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 Epidemic Model based on Random Trees 
 (a variant of branching processes) 
 A patient meets d other people 
 With probability q>0 infects each  

of them 
 Q: For which values of d and q 

does the epidemic run forever? 

 Run forever: lim𝑛→∞𝑃
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑛𝑖𝑖
𝑎𝑖 𝑖𝑖𝑑𝑖𝑑 𝑖 > 0 

 Die out:                                   -- || --            = 0 
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Root node, 
“patient 0” 

Start of epidemic 

d subtrees 



 pn = prob. there is an infected node at depth n 
 We need: lim𝑛→∞ 𝑑𝑛 =?  (based on q and d) 
 Need recurrence for pn 

𝑑𝑛 = 1 − 1 − 𝑞𝑑𝑛−1 𝑑 
 

 lim
𝑛→∞

𝑑𝑛 = result of iterating  
f x = 1 − 1 − 𝑞𝑥 𝑑 

 Starting at x=1 (since p1=1) 
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No infected node 
at depth n 
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x 

f(x) 

1 

y=x 

Going to first  
fixed point 

f 0 = 0, f 1 = 1  
f 1 = 1 − 1 − q d < 1 
f ′ x = qd 1 − qx d−1  

y = f x  

f ′ 0 = qd ∶ f ′(x) is monotone decreasing on [0,1] 

When is this going to 0? 

What do we know about f(x)? 
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x 

f(x) 

1 

y=x 

y = f x  

We need f(x) to be bellow y=x! 
f ′ 0 < 1 

lim
𝑛→∞

𝑑𝑛 = 0 ?    to  𝑞𝑖 < 1 

qd = expected # of people at we infect 



 In this model nodes only go from  
inactive → active 

 Can generalize to allow nodes to alternate 
between active and inactive state by: 
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 Generalizing to model to Virus Propagation 
2 Parameters: 
 (Virus) birth rate β:  
 probability than an infected neighbor attacks 

 (Virus) death rate δ:  
 probability that an infected node heals 
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 General scheme for epidemic models: 
 Each node can go through phases: 
 Transition probs. are governed by model parameters 
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S…susceptible 
E…exposed 
I…infected 
R…recovered 
Z…immune 

9 



 Node goes through phases 
 
 Models chickenpox or plague:  
 Once you heal, you can never get infected again 

 Assuming perfect mixing 
 network is a complete graph 

    the model dynamics is 
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 Susceptible-Infective-Susceptible (SIS) model  
 Cured nodes immediately become susceptible 
 Virus “strength”: s = β / δ 
 Node state transition diagram: 
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Susceptible Infective 

Infected by neighbor 
with prob. β 

Cured internally 
with prob. δ 



 Models flu: 
 Susceptible node 

becomes infected 
 The node then heals 

and become 
susceptible again 

 Assuming perfect 
mixing (complete 
graph): 
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Susceptible Infected ISI
dt
dI δβ −=

ISI
dt
dS δβ +−=
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I(t) 

S(t) 

 



 SIS Model 
 Epidemic threshold of a graph G is a  

value of t, such that: 
 If virus strength s = β / δ <  t  

the epidemic can not happen  
(it eventually dies out) 
 

 Given a graph what is its epidemic 
threshold? 
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 We have no epidemic if: 
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β/δ < τ = 1/ λ1,A 

► λ1,A alone captures the property of the graph! 

(Virus) Birth rate 

(Virus) Death 
rate 

Epidemic threshold 

largest eigenvalue 
of adj. matrix A 

[Wang et al. 2003] 
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δ: 0.05 0.06 0.07

Oregon
β =  0.001

β/δ > τ  
(above threshold) 

β/δ = τ  
(at the threshold) 

β/δ < τ  
(below threshold) 

10,900 nodes and 
31,180 edges 

[Wang et al. 2003] 



 Does it matter how many  people are 
initially infected? 
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 Blogs – Information epidemics 
 Which are the influential/infectious blogs? 
 Which blogs create big cascades? 

 
 Viral marketing 
 Who are the influencers?  
 Where should I advertise? 

 
 Disease spreading 
 Where to place monitoring  

stations to detect epidemics? 
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vs. 



