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Mixture Models and the EM Algorithm



Model-based Clustering (probabilistic)

* In order to understand our data, we will assume that there is a
generative process (a model) that creates/describes the data, and we
will try to find the model that best fits the data.

* Models of different complexity can be defined, but we will assume that our
model is a distribution from which data points are sampled

 Example: the data is the height of all people in Greece

* In most cases, a single distribution is not good enough to describe all
data points: different parts of the data follow a different distribution
 Example: the data is the height of all people in Greece and China
* We need a mixture model
» Different distributions correspond to different clusters in the data.



EM Algorithm

Algorithm 9.2 EM algorithm.
1: Select an initial set of model parameters.
(As with K-means, this can be done randomly or in a variety of ways.)
2: repeat
Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
prob(distribution j|x;,©).

4:  Maximization Step Given the probabilities from the expectation step,
find the new estimates of the parameters that maximize the expected
likelihood.

. until The parameters do not change.
(Alternatively, stop if the change in the parameters is below a specified

threshold.)

Ut




EM (Expectation Maximization) Algorithm

* Initialize the values of the parameters in ® to some random values

* Repeat until convergence
* E-Step: Given the parameters 0 estimate the membership probabilities P(Gj|xi)

* M-Step: Given the probabilities P(G-|xi), calculate the parameter values 0 that
(in expectation) maximize the data ﬁkelihood

 Examples
e E-Step: Assignment of points to clusters
* K-means: hard assignment, EM: soft assighnment

* M-Step: Parameters estimation
* K-means: Computation of centroids, EM: Computation of the new model parameters



Gaussian Distribution

 Example: the data is the height of all people in Greece

* Experience has shown that this data follows a
Gaussian (Normal) distribution

_(x=p)?
204

P(x) = \/ﬁae

- 4 = mean, g = standard deviation



Mixture Gaussian Model

* What is a model?
* A Gaussian distribution is defined by the mean 1 and the standard deviation o

* We define our model as the pair of parameters 6 = (u, o)

* More generally, a model is defined as a vector of parameters 6

* We want to find the normal distribution N (u, o) that best fits our data

* Find the best values for ;tand o
* But what does “best fit” mean?



Maximum Likelihood Estimation (MLE)

* Suppose that we have a vector X = {x4, ..., x,,} of values
* We want to fit a Gaussian model N (u, o) to the data
* Probability of observing a point x;

P(x;) =

* Probability of observing all points (we assume independence)

n n
1 _(xj—p)?
P(X) = ‘ \P(xi) = ‘ ‘ e 207
. ; 27O
=1 1=1

* We want to find the parameters 6 = (u, o) that maximizes the
probability P(X|0)




Maximum Likelihood Estimation (MLE)

* The probability P(X|6) as a function of @ is the Likelihood function

r 1 (xi—p)?
L(Q) — 1_[ e 202
b1 27O

* It is usually easier to work with the Log-Likelihood function

n
2
| — 1
(i — 1) ——nlog2m —nlogo

LO)==-2,"%7 2

i=1

* Thus, the Maximum Likelihood Estimation for the Gaussian Model
consists in flndmg the parameters 1, o that maximize LL(0)

=|»—x

Xi = Ux 0% = Z(x —-u)? = oy

Sample Mean Sample Variance

U=
i=1



Maximum Likelihood Estimation (MLE)

* Note: these are also the most likely parameters given the data.

P(X|0)P(6)

P(O|X) = P(X)

* If we have no prior information about @, or X, then maximizing
P(6|X) is the same as maximizing P(X|0).



Mixture of Gaussians

e Suppose that you have the heights of people from Greece and China
and the distribution looks like the figure below (dramatization)
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

* In this case the data is the result of the mixture of two Gaussians

* One for Greek people, and one for Chinese people

* ldentifying for each value which Gaussian is most likely to have generated it
will give us a clustering.
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture Model

* A value x; is generated according to the
following process:

* First select the nationality

* With probability 7 ;select Greek, with
probability 7~ select China (7, + 7, = 1)

* Given the nationality, generate the point
from the corresponding Gaussian
* P(x;]10;)~N(ug,o¢) if Greece
* P(x;]10-)~N(uc,oc) if China



Mixture Model

* Our model has the following parameters ® = (mg, e, UG, Uc» Og, Oc)

Mixture probabilities Distribution Parameters

* For value x;, we have:

