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Mixture Models and the EM Algorithm



Model-based Clustering (probabilistic)

• In order to understand our data, we will assume that there is a 
generative process (a model) that creates/describes the data, and we 
will try to find the model that best fits the data.
• Models of different complexity can be defined, but we will assume that our 

model is a distribution from which data points are sampled
• Example: the data is the height of all people in Greece

• In most cases, a single distribution is not good enough to describe all 
data points: different parts of the data follow a different distribution
• Example: the data is the height of all people in Greece and China
• We need a mixture model
• Different distributions correspond to different clusters in the data.



EM Algorithm



EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in Θ to some random values
• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities P 𝐺! 𝑥"
• M-Step: Given the probabilities P 𝐺! 𝑥" , calculate the parameter values Θ that 

(in expectation) maximize the data likelihood

• Examples
• E-Step: Assignment of points to clusters 

• K-means: hard assignment, EM: soft assignment
• M-Step: Parameters estimation

• K-means: Computation of centroids, EM: Computation of the new model parameters



Gaussian Distribution

• Example: the data is the height of all people in Greece
• Experience has shown that this data follows a 

Gaussian (Normal) distribution



Mixture Gaussian Model

• What is a model?
• A Gaussian distribution is defined by the mean 𝜇 and the standard deviation 𝜎
• We define our model as the pair of parameters 𝜃 = (𝜇, 𝜎)

• More generally, a model is defined as a vector of parameters 𝜃

• We want to find the normal distribution 𝑁(𝜇, 𝜎) that best fits our data
• Find the best values for 𝜇 and 𝜎
• But what does “best fit” mean?



Maximum Likelihood Estimation (MLE)
• Suppose that we have a vector 𝑋 = {𝑥!, … , 𝑥"} of values
• We want to fit a Gaussian model 𝑁(𝜇, 𝜎) to the data 
• Probability of observing a point 𝑥#

• Probability of observing all points (we assume independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that maximizes the 
probability 𝑃 𝑋 𝜃



Maximum Likelihood Estimation (MLE)

• The probability 𝑃 𝑋 𝜃 as a function of 𝜃 is the Likelihood function

• It is usually easier to work with the Log-Likelihood function

• Thus, the Maximum Likelihood Estimation for the Gaussian Model 
consists in finding the parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)



Maximum Likelihood Estimation (MLE)

• Note: these are also the most likely parameters given the data.

• If we have no prior information about 𝜃, or 𝑋, then maximizing 
𝑃 𝜃 𝑋 is the same as maximizing 𝑃 𝑋 𝜃 .  



Mixture of Gaussians

• Suppose that you have the heights of people from Greece and China 
and the distribution looks like the figure below (dramatization)



Mixture of Gaussians

• In this case the data is the result of the mixture of two Gaussians 
• One for Greek people, and one for Chinese people
• Identifying for each value which Gaussian is most likely to have generated it 

will give us a clustering.



Mixture Model

• A value 𝑥# is generated according to the 
following process:
• First select the nationality
• With probability 𝜋#select Greek, with 

probability 𝜋$ select China (𝜋# + 𝜋$ = 1)

• Given the nationality, generate the point 
from the corresponding Gaussian
• 𝑃 𝑥" 𝜃# ~𝑁(𝜇# , 𝜎#) if Greece
• 𝑃 𝑥" 𝜃$ ~𝑁(𝜇$ , 𝜎$) if China



Mixture Model

• Our model has the following parameters

• For value 𝑥!, we have:

• For all values 𝑋 = {𝑥%, … , 𝑥&}

• We want to estimate the parameters that maximize the Liekelihood



Mixture Model

• Once we have the parameters 𝜃 = (𝜋$ , 𝜋% , 𝜇$ , 𝜎$ , 𝜇% , 𝜎%), 
we can estimate the membership probabilities 
𝑃(𝐺|𝑥#) and 𝑃(𝐶|𝑥#) for each point 𝑥#:

• This is the probability that point 𝑥# Belongs to the Greek or 
the Chinese population (cluster)



EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in 𝜃 to some random values
• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities 
P 𝐺 𝑥" and P 𝐶 𝑥"
• M-Step: Calculate the parameter values Θ that (in expectation) maximize the 

data likelihood



Bisecting K-Means



Bisecting K-means

• Variant of K-Means that can produce a hierarchical clustering

2-Means



Bisecting K-means Limitations

• The algorithm is exhaustive terminating at singleton clusters (unless K 
is known or specified)
• Terminating at singleton clusters 
• Is time consuming
• Singleton clusters are meaningless (i.e., over-splitting)
• Intermediate clusters are more likely to correspond to real classes

• Bisecting K-Means do not uses any criterion for stopping bisections 
before singleton clusters are reached.



