2 E3 E2 E2 E3 E2 E2 E3 E2 E2 E3 E2 E3 E2 E3 E3 E2 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3			
© Tan,Steibach, k	(umar & Integration by (Giannott&Nanni)	– DM2 2013-2014 (#)	

From Itemset to sequences

- Goal: customize, personalize the offerts according the personal history of any client
- Analysis: to study the temporal buying behaviour
- "5% of clients first has bought X, then Y then Z"
- Requirements: to keep trace of the history for the clients (nome, fidelity cards, carte di credito, bancomat, e-mail, codice fiscale)
- Domanins: vendite al dettaglio, vendite per corrispondenza, vendite su internet, vendite di prodotti finanziari/bancari, analisi mediche

Transaction with Client Identifier (Pseudo)

Intra-Transaction (Association Rules) ... Inter-Transaction (Sequential Patterns)

items {
$$i_1$$
, ..., i_k }
Clients { c_1 , ..., c_m }
Transaztion t \subseteq { i_1 , ..., i_k }
Client trasactions
T = { $(c_1, date_1, t_1)$, ..., $(c_n, date_n, t_n)$ }

Date may be replaced with a progressive number

29

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

CRM & SP

Conceptual Model

Logic Model

Cliente	Data	Trans
3	10/09/1999	{10}
2	10/09/1999	{10, 20}
5	12/09/1999	{90}
2	15/09/1999	{30}
2	20/09/1999	{40,60,70}
1	25/09/1999	{30}
3	25/09/1999	{30,50,70}
4	25/09/1999	{30}
4	30/09/1999	{40,70}
1	30/09/1999	{90}
4	25/10/1999	{90}

Data	Cliente	Articolo
10/09/1999	3	10
10/09/1999	2	10
10/09/1999	2	20
12/09/1999	5	90
15/09/1999	2	30
20/09/1999	2	40
20/09/1999	2	60
20/09/1999	2	70
25/09/1999	1	30
25/09/1999	3	30
25/09/1999	3	30
25/09/1999	3	70
25/09/1999	4	30
30/09/1999	4	40
30/09/1999	4	70
30/09/1999	1	90
25/10/1999	4	90

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Sequence data from MB

Insieme di transazioni cliente

$$T = \{ (data_1, c_1, t_1), ..., (data_n, c_n, t_n) \}$$

Sequenza di transazioni per cliente c

$$seq(c) = \langle t_1, ..., t_i ..., t_n \rangle$$

ordinate per data

Cliente	Sequenza
1	< {30}, {90} >
2	< {10, 20}, {30}, {40,60,70}>
3	<{10}, {30,50,70}>
4	< {30}, {40,70}, {90} >
5	<{90}>

Libro	Titolo
10	Star Wars Episode I
20	La fondazione e l'impero
30	La seconda fondazione
40	Database systems
50	Algoritmi + Strutture Dati =
60	L'insostenibile leggerezza
70	Immortalita'
90	I buchi neri

Sequence Data

Sequences & Supports (intuition)

 $\langle I_1, I_2, ..., I_n \rangle$ is contained in $\langle J_1, J_2, ..., J_m \rangle$ If there exist $h_1 \langle ... \langle h_n$ such that

$$\mathtt{I}_1 \subseteq \mathtt{J}_{\mathtt{h}1} \, , \, ... , \, \mathtt{I}_{\mathtt{n}} \subseteq \mathtt{J}_{\mathtt{h}\mathtt{n}}$$

< {30}, {90} > is contained in < {30}, {40,70}, {90} > < {30}, {40,70} > is contained in < {10,20}, {30}, {40,50,60,70} > and in < {30}, {40,70}, {90} >

Support(< {20}, {70} >) = 40% Supporto(< {90} >) = 60%

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Formal Definition of a Sequence

• A sequence is an ordered list of elements (transactions)

 $\mathbf{S} = \langle \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \dots \rangle$