P(x;|®) = mgP(x;105) + mcP(x;|6c)

* Forall values X = {x4, ..., x,;}

pixio) = | [Pcle)
1=1

* We want to estimate the parameters that maximize the Liekelihood



Mixture Model

* Once we have the parameters 0 = (7., ., e, O, Ue, Oc),
we can estimate the membership probabilities
P(G|x;) and P(C|x;) for each point x;:

* This is the probability that point x; Belongs to the Greek or
the Chinese population (cluster)

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|G)mg

~ P(x;|G)mg + P(x;|C)me

P(Glx;) =




EM (Expectation Maximization) Algorithm

* Initialize the values of the parameters in 6 to some random values

* Repeat until convergence

e E-Step: Given the parameters 0 estimate the membership probabilities
P(Glxl) and P(Clxl)

 M-Step: Calculate the parameter values ® that (in expectation) maximize the
data likelihood

1 1< :
1 =— ) P(G|x) _1 Fraction of
G n; (Gl nz P(Clx) population in G,C
n
He = Z Pn(f:l) X i P(Glx‘) ; MLE Estimates
i=1 ¢ (4 n* m if =’s were fixed
n n
P(Clx;) P(Glx;)
2 __ t — —
Oc = Z —— (x; — uc) Z - (x; — ug)?



Bisecting K-Means



Bisecting K-means

 Variant of K-Means that can produce a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3:  Select a cluster from the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic 2-Means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters




Bisecting K-means Limitations

* The algorithm is exhaustive terminating at singleton clusters (unless K
is known or specified)

* Terminating at singleton clusters

* |s time consuming
 Singleton clusters are meaningless (i.e., over-splitting)
* Intermediate clusters are more likely to correspond to real classes

* Bisecting K-Means do not uses any criterion for stopping bisections
before singleton clusters are reached.



Bayesian Information Criterion (BIC)

* A strategy to stop the Bisecting algorithm
when meaningful clusters are reached to
avoid over-splitting.
— Parent cluster:

* The BIC can be adopted as splitting

BIC(K=1)=1980
criterion of a cluster in order to decide \
whether a cluster should split or no. \
* BIC measures the improvement of the @ @ — mgt;fz}i'“”g
cluster structure between a cluster and its BIC(K=2)=2245

two children clusters.

* |f the BIC of the parent is less than BIC of
the children than we accept the bisection.



X-Means



X-Means

Search for the appropriate value of k in a given range [r,r..J:
1. Improve Params
2. Improve Structure

3. Ifk>r.. stop and return the best-scoring model

Improve Params
e Run K-Means with with the current k

Improve Structure
* Recursively split each cluster in two and use local BIC to decide to keep the split

Finally, use global BIC score to decide which K to output at the end



X-Means

1. K-means with k=3

2. Split each centroid in 2 children
moved a distance proportional to
the region size in opposite
direction (random)

3. Run 2-meansin
each region locally

4. Compare BIC of parent
and children

4. Only centroids with
higher BIC survives
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BIC Formula in X-Means

 The BIC score of a data collection is defined as (Kass and Wasserman, 1995):

A P .
BIC(M .)=l.(D)—_JlogR
JoJ 2

A

. l]. (D) is the log-likelihood of the dataset D

* p;is a function of the number of independent parameters: centroids coordinates,
variance estimation.

* Ris the number of points of a cluster, M is the number of dimensions

* Approximate the probability that the clustering in M, is describing the real
clusters in the data



BIC Formula in X-Means

* Adjusted Log-likelihood of the model.

* The likelihood that the data is “explained by” the clusters according to the
spherical-Gaussian assumption of K-Means

BIC(M )=l p1-CilogR
j _j( | Pl

* Focusing on the set D, of points which belong to centroid n

~ R, R, M R, — K
{(Dn) = ——log(2m) — — 5

+R,log R, — R, log R

1og(&2) —

* |t estimates how closely to the centroid are the points of the cluster.



Transactional Clustering



Clustering

* Clustering: Grouping of objects into different sets, or more precisely,
the partitioning of a data set into subsets (clusters), so that the data
in each subset (ideally) share some common trait - often proximity
according to some defined distance measure

e Common distance functions:
* Euclidean distance, Manhattan distance, ...