 Independent Cascade Model 
 Directed finite G=(V,E) 
 Set S starts out with new behavior 
 Say nodes with this behavior are “active” 
 Each edge (v,w) has a probability pvw 

 If node v is active, it gets one chance to  
make w active, with probability pvw 
 Each edge fires at most once 

 Does scheduling matter? No 
 E.g., u,v both active, doesn’t matter which fires first 
 But the time moves in discrete steps 
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 Initially some nodes S are active 
 Each edge (v,w) has probability (weight) pvw 

 
 
 
 
 
 

 
 

 
 When node v becomes active:  
 It activates each out-neighbor w with prob. pvw 

 Activations spread through the network 
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 S: is initial active set 
 f(S): the expected size of final active set  

 
 
 
 
 
 

 Set S is more influential if f(S) is larger 
 f({a,b} < f({a,c}) < f({a,d}) 
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graph G 
a b 

d 

c 
… influence set  

of a node 



Problem: 
 Most influential set of 

size k: set S of k nodes 
producing largest 
expected cascade size 
f(S) if activated 
[Domingos-Richardson ‘01] 
 

 Optimization problem: 
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 Most influential set of k nodes: set S on k 
nodes producing largest expected cascade 
size f(S) if activated 

 The optimization problem: 
 

 
 

 How hard is this problem? 
 NP-HARD! 
 Show that finding most influential  

set is at least as hard as a vertex cover 
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)(max
k size of S

Sf



 Vertex cover problem: 
 Given universe of elements U={u1,…,un}  

and sets S1,…, Sm ⊆ U 
 Are there k sets among S1,…, Sm such that  

their union is U? 
 
 
 
 

 Goal: 
Encode vertex cover as an instance of  
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)(max
k size of S

Sf

U 

S1 S2 

S3 

S4 



 Given a vertex cover instance with sets S1,…, Sm 
 Build a bipartite “S-to-U” graph: 

 
 
 
 
 

 There exists a set S of size k with f(S)=k+n  
iff there exists a size k set cover 
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Construction: 
• Create  edge 
(Si,u) ∀Si ∀ u∈Si  
-- directed edge 
from sets to their 
elements 
• Put weight 1 on 
each edge 

u1 

u2 

u3 

un 

e.g.: 
S1={u1, u2, u3} 

1 
1 
1 

S1 

S2 

S3 

Sm 

Note: Optimal solution is always a set of Si 
This is hard in general, could be special cases that are easier 



 Bad news: 
 Influence maximization is NP-hard 

 Next, good news: 
 There exists an approximation algorithm! 

 Consider the Hill Climbing algorithm to find S: 
 Input: Influence set of each node u = {v1, v2, … } 
 If we activate u, nodes {v1, v2, … } will eventually get active 

 Algorithm: At each step take the node u that gives 
best marginal gain: max f(Si-1∪{u}) 
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Algorithm: 
 Start with S0={} 
 For i=1…k 
 Take node v that max f(Si-1∪{v}) 
 Let  Si = Si-1∪{v} 

 

 Example: 
 Eval f({a}),… f({d}), pick max  
 Eval f({a,b}),… f({a,d}), pick max 
 Eval f(a,b,c},… f({a,b,d}, pick … 
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 Hill climbing produces a solution S  
where: f(S) ≥(1-1/e)*OPT    (f(S)>0.63*OPT) 
[Nemhauser, Fisher, Wolsey ’78, Kempe, Kleinberg, Tardos ‘03] 

 Claim holds for functions f() with 2 properties: 
 f is monotone: (activating more nodes doesn’t hurt) 

if S ⊆ T then f(S) ≤ f(T) and f({})=0 
 f is submodular: (activating each additional node helps less) 

adding an element to a set gives less improvement  
than adding it to one of its subsets: ∀S ⊆ T  
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Gain of adding a node to a small set Gain of adding a node to a large set 

  f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) 



 Diminishing returns: 
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f(X
) 

Solution size, |X| 

Gain of adding a node to a small set Gain of adding a node to a large set 

  f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) 

f(S) 

f(S ∪{u}) 

f(T ∪{u}) 
∀S ⊆ T  

f(T) 

Adding u to T helps less! 





 We must show our f() is submodular:  
 ∀S ⊆ T 

 
 

 
 

 
 Basic fact 1: 
 If f1(x), …,fk(x) are submodular, and c1,…,ck ≥ 0 

then F x = ∑ 𝑖𝑖 ∙ 𝑖𝑖 𝑥𝑖   is also submodular 
      (Linear combination of submodular functions is a submodular function) 
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Gain of adding a node to a small set Gain of adding a node to a large set 

  f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) 

(trivially u∉T) 



 ∀S ⊆ T:  
 

 Basic fact 2: A simple submodular function 
 Sets A1, …, Am  
 𝑖 𝑆 = ⋃ 𝐴𝑖𝑖∈𝑆       (size of the union of sets Ai, i∈S) 

