DATA MINING 2 Ethics Principles: Privacy

Anna Monreale

a.a. 2019/2020

Our digital traces

- We produce an unthinkable amount of data while running our daily activities.
- How can we manage all these data? Can we get an added value from them?

Big Data: New, More Carefully Targeted Financial Services

Mobility Atlas of Many Cities

Big Data Analytics & Social Mining

Data Scientist needs to take into account ethical and legal aspects and social impact of data science

EU Requirements for trustworthy AI

- **1. Privacy:** avoid re-identification of people in data and sensitive inferences
- 2. Transparency/Explainability: transparency should be applied to every stage of the AI lifecycle, indeed it prescribes the possibility to have a complete view on the whole system
- **3.** Fairness: avoid AI base their decision on sensitive attributes like gender, religion belief, etc.
- 4. Robustness: AI system developers should prevent system hacking and adversarial attacks.
- **5.** Accountability: allow propriate mechanisms to identify the responsibility for AI systems' outcomes are put in place during their whole lifecycle
- 6. Sustainability: the design stage of an AI system there should be an environmental impact assessment (e.g., climate impact)

EU Requirements for trustworthy AI

- **1. Privacy:** avoid re-identification of people in data and sensitive inferences
- 2. Transparency/Explainability: transparency should be applied to every stage of the AI lifecycle, indeed it prescribes the possibility to have a complete view on the whole system
- **3.** Fairness: avoid AI base their decision on sensitive attributes like gender, religion belief, etc.
- 4. Robustness: AI system developers should prevent system hacking and adversarial attacks.
- **5.** Accountability: allow propriate mechanisms to identify the responsibility for AI systems' outcomes are put in place during their whole lifecycle
- 6. Sustainability: the design stage of an AI system there should be an environmental impact assessment (e.g., climate impact)

Anonymization vs Pseudonimization

- Pseudonymization and Anonymization are two distinct terms often confused
- Anonymized data and pseudonymized data fall under very different categories in the regulation
- Anonymization guarantees data protection against the (direct and indirect) data subject re-identification
- Pseudonymization substitutes the identity of the data subject in such a way that additional information is required to re-identify the data subject

Pseudonymization

Substitute an identifier with a surrogate value called token

Substitute unique names, fiscal code or any attribute that identifies uniquely individuals in the data

Example of Pseudonymization

Name	Gender	DoB	ZIP Code	Diagnosis
Anna Verdi	F	1962	300122	Cancro
Luisa Rossi	F	1960	300133	Gastrite
Giorgio Giallo	Μ	1950	300111	Infarto
Luca Nero	Μ	1955	300112	Emicrania
Elisa Bianchi	F	1965	300200	Lussazione
Enrico Rosa	Μ	1953	300115	Frattura

ID	Gender	DoB	ZIP CODE	DIAGNOSIS
11779	F	1962	300122	Cancro
12121	F	1960	300133	Gastrite
21177	Μ	1950	300111	Infarto
41898	Μ	1955	300112	Emicrania
56789	F	1965	300200	Lussazione
65656	Μ	1953	300115	Frattura

Properties of a Surrogate Value

- Irreversible without private information
- Distinguishable from the original value

Is Pseudonymization enough for data protection?

Pseudonymized data are still Personal Data!!

Massachussetts' Governor

- Sweeney managed to re-identify the medical record of the governor of Massachussetts
 - MA collects and publishes sanitized medical data for state employees (microdata) left circle
 - voter registration list of MA (publicly available data) right circle
 - looking for governor's record
 - join the tables:
 - 6 people had his birth date
 - 3 were men
 - 1 in his zipcode

Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)

Linking Attack

Governor: birth date = 1950, CAP = 300111

ID	Gender	YoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancro
2	F	1960	300133	Gastrite
3	Μ	1950	300111	Infarto
4	Μ	1955	300112	Emicrania
5	F	1965	300200	Lussazione
6	Μ	1953	300115	Frattura

Which is the disease of the Governor?