* This kind of distance functions are suitable for numerical data



Not Only Numerical Data

e
— —
< Acceleration | Lenght Width Height Price >
0-100 (s) (m) (m) (m) (€)
‘ ‘,-4
12 4 T.6 1.7 20”000
14 3.7 15 1.65 16’ 000 .
Numerical Data
15 35 15 1.6 12’ 000
924 4.2 1.8 1.7 24’ 000
Categorical Data
Gairs Eyes
brown black
blond blue
black green
red brown



Boolean and Categorical Attributes

* A boolean attribute corresponding to a single item in a transaction, if
that item appears, the boolean attribute is set to ‘1’ or ‘O’ otherwise.

* A categorical attribute may have several values, each value can be
treated as an item and represented by a boolean attribute.



Market Basket Data

* A transaction represents one customer, and each transaction contains set
of items purchased by the customer.

* Clustering customers reveals customers with similar buying patterns
putting them into the same cluster.

* |t is useful for
e Characterizing different customer groups

* Targeted Marketing
* Predict buying patterns of new customers based on profile

* A market basket database: A scenario where attributes of data points are
non-numeric, transaction viewed as records with boolean attributes
corresponding to a single item (TRUE if transaction contain item, FALSE

otherwise).
* Boolean attributes are special case of Categorical attributes.



Shortcomings of Traditional Clustering

* For categorical data we:
* Define new criterion for neighbors and/or similarity
* Define the ordering criterion

* Consider the following 4 market basket transactions

T1={1, 2, 3, 4} P1=(1,1, 1, 1)
T2={1, 2. 4} P2=(1.1,0, 1)
T3= {3} — P3=(0, 0, 1, 0)
Ta= {a} P4=(0.0,0, 1)

* using Euclidean distance to measure the closeness between all pairs of points, we
find that d(P1,P2) is the smallest distance: it is equal to 1



Shortcomings of Traditional Clustering

* If we use a hierarchical algorithm then we merge P1 and P2
and get a new cluster (P12) with (1, 1, 0.5, 1) as a centroid
* Then, using Euclidean distance again, we find:
e d(p12,p3)= V3.25
e d(p12,p4)=2.25
 d(p3,p4)= \2

* So, we should merge P3 and P4 since the distance between
them is the shortest.

 However, T3 and T4 don't have even a single common item.

* So, using distance metrics as similarity measure for
categorical data is not appropriate.

P1=(1,1,1,1)
P2=(1,1,0,1)
P3=(0,0, 1, 0)
P4=(0,0,0, 1)



Clustering Algorithms for Categorical/Transactional Data

* K-Modes
* ROCK

* CLOPE

* TX-Means



K-Modes

k n
Minimise P (W, Q) = Z w; d(X;, O))
=1 i=1

subject to Z w, =1, 1<i<n

e X={X,,..., X, }is the dataset of objects.

* X;=[x4,..., X, ] is an object i.e., a vector of m categorical attributes

* Wis a matrix n x k, with w;, equal to 1 if X; belongs to Cluster /, 0 otherwise.
*Q={Qq,..., Q}isthe set of representative objects (mode) for the k clusters.

* d( X;, Q) is a distance function for objects in the data



K-Modes: Distance

e K-Means as distance uses
Euclidean distance

d(X,Y)= ") (x,-y,)

e K-Modes as distance uses the
number of mismatches between
the attributes of two objects.

m

di(X.Y) =) 8(x;.y))
j=1

0 (x; =y))

o(xj,y;) = { I (x; #y))



K-Modes: Mode

* K-Modes uses the mode as representative object of a cluster

* Given the set of objects in the cluster C,the mode is get computing
the max frequency for each attribute

n

[, = e 1 X)) =2




K-Modes: Algorithm

1. Select the initial objects as modes

2. Scan of the data to assign each object to the
closer cluster identified by the mode

3. Re-compute the mode of each cluster

Repeat the steps 2 and 3 until no object
changes the assighed cluster



ROCK: RObust Clustering using linK

* ROCK is a hierarchical algorithm for clustering transactional data
(market basket databases)

e ROCK uses links to cluster instead of the classical distance notion

* ROCK uses the notion of neighborhood between pair of objects to
identify the number of links between two objects



ROCK: The Neighbors Concept

* It captures a notion of similarity
 Aand B are neighbors if sim(A, B) 20

e ROCK uses the Jaccard coefficient
* sim(A,B)=|AnB|/|AUB |

A={1,3,4,7
t1,3,4.7] - sim(A,B)=%=%=O-5

B={1,2,4,7,8}



ROCK: Links

* A link defines the number of common neighbors
between two objects:

* link(A, B) = |neighbor(A) n neighbor(B) |

* Higher values of link(A, B) means higher probability
that A and B belong to the same cluster

 Similarity is local while link is capturing global
information

* A point is considered a neighbor of itself

* There is a link from each neighbor of the “root”
point back to itself through the root

* Therefore, if a point has n neighbors, then n? links
are due to it.