Bayesian Information Criterion (BIC) 

• A strategy to stop the Bisecting algorithm 
when meaningful clusters are reached to 
avoid over-splitting.
• The BIC can be adopted as splitting 

criterion of a cluster in order to decide 
whether a cluster should split or no.
• BIC measures the improvement of the 

cluster structure between a cluster and its 
two children clusters.
• If the BIC of the parent is less than BIC of 

the children than we accept the bisection.

Two resulting
clusters:
BIC(K=2)=2245

1C Parent cluster:
BIC(K=1)=1980 

1C 2C

C



X-Means



X-Means

Search for the appropriate value of k in a given range [r1,rmax]: 
1. Improve Params
2. Improve Structure
3. If k > rmax stop and return the best-scoring model

Improve Params
• Run K-Means with with the current k

Improve Structure
• Recursively split each cluster in two and use local BIC to decide to keep the split

Finally, use global BIC score to decide which K to output at the end



X-Means
1. K-means with k=3

2. Split each centroid in 2 children 
moved a distance proportional to 
the region size in opposite 
direction (random) 

3. Run 2-means in 
each region locally 4. Compare BIC of parent 

and children
4. Only centroids with 
higher BIC survives



BIC Formula in X-Means

• The  BIC score of a data collection is defined as (Kass and Wasserman, 1995):

• is the log-likelihood of the dataset D

• pj is a function of the number of independent parameters: centroids coordinates, 
variance estimation. 

• R is the number of points of a cluster, M is the number of dimensions

• Approximate the probability that the clustering in Mj is describing the real 
clusters in the data
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BIC Formula in X-Means

• Adjusted Log-likelihood of the model.
• The likelihood that the data is “explained by” the clusters according to the 

spherical-Gaussian assumption of K-Means

• Focusing on the set Dn of points which belong to centroid n

• It estimates how closely to the centroid are the points of the cluster.
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Transactional Clustering



Clustering

• Clustering: Grouping of objects into different sets, or more precisely, 
the partitioning of a data set into subsets (clusters), so that the data 
in each subset (ideally) share some common trait - often proximity 
according to some defined distance measure

• Common distance functions:  
• Euclidean distance, Manhattan distance, …

• This kind of distance functions are suitable for numerical data



Not Only Numerical Data

Hairs Eyes

brown black

blond blue

black green

red brown

Acceleration 
0-100 (s)

Lenght
(m)

Width
(m)

Height
(m)

Price
(€)

12 4 1.6 1.7 20’000

14 3.7 1.5 1.65 16’000

15 3.5 1.5 1.6 12’000

9.4 4.2 1.8 1.7 24’000

Numerical Data

Categorical Data



Boolean and Categorical Attributes

• A boolean attribute corresponding to a single item in a transaction, if 
that item appears, the boolean attribute is set to ‘1’ or ‘0’ otherwise.

• A categorical attribute may have several values, each value can be 
treated as an item and represented by a boolean attribute.



Market Basket Data

• A transaction represents one customer, and each transaction contains set 
of items purchased by the customer.
• Clustering customers reveals customers with similar buying patterns 

putting them into the same cluster. 
• It is useful for

• Characterizing different customer groups             
• Targeted Marketing 
• Predict buying patterns of new customers based on profile

• A market basket database: A scenario where attributes of data points are 
non-numeric, transaction viewed as records with boolean attributes 
corresponding to a single item (TRUE if transaction contain item, FALSE 
otherwise).
• Boolean attributes are special case of Categorical attributes.



Shortcomings of Traditional Clustering

• For categorical data we:
• Define new criterion for neighbors and/or similarity
• Define the ordering criterion

• Consider the following 4 market basket transactions

• using Euclidean distance to measure the closeness between all pairs of points, we 
find that d(P1,P2) is the smallest distance: it is equal to 1

T1= {1, 2, 3, 4} 
T2= {1, 2, 4} 
T3= {3} 
T4= {4}

P1= (1, 1, 1, 1)
P2= (1, 1, 0, 1)
P3= (0, 0, 1, 0)
P4= (0, 0, 0, 1)



Shortcomings of Traditional Clustering

• If we use a hierarchical algorithm then we merge P1 and P2 
and get a new cluster (P12) with (1, 1, 0.5, 1) as a centroid
• Then, using Euclidean distance again, we find:
• d(p12,p3)= Ö3.25 
• d(p12,p4)= Ö2.25
• d(p3,p4)= Ö2

• So, we should merge P3 and P4 since the distance between 
them is the shortest.
• However, T3 and T4 don't have even a single common item. 
• So, using distance metrics as similarity measure for 

categorical data is not appropriate.