 Claim: f(S) is submodular! 
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S 
T 

u 

Gain of adding u to a small set Gain of adding u to a large set 

  f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) 

S ⊆ T  

The more sets 
you already 
have the less 
new area a new 
set will cover 



 Principle of deferred decision: 
 Flip all the coins at the 

beginning and record 
which edges fire successfully. 
 Now we have a  

deterministic graph! 
 Edges which succeed are live 

 For the i-th realization of coin flips 
 fi(S) = size of the set reachable by  

 live-edge paths from nodes in S  
 fi(S={a,b}) = {a,f,c,g,b}  
 fi(S={a,d}) = {a,f,c,g,d,e,h} 
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Influence sets: 
  fi(a) = {a,f,c,g} 
  fi(d) = {d,e,h} 
  fi(b) = {b,c}, … 



 Fix outcome i of coin flips 
 fi(v) = set of nodes  

reachable from v on  
live-edge paths 

 fi(S) = size of cascades  
from S given coin flips i 

 𝑖𝑖 𝑆 = ⋃ 𝑖𝑖(𝑣)𝑣∈𝑆  ⇒  fi(S) is submodular 
 fi(v) are sets and fi(S) is the size of the union 

 Expected influence set size: 
𝑖 𝑆 = ∑ 𝑖𝑖(𝑆)𝑖  ⇒ f(S) is submodular! 
 f(S) is linear combination of submodular functions 
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Claim:  
    If f(S) is monotone and submodular. 
    Hill climbing produces a solution S  
    where: f(S) ≥(1-1/e)*OPT    (f(S)>0.63*OPT) 
 

 Setting 
 Keep adding nodes that give the largest gain 
 Start with S0={}, produce sets S1, S2,…,Sk 
 Add elements one by one 
 Marginal gain: δi = f(Si) - f(Si-1) 
 Let T={t1…tk} be the optimal set of size k 

 

 We need to show: f(S) ≥ (1-1/e) f(T) 
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𝑖 𝐴 ∪ 𝐵1 − 𝑖 𝐴 ∪ 𝐵0
+ 𝑖 𝐴 ∪ 𝐵2 − 𝑖 𝐴 ∪ 𝐵1
+ 𝑖 𝐴 ∪ 𝐵3 − ⋯
+ 𝑖 𝐴 ∪ 𝐵𝑘 − 𝑖(𝐴 ∪ 𝐵𝑘−1) 
 

 𝑖(𝐴 ∪ 𝐵) − 𝑖(𝐴) ≤  ∑ [𝑖(𝐴 ∪ {𝑏𝑗}𝑘
𝑗=1 ) − 𝑖(𝐴)] 

 where: B = {b1,…,bk} and f is submodular,  
 Proof:  
 Let Bi = {b1,…bi}, so we have B1, B2, …, Bk=B 
 𝑖 𝐴 ∪ B − 𝑖 𝐴 = ∑ 𝑖 𝐴 ∪ 𝐵𝑖 − 𝑖 𝐴 ∪ 𝐵𝑖−1𝑘

𝑖=1  
 = ∑ 𝑖 𝐴 ∪ 𝐵𝑖−1 ∪ 𝑏𝑖 − 𝑖 𝐴 ∪ 𝐵𝑖−1𝑘

𝑖=1  
 ≤  ∑ 𝑖 𝐴 ∪ {𝑏𝑖} − 𝑖 𝐴𝑘

𝑖=1  
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Work out the sum. 
Everything but 1st and 
last term cancels out. 

By submodularity  
since A∪X ∪{b} ⊇ A∪{b} 



 𝑖 𝑇 ≤ 𝑖 𝑆𝑖 ∪ 𝑇  

 = 𝑖 𝑆𝑖 ∪ 𝑇 − 𝑖 𝑆𝑖 + 𝑖 𝑆𝑖  

 ≤ ∑ 𝑖 𝑆𝑖 ∪ {𝑖𝑗} − 𝑖 𝑆𝑖 + 𝑖(𝑆𝑖)𝑘
𝑗=1  

 ≤ ∑ 𝛿𝑖+1𝑘
𝑗=1 + 𝑖 𝑆𝑖 = 𝑖 𝑆𝑖 + 𝑘 𝛿𝑖+1 

 Thus: 𝑖 𝑇 ≤ 𝑖 𝑆𝑖 + 𝑘 𝛿𝑖+1 

 ⇒𝛿𝑖+1 ≥
1
𝑘

[𝑖 𝑇 − 𝑖(𝑆𝑖)] 
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(by monotonicity) 

(by prev. slide) 

T = {t1, … tk} 
tj is one choice 

of a next 
element, and 

we greedily 
choose the 

best one, for a 
gain of δi+1 



 We just showed: 𝛿𝑖+1 ≥
1
𝑘

[𝑖 𝑇 − 𝑖(𝑆𝑖)] 

 What is f(Si+1)? 