A->R->B
A->R->C
B->R->A
B->R->C
C->R->B
C->R->A
A->R->A
B->R->B
C->R->C



ROCK: Example

* Data consisting of 6 Attributes: {Book, Water, Sun, Sand, Swimming, Reading}
{Book}

{Water, Sun, Sand, Swimming}
{Water, Sun, Sand, Reading}

{Reading, Sand} A B C D
A 1 0) 0] 0)
B i :
* Resulting Jaccard Coefficient Matrix c : 06 1 08
* Set Threshold = 0.2. Neighbors: = O 0= 05 1
* N(A)={A}; N(B)={B,C,D}
* N(C)={B,C,D}, N(D) = {B,C,D} A B C D
A 1 0) 0) 0)
B 0] 3 3 3
* Number of Links Table C 0 3 3 3
D 0) 3 3 3

* Link (B, C) = |{B,C,D}| =3

Resulting Clusters after applying ROCK: {A}, {B,C,D}



ROCK — Criterion Function

k
Maximize Ei=>) nix Y
1-6 j— :
f(t9)=1— =1 Pq,PrE€Ci
+6
—
— R H
Dividing by the number of expected links Where ncjligizgl;vejncvlggieorflpoin tsin C
between pairs of objects in the cluster C; we klis the number of clusters :
avoid that objects with a low number of links 0 is the similarity threshold
are assigned all to the same cluster

This goodness measure helps to identify the best pair of clusters to be
merged during each step of ROCK.

link[C;, C,]
ni +ny) 2O — T @

Number of expected cross-links between two clusters

9(Ci,Cj) =




ROCK: Clustering Algorithm

Input:
A set S of data points
Number of k clusters to be found
The similarity threshold

Output:
Groups of clustered data

The ROCK algorithm is divided into three major parts:
1. Draw a random sample from the data set

2. Perform a hierarchical agglomerative clustering algorithm
3. Label data



ROCK: Clustering Algorithm

Draw a random sample from the data set:
 Sampling is used to ensure scalability to very large data sets

* The initial sample is used to form clusters, then the remaining data on
dataset is assigned to these clusters



ROCK: Clustering Algorithm

Perform a hierarchical agglomerative clustering algorithm:

* ROCK performs the following steps which are common to all
hierarchical agglomerative clustering algorithms, but with different

definition to the similarity measures:

1.

2.
3.
4

Places each single data point into a separate cluster

Compute the similarity measure for all pairs of clusters

Merge the two clusters with the highest similarity (goodness measure)
Verify a stop condition. If it is not met then go to step 2.



ROCK: Clustering Algorithm

Label data
* Finally, the remaining data points are assighed to the clusters.

* This is done by selecting a random sample L; from each cluster C,
then we assign each point p to the cluster for which it has the

strongest linkage with L.



CLOPE (Clustering with LOPE)

* Transactional clustering efficient for high dimensional data
* Uses a global criterion function that tries to increase the intra-cluster overlapping of
transaction items by increasing the height-to-width ratio of the cluster histogram.
Example: 5 transactions {a,b} {a,b,c} {a,c,d} {d,e} {d,e,f}

D(C) = set of items in C
Clustering 1 S(€)= Y| Clustering 2

L,EC

W(C)=|D(C)
| | H(C)=S8(C)/W(C)
abcd de f

occurrence

A

H=2.0, W=4 H=1.67, W=3 V30 =8 H=1.6, W=5
2 e e e e - - - -
{ab, abc, acd} {de, def} H=1.6 ! [] > {ab, abc} {acd, de, def}
deac f item
H/W=0.5 H/W=0.55 L;V\%—’ H/W=0.55 H/W=0.32

Higher H/W means higher item overlapping



CLOPE: Criterion Function

* For evaluating the goodness of a clustering the gradient of a cluster is
* G(C)=H(C)/W(C)=S(C)/W(C)?