P1= (1, 1, 1, 1)
P2= (1, 1, 0, 1)
P3= (0, 0, 1, 0)
P4= (0, 0, 0, 1)



Clustering Algorithms for Categorical/Transactional Data

•K-Modes
•ROCK
•CLOPE
• TX-Means



K-Modes

• X = { X1 ,…, Xn } is the dataset of objects.
• Xi = [ x1 ,…, xm ] is an object i.e., a vector of m categorical attributes 

• W is a matrix n × k, with wi,l equal to 1 if Xi belongs to Cluster l, 0 otherwise.
• Q = { Q1 ,…, Qk } is the set of representative objects (mode) for the k clusters.

• d( Xi , Ql ) is a distance function for objects in the data



K-Modes: Distance

• K-Means as distance uses 
Euclidean distance 

• K-Modes as distance uses the 
number of mismatches between 
the attributes of two objects.

d(X,Y ) = (xi − yi )
2

i=1

m

∑



K-Modes: Mode

• K-Modes uses the mode as representative object of a cluster
• Given the set of objects in the cluster Cl the mode is get computing 

the max frequency for each attribute

n
n

XcAf klc
ljljr

,)|( , ==



K-Modes: Algorithm

1. Select the initial objects as modes
2. Scan of the data to assign each object to the 

closer cluster identified by the mode 
3. Re-compute the mode of each cluster 
4. Repeat the steps 2 and 3 until no object 

changes the assigned cluster



ROCK: RObust Clustering using linK

• ROCK is a hierarchical algorithm for clustering transactional data 
(market basket databases)
• ROCK uses links to cluster instead of the classical distance notion 
• ROCK uses the notion of neighborhood between pair of objects to 

identify the number of links between two objects



ROCK: The Neighbors Concept

• It captures a notion of similarity
• A and  B are neighbors if sim(A, B) ≥ θ

• ROCK uses  the Jaccard coefficient
• sim(A, B)= |A ∩ B| / | A U B |

A = { 1 , 3 , 4 , 7 }

B = { 1 , 2 , 4 , 7 , 8 }
sim(A,B) = 3

6
=
1
2
= 0.5



ROCK: Links

• A link defines the number of common neighbors 
between two objects: 
• link(A, B) = |neighbor(A) ∩ neighbor(B) |
• Higher values of link(A, B) means higher probability 

that A and B belong to the same cluster 
• Similarity is local while link is capturing global

information
• A point is considered a neighbor of itself
• There is a link from each neighbor of the “root” 

point back to itself through the root
• Therefore, if a point has n neighbors, then n2 links 

are due to it. 



ROCK: Example

• Data consisting of 6 Attributes: {Book, Water, Sun, Sand, Swimming, Reading}
• {Book}   
• {Water, Sun, Sand, Swimming}
• {Water, Sun, Sand, Reading}
• {Reading, Sand}

• Resulting Jaccard Coefficient Matrix
• Set Threshold = 0.2. Neighbors: 

• N(A)={A}; N(B)={B,C,D}
• N(C)={B,C,D}, N(D) = {B,C,D} 

• Number of Links Table
• Link (B, C) = |{B,C,D}| = 3

• Resulting Clusters after applying ROCK: {A}, {B,C,D}

A B C D
A 1 0 0 0
B 0 1 0.6 0.2
C 0 0.6 1 0.5
D 0 0.2 0.5 1

A B C D
A 1 0 0 0
B 0 3 3 3
C 0 3 3 3
D 0 3 3 3



ROCK – Criterion Function
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This goodness measure helps to identify the best pair of clusters to be 
merged during each step of ROCK. 