 𝑖 𝑆𝑖+1 = 𝑖 𝑆𝑖 + 𝛿𝑖+1 

 ≥ 𝑖 𝑆𝑖 + 1
𝑘
𝑖 𝑇 − 𝑖 𝑆𝑖  

 = 1 − 1
𝑘
𝑖 𝑆𝑖 + 1

𝑘
𝑖(𝑇) 

 What is f(Sk)? 
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 Claim:  
 

Proof by induction: 
 𝑖 = 0: 
 𝑖 𝑆0 = 𝑖({}) = 0 

 1 − 1 − 1
𝑘

0
𝑖 𝑇 = 0 

 
 
 
 

10/13/2009 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 40 

)(111)( Tf
k

Sf
i

i

















 −−≥



 Claim:  
 

Proof by induction: 
 At 𝑖 + 1: 
 𝑖 𝑆𝑖+1 ≥ 1 − 1

𝑘
𝑖 𝑆𝑖 + 1

𝑘
𝑖 𝑇  

 ≥ 1 − 1
𝑘

1 − 1 − 1
𝑘

𝑖
𝑖 𝑇 + 1

𝑘
𝑖 𝑇  

 = 1 − 1 − 1
𝑘

𝑖+1
𝑖(𝑇) 
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 Thus:  

𝑖 𝑆 = 𝑖 𝑆𝑘 ≥ 1 − 1 −
1
𝑘

𝑘

𝑖 𝑇  

 

 Then: 

𝑖 𝑆𝑘 ≥ 1 −
1
𝑖

𝑖(𝑇) 
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≤
𝟏
𝒆 

qed 



We just proved:  
 Hill climbing finds solution S which 

f(S) ≥ (1-1/e)*OPT 
 this is a data independent bound 
 This is a worst case bound 
 No matter what is the input data (influence sets) we 

know that Hill Climbing won’t do worse than 0.63*OPT 
Data dependent bound: 
 We want a bound whose value depends on 

the input data 
If the data is “easy”, we are likely doing better than 63% of OPT 
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 Suppose S is some solution to 
 

  argmaxS f(S)  s.t. |S| ≤ k 
 

 f() is monotone & submodular 
 and let T = {t1,…,tk} be the OPT solution 
 CLAIM:  

For each u ∉ S let δu = f(S∪{u})-f(S) 
   Order δu so that δ1 ≥ δ2 ≥ … ≥ δn 

Then: f(T) ≤ f(S) + ∑i=1
k δi 
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 For each u ∉ S let δu = f(S∪{u})-f(S) 
   Order δu so that δ1 ≥ δ2 ≥ … ≥ δn 

Then: f(T) ≤ f(S) + ∑i=1
k δi 

 Proof: 
 𝑖 𝑇 ≤ 𝑖 𝑇 ∪ 𝑆 =
𝑖 𝑆 +
∑ 𝑖 𝑆 ∪ 𝑖1 … 𝑖𝑖 − 𝑖 𝑆 ∪ 𝑖1 … 𝑖𝑖−1𝑘
𝑖=1  

 ≤ 𝑖 𝑆 + ∑ 𝑖 𝑆 ∪ 𝑖𝑖 − 𝑖 𝑆𝑘
𝑖=1  

 = 𝑖 𝑆 + ∑ 𝛿𝑡𝑖
𝑘
𝑖=1  

 ≤ 𝑖 𝑆 + ∑ 𝛿𝑖  𝑘
𝑖=1   ⇒   𝑖 𝑇 ≤ 𝑖 𝑆 + ∑ 𝛿𝑖𝑘

𝑖=1  
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What do we know about 
optimizing submodular 
functions? 