Repulsion.
When ris large,

transactions within the k

same cluster must Z S(Cz ) <|C
share a large portion of W(C )r i
common items. C) =l - [




CLOPE: Algorithm

/* Phrase 1 - Initialization */
1: while not end of the database file
2:  read the next transaction (¢, unknown);
put ¢ in an existing cluster or a new cluster C;
that maximize profit;

4:  write (¢, i) back to database;

W

/* Phrase 2 - Iteration */
5: repeat
6 rewind the database file;
7:  moved = false;
8 while not end of the database file
9: read (z, i);
10: move ¢ to an existing cluster or new cluster C,
that maximize profit;
11: if C; = C, then
12: write (¢, j);
13: moved = true;
14:until not moved,




TX-MEANS

* A parameter-free clustering algorithm able to efficiently partitioning
transactional data automatically

* Suitable for the case where clustering must be applied on a massive
number of different datasets

* E.g.: when a large set of users need to be analyzed individually and each of
them has generated a long history of transactions

* TX-Means automatically estimates the number of clusters

* TX-Means provides the representative transaction of each cluster,
which summarizes the pattern captured by that cluster.



How It Works 1/3
Ewwwwwuw

3:’1\;’%’\:,’\:,’\:,’\;’\;’

’
-~ -
7( \K
L T ey R
_— oy
- - “u

o -~
- g Ss

/

‘-—

,HEEEE\'EEE\




How It Works 2/3




How It Works 3/3

e Clusters




TX-Means Algorithm

TXMEANS (B: baskets):

r <-- GETREPR(B); reprs:g—‘g?tlve

Q.push(B,r);

While there is a cluster B,r to split bisecting

in Q:
. schema
* Remove common i1tems from B;

e Bl, B2, rl, r2 <-- BISECTBASKET(B); stopping
1f BIC(B1,B2,rl,r2) > BIC(B,r) Then:<— | criterion

e add B1,B2,rl,r2 to the clusters to split 0Q;
* Else

* add B,r to the clustering result C;

Return C;



Bisecting Schema

BISECTBASKET (B: baskets):
* SSE <-- inf;
e rl,r2 <-- select random initial baskets in B as representative;

* While True:
* Cl,C2 <-- assign baskets in B with respect to rl,r2;
* rl new <-- GETREPR(Cl); r2 new <-- GETREPR(C2);
* SSE new <-- SSE(C1l,C2,rl new,r2 new);

e If SSE new >= SSE Then: overlap-based
- distance function:
* Return C1,C2,rl,r2;

Jaccard coefficient
* rl,r2 <-- rl new,r2 new;



Get Representative Baskets

GETREPR(B: baskets): overlap-based distance
function (Jaccard

e T <-- not common items in B; coefficient)

* r <—-- common items in B;
* While I is not empty:
* Add to r the items wi

* Calculate the distance between r and the baskets in B;
 If the distance no longer decreases Then:

maximum frequency in I;

* Return r;
* Else

* remove from I the items with maximum frequency;

* Return r;



Dealing with Big Datasets

* Clustering of a big individual transactional dataset B.
* TX-Means is scalable thanks to the following sampling strategy.

 Sampling strategy:
 Random selection of a subset S of the baskets in B;
* Run of TX-Means on the subset S and obtain clusters C and
representative baskets R;

* Assign the remaining baskets B/ S to the clusters C using a nearest
neighbor approach with respect to the representative baskets R.
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individually and each of them has generated a long history of trans-
actions. A i i

shows ! f the

of different personal datasets, and suggests that txmeans outper-
forms existing methods in terms of quality and efficiency. Finally,
we present a personal cart assistant application based on txmeans.
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personalized patterns fromtransacl  \ peyp A o
In this paper we focus on the pi

tional lustering for  large numbe TS Dlp;t dies the probem of caegorical daa e:ru;;&h

collection of transactions, transacti

‘covering groups of homogeneous t
commeon items [30). In the state ¢
transactional clustering require eitt
that is not automatic, or an extren
that does not scale to large user b
repeatedly applying the existing pr
lions of different datasets - which i
large population of users  is simp
problem. i.e. the separate individua

are becoming observable, measurable, quantifiable and, predictable.