Making Data Anonymous

i	ng Data	K.Anon	1/2			
		Governor: Birt	th Date = 1950,	CAP = 300111		Dity
	ID	Gender	YoB	ZIP	DIAGNOSIS	
	1	F	[1960-1965]	300***	Cancro	
	2	F	[1960-1965]	300***	Gastrite	
	3	М	[1950-1955]	30011*	Infarto	
	4	Μ	[1950-1955]	30011*	Emicrania	
	5	F	[1960-1965]	300***	Lussazione	
	6	Μ	[1950-1955]	30011*	Frattura	

Which is the disease of the Governor?

Ontology of Privacy in Data Mining

Attribute Classification

Identifiers	Quasi-identifiers			Sensitive
ID	Gender	YoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancro
3	F	1960	300133	Gastrite
2	Μ	1950	300111	Infarto
4	Μ	1955	300112	Emicrania
5	F	1965	300200	Lussazione
6	М	1953	300115	Frattura

K-Anonymity

K-Anonymity

• k-anonymity hides each individual among k-1 others

- each QI set should appear at least k times in the released data
- linking cannot be performed with confidence > 1/k
- How to achieve this?
 - Generalization: publish more general values, i.e., given a domain hierarchy, roll-up
 - Suppression: remove tuples, i.e., do not publish outliers. Often the number of suppressed tuples is bounded
- Privacy vs utility tradeoff
 - do not anonymize more than necessary
 - Minimize the distortion

Vulnerability of K-anonymity

ID	Gender	DoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancro
2	F	1960	300133	Gastrite
3	Μ	1950	300111	Infarto
4	Μ	1950	300111	Infarto
5	Μ	1950	300111	Infarto
6	Μ	1953	300115	Frattura

I-Diversity

- Principle
 - Each equivalence class has at least / well-represented sensitive values
- Distinct *I*-diversity
 - Each equivalence class has at least / distinct sensitive values

	ID	Gender	DoB	ZIP	DIAGNOSIS
	1	F	1962	300122	Cancro
as	3	F	1960	300133	Gastrite
	2	Μ	1950	300111	Infarto
	4	Μ	1950	300111	Emicrania
	5	Μ	1950	300111	Lussazione
	6	Μ	1953	300115	Frattura

K-Anonymity

- Samarati, Pierangela, and Latanya Sweeney. "Generalizing data to provide anonymity when disclosing information (abstract)." In PODS '98.
- Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)
- Machanavajjhala, Ashwin, Daniel Kifer, Johannes Gehrke, and Muthuramakrish- nan Venkitasubramaniam. "I-diversity: Privacy beyond k-anonymity." ACM Trans. Knowl. Discov. Data 1, no. 1 (March 2007): 24.
- Li, Ninghui, Tiancheng Li, and S. Venkatasubramanian. "*t*-Closeness: Privacy Beyond *k*-Anonymity and *l*-Diversity." *ICDE 2007.*

Randomization & Differential Privacy

Randomization

- Original values x₁, x₂, ..., x_n
 - from probability distribution X (unknown)

• To hide these values, we use y₁, y₂, ..., y_n

- from probability distribution Y
 - Uniform distribution between $[-\alpha, \alpha]$
 - Gaussian, normal distribution with $\mu = 0, \sigma$
- Given
 - $-x_1+y_1, x_2+y_2, ..., x_n+y_n$
 - the probability distribution of Y

Estimate the probability distribution of X.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of SIGMOD 2000.

Randomization Approach Overview

Differential Privacy

• The risk to my privacy should not increase as a result of participating in a statistical database

- Add noise to answers such that:
 - Each answer does not leak too much information about the database
 - Noisy answers are close to the original answers

Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12

At	tac	k

Name	Has Diabetes
Alice	yes
Bob	no
Mark	yes
John	yes
Sally	no
Jack	yes

- 1) how many persons have Diabetes? **4**
- 2) how many persons, excluding Alice, have Diabetes? **3**
- So the attacker can infer that Alice has Diabetes.
- Solution: make the two answers similar
- 1) the answer of the first query could be 4+1 = 5
- 2) the answer of the second query could be 3+2.5=5.5