Each element contains a collection of events (items)

 $e_i = \{i_1, i_2, ..., i_k\}$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

• Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera}
{Shopping Cart} {Order Confirmation} {Return to Shopping} >

 Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
 {Fellowship of the Ring} {The Two Towers} {Return of the King}

Formal Definition of a Subsequence

• A sequence $\langle a_1 a_2 \dots a_n \rangle$ is contained in another sequence $\langle b_1 b_2 \dots b_m \rangle$ (m \geq n) if there exist integers $i_1 \langle i_2 \langle \dots \langle i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

• Given:

- a database of sequences
- a user-specified minimum support threshold, minsup

• Task:

– Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
- How many k-subsequences can be extracted from a given n-sequence?

<{a b} {c d e} {f} {g h i} n = 9

Sequential Pattern Mining: Example

Object	Timestamp	Events
А	1	1,2,4
A	2	2,3
A	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%					
Examples of Frequent Subsequences:					
< {1,2} > < {2,3} > < {2,4}> < {3} {5}> < {1} {2} > < {2} {2} > < {1} {2,3} > < {1} {2,3} >	s=60% s=60% s=80% s=80% s=60%	s=80% s=60%			
< {1,2} {2,3} >	s=60%				

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences: <{i₁}>, <{i₂}>, <{i₃}>, ..., <{i_n}>
- Candidate 2-subsequences: ${i_1, i_2}$, ${i_1, i_3}$, ..., ${i_1} {i_1}$, ${i_2}$, ..., ${i_{n-1}} {i_n}$
- Candidate 3-subsequences:
 - $\begin{array}{l} <\{i_1, i_2, i_3\} >, <\{i_1, i_2, i_4\} >, ..., <\{i_1, i_2\} \{i_1\} >, <\{i_1, i_2\} \{i_2\} >, ..., \\ <\{i_1\} \{i_1, i_2\} >, <\{i_1\} \{i_1, i_3\} >, ..., <\{i_1\} \{i_1\} \{i_1\} >, <\{i_1\} \{i_1\} \{i_2\} >, ... \\ \end{array}$

Generalized Sequential Pattern (GSP)

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1-element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

Candidate Generation:

•Merge pairs of frequent subsequences found in the (k-1)*th* pass to generate candidate sequences that contain k items

– Candidate Pruning:

• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

- Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

– Candidate Elimination:

•Eliminate candidate k-sequences whose actual support is less than minsup

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

x _g = 2, n = 0, m = 4 Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Time constraints (2)

Sliding Windows (transazione contenuta in più transazioni)
 <I₁, I₂, ..., I_n> è contenuta in <J₁, J₂, ..., J_m>
 se esistono h₁ < u₁ < ... < h_n < u_n per cui
 I₁ ⊆ U_{k = h1..u1} J_k, ..., I_n ⊆ U_{k = hn..un} J_k
 transaction-time(J_{ui}) - transaction-time(J_{hi}) < window-size per i = 1..n

< {30}, {40,70} > è contenuta in < {30}, {40}, {70} >
se transaction-time({70}) - transaction-time({40}) < window-size</pre>

• Time Constraints (limite di tempo tra due transazioni) $\langle I_1, I_2, ..., I_n \rangle$ è contenuta in $\langle J_1, J_2, ..., J_m \rangle$ se esistono $h_1 \langle ... \langle h_n \text{ per cui}$ $I_1 \subseteq J_{h1}, ..., I_n \subseteq J_{hn}$ mingap \langle transaction-time (J_{hi}) - transaction-time $(J_{hi-1}) \langle \max_{gap} _{43}$ © Tan,Steibach, Kumar & Integration by (Giannott& **Giannottive Redressch#**)