Number of expected cross-links between two clusters

Where   Ci denotes cluster i
ni is the number of points in Ci
k is the number of clusters
q is the similarity threshold

Dividing by the number of expected links 
between pairs of objects in the cluster Ci we 
avoid that objects with a low number of links 
are assigned all to the same cluster



ROCK: Clustering Algorithm

Input:  
A set S of data points
Number of k clusters to be found
The similarity threshold

Output: 
Groups of clustered data

The ROCK algorithm is divided into three major parts:
1. Draw a random sample from the data set
2. Perform a hierarchical agglomerative clustering algorithm
3. Label data



ROCK: Clustering Algorithm

Draw a random sample from the data set:
• Sampling is used to ensure scalability to very large data sets 
• The initial sample is used to form clusters, then the remaining data on 

dataset is assigned to these clusters 



ROCK: Clustering Algorithm

Perform a hierarchical agglomerative clustering algorithm:
• ROCK performs the following steps which are common to all 

hierarchical agglomerative clustering algorithms, but with different 
definition to the similarity measures:

1. Places each single data point into a separate cluster
2. Compute the similarity measure for all pairs of clusters
3. Merge the two clusters with the highest similarity (goodness measure)
4. Verify a stop condition. If it is not met then go to step 2.



ROCK: Clustering Algorithm

Label data
• Finally, the remaining data points are assigned to the clusters. 
• This is done by selecting a random sample Li from each cluster Ci, 

then we assign each point p to the cluster for which it has the 
strongest linkage with Li. 



CLOPE (Clustering with LOPE)

• Transactional clustering efficient for high dimensional data 
• Uses a global criterion function that tries to increase the intra-cluster overlapping of 

transaction items by increasing the height-to-width ratio of the cluster histogram. 
Example: 5 transactions {a,b} {a,b,c} {a,c,d} {d,e} {d,e,f}

D(C) = set  of items in C

S(C) = ti
ti∈C
∑

W (C) = D(C)

H (C) = S(C) /W (C)

Clustering 1 Clustering 2

H/W=0.5 H/W=0.55 H/W=0.55 H/W=0.32

Higher H/W means higher item overlapping



CLOPE: Criterion Function

• For evaluating the goodness of a clustering the gradient of a cluster is 
• G(C)=H(C)/W(C)=S(C)/W(C)2

Repulsion.
When r is large, 
transactions within the 
same cluster must 
share a large portion of 
common items. 



CLOPE: Algorithm



TX-MEANS

• A parameter-free clustering algorithm able to efficiently partitioning 
transactional data automatically
• Suitable for the case where clustering must be applied on a massive 

number of different datasets
• E.g.: when a large set of users need to be analyzed individually and each of 

them has generated a long history of transactions

• TX-Means automatically estimates the number of clusters 
• TX-Means provides the representative transaction of each cluster, 

which summarizes the pattern captured by that cluster. 



How It Works 1/3



How It Works 2/3



How It Works 3/3

• Clusters

• Representative Baskets



TX-Means Algorithm

TXMEANS(B: baskets):

• r <-- GETREPR(B);

• Q.push(B,r);

• While there is a cluster B,r to split in Q:
• Remove common items from B;
• B1, B2, r1, r2 <-- BISECTBASKET(B);
• If BIC(B1,B2,r1,r2) > BIC(B,r) Then:
• add B1,B2,r1,r2 to the clusters to split Q;

• Else
• add B,r to the clustering result C;

• Return C;

stopping 
criterion

representative 
basket

bisecting 
schema



Bisecting Schema

BISECTBASKET(B: baskets):

• SSE <-- inf; 

• r1,r2 <-- select random initial baskets in B as representative; 

• While True:
• C1,C2 <-- assign baskets in B with respect to r1,r2;
• r1_new <-- GETREPR(C1); r2_new <-- GETREPR(C2);
• SSE_new <-- SSE(C1,C2,r1_new,r2_new);
• If SSE_new >= SSE Then:
• Return C1,C2,r1,r2;

• r1,r2 <-- r1_new,r2_new;

overlap-based 
distance function: 
Jaccard coefficient



Get Representative Baskets

GETREPR(B: baskets):

• I <-- not common items in B; 

• r <-- common items in B; 

• While I is not empty:
• Add to r the items with maximum frequency in I;
• Calculate the distance between r and the baskets in B;
• If the distance no longer decreases Then:

• Return r;
• Else
• remove from I the items with maximum frequency;

• Return r;

overlap-based distance 
function (Jaccard

coefficient)



Dealing with Big Datasets

• Clustering of a big individual transactional dataset B.
• TX-Means is scalable thanks to the following sampling strategy.

• Sampling strategy: 
• Random selection of a subset S of the baskets in B;
• Run of TX-Means on the subset S and obtain clusters C and 

representative baskets R;
• Assign the remaining baskets B/S to the clusters C using a nearest 

neighbor approach with respect to the representative baskets R.
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