Differential Privacy

Randomization & Differential Privacy

- R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of SIGMOD 2000.
- D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining algorithms. In Proceedings of PODS, 2001.
- W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving data mining. In Proceedings of SIGKDD 2003.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In Proceedings of PODS 2003.
- A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of association rules. In Proceedings of SIGKDD 2002.
- K. Liu, H. Kargupta, and J. Ryan. Random Projection-based Multiplicative Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on Knowledge and Data Engineering (TKDE), VOL. 18, NO. 1.
- K. Liu, C. Giannella and H. Kargupta. An Attacker's View of Distance Preserving Maps for Privacy Preserving Data Mining. In Proceedings of PKDD'06
- Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12
- Cynthia Dwork: The Promise of Differential Privacy: A Tutorial on Algorithmic Techniques. FOCS 2011: 1-2
- Cynthia Dwork: Differential Privacy in New Settings. SODA 2010: 174-183

Ontology of Privacy in Data Mining

Privacy by Design and Risk Assessment

Privacy by Design Methodology

The framework is designed with assumptions about

- The **sensitive data** that are the subject of the analysis
- The **attack model**, i.e., the knowledge and purpose of a malicious party that wants to discover the sensitive data
- The target analytical questions that are to be answered with the data

Design a privacy-preserving framework able to

- transform the data into an anonymous version with a quantifiable privacy guarantee
- guarantee that the analytical questions can be answered correctly, within a quantifiable approximation that specifies the data utility

Privacy Risk Assessment

Privacy-by-Design in Big Data Analytics

- **Probability of re-identification** denotes the probability to correctly associate a record to a unique identity, *given* a BK
- **Risk of re-identification** is the maximum probability of re-identification *given* a set of BK

Risk and Coverage (RaC) Curve

- A diagram of coverage (% of data preserved) at varying values of risk
- Concept has analogies with ROC curves.
- Each curve can be summarized by a single measure, e.g. AUC (area under the curve) – the closer to 1, the better

 $RAC_U \rightarrow$ for each risk value, quantifies the percentage of users in U having that risk

 $RAC_D \rightarrow$ for each risk value, quantifies the data in D covered by <u>only</u> users having at most that risk

Attack Simulation

Background knowledge:

- 1. Gender, DoB, Zip
- 2. Gender, DoB
- 3. Gender, Zip
- 4. DoB, Zip
- 5. Gender
- 6. DoB
- 7. Zip

ID	Gender	DoB	ZIP	DIAGNOSIS
1	F	1962	300122	Cancro
3	F	1960	300133	Gastrite
2	Μ	1950	300111	Infarto
4	М	1950	300111	Infarto
5	М	1950	300111	Infarto
6	М	1953	300115	Frattura

Tabular data

Background knowledge:

Sequence:

All the possible sub-sequences!

 $< a_1, t_1 > < a_2, t_2 > < a_3, t_3 > < a_4, t_4 > < a_5, t_4 >$

The Approach

Suitable for any form of data: tabular, graphs, sequences

Key issue: the language of BK – how to specifies the set of possible attacks

Several kinds of data in each domain. Ex. in **mobility**:

- presence (individual frequent locations)
- trajectory (individual movements)
- road segment (collective frequent links)
- profiles (individual systematic movements)
- individual call profiles (from CDR data)

Purchasing Data

Basket

It is an ordered sequence of items.

 $\boldsymbol{b}_p = \langle \boldsymbol{i_1}, \boldsymbol{i_2}, \boldsymbol{i_3}, \dots, \boldsymbol{i_D} \rangle$ Where $\boldsymbol{i_i} \in I$ the set of items.

Historical baskets

It is the concatenation of the temporally ordered basket of a customer.

$$Basket_u = b_1 \cdot b_2 \cdot b_3 \cdots b_n$$

Where m is the total number of baskets of the customer u in the dataset.

Adversary Attack: Item Sequence Attack

- <u>The adversary knows a subset of items</u> purchased by the customer and their temporal order
- On *historical baskets* (temporally ordered concatenation of the customer's baskets).