Sequences & Supports

 $\langle I_1, I_2, ..., I_n \rangle$ is contained in $\langle J_1, J_2, ..., J_m \rangle$ If there exist $h_1 \langle ... \langle h_n$ such that

$$\mathtt{I}_1 \subseteq \mathtt{J}_{\mathtt{h}1} \, , \, ... , \, \mathtt{I}_{\mathtt{n}} \subseteq \mathtt{J}_{\mathtt{h}\mathtt{n}}$$

< {30}, {90} > is contained in < {30}, {40,70}, {90} > < {30}, {40,70} > is contained in < {10,20}, {30}, {40,50,60,70} > and in < {30}, {40,70}, {90} >

Support(< {20}, {70} >) = 40% Supporto(< {90} >) = 60%

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Sequential Patterns

Given MinSupport and a set of sequences

```
S = { s | Support(s) >= MinSupport }
```

A sequence in S is a Sequential Pattern if is not contained in any other sequence of S

```
MinSupport = 40%
< {30}, {90} > is a sequantial pattern
```

```
Supporto< {30} >) = 80% is not a sequantial pattern as it is contained in < {30},
      {90} >
MinSupporto = 50%
< {30}, {90} > non è in S
< {30} > è un pattern sequenziale
```

45

© Tan,Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)

Altre Generalizzazioni

Sliding Windows (transazione contenuta in più transazioni)
 <I₁, I₂, ..., I_n> è contenuta in <J₁, J₂, ..., J_m>
 se esistono h₁ < u₁ < ... < h_n < u_n per cui
 I₁ ⊆ U_{k = h1..u1} J_k, ..., I_n ⊆ U_{k = hn..un} J_k
 transaction-time(J_{ui}) - transaction-time(J_{hi}) < window-size per i = 1..n

< {30}, {40,70} > è contenuta in < {30}, {40}, {70} >
se transaction-time({70}) - transaction-time({40}) < window-size</pre>

• Time Constraints (limite di tempo tra due transazioni) $\langle I_1, I_2, ..., I_n \rangle$ è contenuta in $\langle J_1, J_2, ..., J_m \rangle$ se esistono $h_1 \langle ... \langle h_n \text{ per cui}$ $I_1 \subseteq J_{h1}, ..., I_n \subseteq J_{hn}$ mingap \langle transaction-time (J_{hi}) - transaction-time $(J_{hi-1}) \langle$ maxgap 46 © Tan, Steibach, Kumar & Integration by (Giannott&Nan) $\mathbb{P}^{r-i} \mathbb{D} \mathbb{V}^{2\cdot 2013-2014}$

Sequential Pattern Mining:

Cases and Parameters

Duration of a time sequence T

- Sequential pattern mining can then be confined to the data within a specified duration
- Ex. Subsequence corresponding to the year of 1999
- Ex. Partitioned sequences, such as every year, or every week after stock crashes, or every two weeks before and after a volcano eruption

Event folding window w

- If w = T, time-insensitive frequent patterns are found
- If w = 0 (no event sequence folding), sequential patterns are found where each event occurs at a distinct time instant
- If O < w < T, sequences occurring within the same period w are folded in the analysis

Sequential Pattern Mining:

Cases and Parameters

- Time interval, int, between events in the discovered pattern
 - int = 0: no interval gap is allowed, i.e., only strictly consecutive sequences are found

Ex. "Find frequent patterns occurring in consecutive weeks"

 min_int ≤ int ≤ max_int: find patterns that are separated by at least min_int but at most max_int

•Ex. "If a person rents movie A, it is likely she will rent movie B within 30 days" (int \leq 30)

int = c ≠ 0: find patterns carrying an exact interval
 Ex. "Every time when Dow Jones drops more than 5%, what will happen exactly two days later?" (int = 2)

Aspetti Computazionali

- Mail Order: Clothes
 - 16.000 items
 - 2.900.000 transazioni
 - 214.000 clienti
 - 10 anni
 - Algoritmo GSP (Shrikant e Agrawal) su IBM RS/6000 250

© Tan, Steibach, Kumar & Integration by (Giannott&Nanni) – DM2 2013-2014 (#)