 A hill-climbing is near optimal 
(1-1/e (~63%) of OPT) 

 

 But  
 Hill-climbing algorithm is slow 
 At each iteration we need to re-

evaluate marginal gains 
 It scales as O(n k) 
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a 

b 

c 

d 

reward 

e 

Hill-climbing 

Add node with highest 
marginal gain 



 In round i+1: So far we picked Si = {s1,…,si} 
 Now pick si+1 = argmaxu F(Si ∪ {u}) - F(Si) 
 maximize the “marginal benefit” δu(Si) = F(Si ∪ {u}) - F(Si) 

 

 By submodularity property: 
 𝑖 𝑆𝑖 ∪ 𝑢 − 𝑖 𝑆𝑖 ≥ 𝑖 𝑆𝑗 ∪ 𝑢 − 𝑖 𝑆𝑗  for i<j 

 

 Observation: Submodularity implies  
 i ≤ j ⇒ δx(Si) ≥ δx(Sj)    since Si⊆Sj 

 

 Marginal benefits δx only shrink! 
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u 

δu(Si) ≥ δu(Si+1) 

[Leskovec et al., KDD ’07] 

Activating node u in step i helps 
more than activating it at step j (j>i) 



 Idea:  
 Use δi as upper-bound on δj (j>i) 

 Lazy hill-climbing: 
 Keep an ordered list of marginal 

benefits δi from previous 
iteration 
 Re-evaluate δi only for top node 
 Re-sort and prune 
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a 

b 

c 

d 

Marginal gain 

e 

[Leskovec et al., KDD ’07] 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) S ⊆ T  

S1={a} 



 Idea:  
 Use δi as upper-bound on δj (j>i) 

 Lazy hill-climbing: 
 Keep an ordered list of marginal 

benefits δi from previous 
iteration 
 Re-evaluate δi only for top node 
 Re-sort and prune 
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a 

d 

b 

c 

e 

Marginal gain 

[Leskovec et al., KDD ’07] 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) S ⊆ T  

S1={a} 



 Idea:  
 Use δi as upper-bound on δj (j>i) 

 Lazy hill-climbing: 
 Keep an ordered list of marginal 

benefits δi from previous 
iteration 
 Re-evaluate δi only for top node 
 Re-sort and prune 
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a 

c 

d 

b 

e 

Marginal gain 

[Leskovec et al., KDD ’07] 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) S ⊆ T  

S1={a} 

S2={a,b} 





 Given a real city water 
distribution network 

 

 And data on how 
contaminants spread 
in the network 

 

 Detect the 
contaminant as quickly 
as possible 

 

 Problem posed by the 
US Environmental 
Protection Agency 

10/20/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 53 

S S 

[Leskovec et al., KDD ’07] 



 Given a graph G(V,E) 
 Data on how outbreaks spread over the 

network:  
 for each outbreak i we know the  

time T(i,u) when outbreak i contaminated node u 
 

 Select a subset of nodes A that maximize  
the expected reward: 
 
 
 
 

 Reward: Save the most people 
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Reward for detecting 
outbreak i 

[Leskovec et al., KDD ’07] 



 Observation: Diminishing returns 
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S1 

S2 

Placement A={s1, s2} 

S’ 

New sensor: 

Adding s’ helps a lot 

S2 

S4 

S1 

S3 

Placement A’={s1, s2, s3, s4} 

s’ 

Adding s’ helps 
very little 

[Leskovec et al., KDD ’07] 



 Claim:  
 The reward function is submodular 

 

 Consider outbreak i: 
 Ri(uk) = set of nodes saved from uk 

 Ri(A) = size of union Ri(uk), uk∈A 
⇒Ri is submodular 

 

 Global optimization: 
 R(A) = ∑i Prob(i) Ri(A) 
⇒ R(A) is submodular 
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u1 fi(u1) 
outbreak i 

u2 

fi(u2) 

[Leskovec et al., KDD ’07] 



 Real metropolitan area         water 
network  
 V = 21,000 nodes 
 E = 25,000 pipes 

 
 

 Use a cluster of 50 machines for a month 
 Simulate 3.6 million epidemic scenarios  
 (152 GB of epidemic data) 
 By exploiting sparsity we fit it into main 

memory (16GB) 
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[Leskovec et al., KDD ’07] 



 Submodularity gives data-dependent bounds on the 
performance of any algorithm 
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 Placement heuristics perform much worse 
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[Leskovec et al., KDD ’07] 



= I have 10 minutes. Which 
blogs should I read to be 
most up to date?  
 
 

= Who are the most 
influential bloggers? 

60 

? 
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Detect all 
stories but late. 

Want to read things 
before others do. 

Detect blue & yellow 
soon but miss red. 



 Online bound is much tighter: 
 13% instead of 37% 

(1-1/e) bound 

Data dependent 
bound 
Hill Climbing 
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 Heuristics perform much worse 
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[Leskovec et al., KDD ’07] 



 Lazy evaluation 
runs 700 times 
faster than naïve 
Hill Climbing 
algorithm 
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[Leskovec et al., KDD ’07] 

Naïve  
hill climbing 

Lazy 
hill climbing 
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