- k number of items i_i of an individual u known by the adversary;
- Item sequence background knowledge: a set of configurations based on k items $B_k = I^{u,k}$
- The *matching function* is defined as

$$matching(d,b) = \begin{cases} true, & if \ b \ \subseteq Basket_u \\ false, & otherwise \end{cases}$$

Simulation Attack Model

Empirical Privacy Risk Assessment

- Defining a set of attacks based on common data formats
- Simulates these attacks on experimental data to calculate privacy risk

Time complexity is a problem!

Using classification techniques to predict the privacy risks of individuals.

- 1. Simulate the risk of each individual *R*
- 2. Extract from the dataset a set of individual features *F*
- 3. Construct a training dataset (F,R)
- 4. Learning a classifier/regressor to predict the risk/risk level

Data Mining Approach

For each new user extracting **Features** and using the classifier to predict the risk

Features

symbol	name	symbol	name
Ι	Total number of items	$\overline{I}_{max}^{daily}$	Maximum number of prod-
			ucts in a day divided by the
			total products
I_{unique}	Total number of unique	$\overline{I}^{daily}_{avg}$	Average number of prod-
	items		ucts in a day divided by the
			total products
Iavg	Total number of items av-	E_{i_j}	Product entropy
	eraged over time		
I^d_{max}	Maximum number of items	w_{i_j}	Frequency of the product
	bought in a day		
I^d_{avq}	Average number of items	$w_{i_i}^{avg}$	Average frequency of the
0	bought per day	J	product
E	Purchasing entropy	U_{i_i}	Number of users who
		5	bought the product
Locs	Distinct locations	$U_{i_i}^{avg}$	Average number of users
		J	who bought the product
I_{unique}^{avg}	Total number of unique		
1	items averaged over time		

Privacy risk prediction: example of training data

Userld	Procuct Entropy	Unique Items	Num. Items	Prurchase Entropy	Risk
u ₁	0.9	9	280	0.9	1.0
u ₂	1	13	400	1	1.0
u ₃	0.12	2	58	0.12	0.15
u ₄	0.09	2	61	0.09	0.075
u ₅	0.22	4	120	0.22	0.25

Feature-based Predictor

Logistic regression

- A probability model;
- First, it applies a linear function; then a sigmoid function.

Random forest

- Ensemble model composed of decision trees;
- Random sampling for the creation of a tree;
- Majority vote for the final output.

Mitigation Strategy

- Anonymization of movement data while preserving clustering
- Trajectory Linking Attack: the attacker
 - knows some points of a given trajectory
 - and wants to infer the whole trajectory
- Countermeasure: method based on
 - spatial generalization of trajectories
 - k-anonymization of trajectories

Trajectory Generalization

- Given a trajectory dataset
 - 1. Partition of the territory into Voronoi cells
 - 2. Transform trajectories into sequence of cells

Partition of territory: Characteristic points

Characteristic points extraction:

- Starts (1)
- Ends (2)
- Points of significant turns (3)
- Points of significant stops, and representative points from long straight segments (4)

Partition of territory: spatial clusters

- Group the extracted points in Spatial Clusters with desired spatial extent
- MaxRadius: parameter to determine the spatial extent and so the degree of the generalization

Partition of territory: Voronoi Tessellation

- Partition the territory into Voronoi cells
- The centroids of the spatial clusters used as generating points

Generation of Trajectories

Divide the trajectories into segments that link Voronoi cells

For each trajectory:

- the area a₁ containing its first point p₁ is found
- The following points are checked
- If a point p_i is not contained in a₁ for it the containing area a₂ is found
- and so on ...

Generalized trajectory: From sequence of areas to sequence of centroids of areas

Generalization vs k-Anonymity

- Generalization could not be sufficient to ensure k-anonymity:
 - For each generalized trajectory there exist at least others k-1 different people with the same trajectory?
- Data transformation strategy
 - recovering portions of trajectories which are frequent at least k times
 - without introducing noise

Privacy Transformation: Example

Clustering on Anonymized Trajectories