year. An avalanche of information that, for the most part, consists
of transactions (or baskets). Le.,a special kind of categorical data
in the form of sets of event data, such as the items purchased in
a shopping cart, the web pages visited in a browsing session, the
songs listened in a time period, the clinical events in a patient’s
history. Such kind of data may be key enablers of a new wave of
knowledge-based services, and of new scientific discoveries.
Several application contexts involve the analysis of a large num-
ber of datasets, each one characterized by different properties. For
instance, this is the case of individual transactional data — retail
sales, web sessions, credit card transactions, etc. - where each
user produces historical data that need to be analyzed separately

datasets, as mass clusi
The pmblnn to design parameter
addressed in the context of non

Ilke xmeans [22]. which are perfes
of the clustering problems. Unfort
applicable to transactional data. To
only existing parameter-free transac
(5. 7). Nevertheless, they are based
generally not efficient and overestim
In addition, they do not provide repr
items that characterize the transact
In this paper we propose txmean:
ing method providing a viable soluti
a massive number of different dat
strategy similar to xmeans [22], bul
finding clusters in the specific cont
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a unique cluster, and then iterativ
sub-clusters. Txmeans calculates th
centroids of the sub-clusters by ado

dimensionality and large volume. sun from a heuristic method
ofncreasing the height do-width ato of the chstce histogrm, we
develop a novel algorithm — CLOPE, which is very fast and
scalable, while being quite effective. We demonstrate the
performance of our algorithm on two real world datasets, and
compare CLOPE with the statc-of-art algorithims.
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1. INTRODUCTION

Clustering is an important data mining technique that groups
together similar data records (12, 14, 4, 1), Recenty, more
atteation has becn put on clustering categorical data (10, 8,6, 5, 7,
13], where records are made up of non-numerical sttributes.
Transactional data, like market basket data and web usage data,
can be thought of a special type of categorical data having boolean
value, with all the possible items as attributes. Fast and accurate
clustering of transactionl data has many poteatial applications in
retail industry, e-commerce intelligence, etc
However, fast and effective clustering of transactional databases is
extremely difficult because of the high dimensionality, sparsity,
and huge volumes often characterizing thesc databases. Distance-
based approaches like k-means (11] and CLARANS [u) are
effective for low dimensional ummm
on high dimensional categorical dats,

unsatisfactory (7). i clustering mzlhodx like nouc 7
have been demonstrated to be quite effective in catogorical data
clustering, but they are naturally inefficient in processing large
databases.
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The Lurgeem (13 lgoitn grovs g caegorical dabases
by iterative optimization of a global criterion function.
eniterion function is based on the notion of large item that ﬂﬁe
item in a cluster having occurrence rates larger than a user-defined

support, Computing the global criterion
function is much faster than those local eriterion functions defined
on top of pair-wise similarities. This global approach makes
Largeltem very suitable for clustering large categorical databases.
In this paper, we propose  novel global criterion function that
tries to increase the intra-cluster overlapping of transaction items
by increasing the height-to-width ratio of the cluster histogram.
Moreover, we generalize the idea by introducing a parameter to
control the tightness of the cluster. Dllfmm ke of clusters
anbo btined by vaying s et E show that
our algorithm runs an Largeliom, with chusiering
quality quite close to ﬂ'mo('.hc I'(()CK algorithm [7].

Tcgnnwblmidubdnndnull&nnm let’s take a small
market basket {(apple, banana),

transactions
(apple, banana, cake), ("PP'L“"‘ dish), (dish, egg), (dish, en'
fish)}. For simplicity, transaction (apple, banana) is abbreviated
ab, etc. For this smal ., we want to compare wing
mtlnmnng(l)((ab. abe, acd), (de, de/l) and (2) Hab nbc],
{acd, de, def} ). For each cluster, we count the occurrence of
distinct item, and then obain the height (H) and width (W) of e
cluster, For example, cluster (ab, abc, acd} has the ocourrences of
a3, 52, €2, and d:1, with H=2.0 and =4, Figure | shows these
results geometrically as histograms, with items sorted in reverse
order of their occurrences, only for the sake of easier visual

o

abed def abe deacsf

H20, W~ He167, We3  Hel67,We3  Hel6, W=S

{ab, abc, acd) (de,defy  (ab,abc) (acd, de, defy
clustering (1) clustering (2)

Figure 1. Histograms of the two clusterings.

‘We judge the qualities of these two
analyzing the heights and widths of the clusters. Leaving out the
two identical histograms for cluster (de, def) and cluster {ab, abe},
the other two histograms are of different quality. The histogram

for cluster {ab, abc, acd) has only 4 distinct items for § blocks
(H=2.0, HiW=0.5), but the one for cluster {acd, de, def} has 5, for




