Probabilistic Contagion in
Graphs



Probabilistic Spreading Models

Epidemic Model based on Random Trees

(a variant of branching processes) Root node,
“patient 0”
A patient meets d other people Start of epidemic

With probability g>0 infects each d subirees
of them
Q: For which values of d and q

does the epidemic run forever?

infected node
at depthn

Die out: - || -- =0

Run forever: lim,,_, P
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Probabilistic Spreading Models

p,, = prob. there is an infected node at depth n
We need: lim,,_,, »,, =7 (based on g and d)
Need recurrence for p,_

pp=1 _\(1 — qgn—l)%

No infected node
at depth n

lim p,, = result of iterating

Nn—o>00
f(x) =1—(1—gx)?
Starting at x=1 (since p,=1)

10/24/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Fixed Point: f(x) = 1 — (1 — gx)¢

y = f(x)

Going to first
fixed point

When is this going to 0?

1 X

What do we know about f(x)?

f(0) =0,f(1) =1

f(H)=1-1-q%<1

f'(x) = qd(1 — gx)¢~*

f'(0) = qd : f'(x) is monotone decreasing on [0,1]
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Fixed Point: When is this zero?

f(x) y=X

We need f(x) to be bellow y=x!
f'(0) <1
limp,=0? toqgd<1

n—>00
gd = expected # of people at we infect
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Probabilistic Contagion

In this model nodes only go from
Inactive — active

..............................................................................

0000000000



EXTRA:
Generalizing the Model to
Virus Propagation



Spreading Models of Viruses

Virus Propagation

probability than an infected neighbor attacks

probability that an infected node heals
Healthy

Infected
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More Generally: S+E+I+R Models

Each node can go through phases:
Transition probs. are governed by model parameters

recruitment exit exit exit

' f f f
RN RN

exit K’ .
[ 7 ] S...susceptible

E...exposed
l...infected
+ R...recovered
exit Z...immune
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SIR Model

Node goes through phases

e T

Models chickenpox or plague:

Once you heal, you can never get infected again

network is a complete graph
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SIS Model

Susceptible-Infective-Susceptible (SIS) model
Cured nodes immediately become susceptible

Infected by neighbor
with prob. 3

Susceptible Infective

Cured internally
with prob. &

10/13/2009 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 11



SIS Model
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10/13/2009

Models flu:

Susceptible node
becomes infected

The node then heals
and become
susceptible again

Assuming perfect
mixing (complete

graph):

d> =-S5l +

dt

di
— = A5l -l
dt P
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Question: Epidemic threshold t

If virus strengths=f#/0< t
the epidemic can not happen
(it eventually dies out)
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[Wang et al. 2003]

Epidemic Threshold in SIS Model

Epidemic threshold

(Virus) Death ——
rate jl
Blo<t=1/A1p

/ f

I

(Virus) Birth réce largest eigenvalue
of adj. matrix A

> A, 5 alone captures the property of the graph!
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[Wang et al. 2003]

Experiments (AS graph)

500 . 1 . — | 10,900 nodes and
| | ‘ 31,280 edges

a0 4 — B/d>1
| | | f (above threshold)

|| R —

200 -

B/o=1

Number of Infected Nodes

100 - (at the threshold)
0
0 p/o<t
Time (below threshold)

0. ===0.05 == 0.06 =« 0.07
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Experiments

x 10° x 10°

w
w

—_

Number of carriers
]
Number of carriers
Number of carriers
N

—
Y

\\ '-.\\.I.
L \\ \
0 _— T

0 50 100 50 — ' '
Simulation epochs Simulation epochs ° gti)mulatic:rn1 ggochs 190

(a) Below the threshold, (b) At the threshold, (c) Above the threshold,
s=0.912 s=1.003 s=1.1
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Influence Maximization
In Graphs



How to Create Big Cascades?

Which are the influential/infectious blogs?
Which blogs create big cascades?

Who are the influencers?
Where should | advertise?

Where to place monitoring
stations to detect epidemics?

10/13/2009 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 18



Probabilistic Contagion

10/24/2011

Directed finite G=(V,E)

Set S starts out with new behavior
Say nodes with this behavior are “active”

Each edge (v,w) has a probability p,,,

If node v is active, it gets one chance to
make w active, with probability p,,,

Each edge fires at most once
No

E.g., u,v both active, doesn’t matter which fires first
But the time moves in discrete steps

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Independent Cascade Model

Each edge (v,w) has probability (weight) p,,,

It activates each out-neighbor w with prob. p,,,
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Most Influential Set of Nodes

S: is initial active set

O ... Influence set
of a node

f({a,b} < f({a,c}) < f({a,d})
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Most Influential Set

Problem:

set S of k nodes
producing

if activated

[Domingos-Richardson ‘01] 'r;fg‘:eor;f

max T (S)

Sof sizek
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Most Influential Subset of Nodes

set Son k
nodes producing largest expected cascade
size f(S) if activated

max T (S)

Sof sizek

Show that finding most influential
set is at least as hard as a vertex cover
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Background: Vertex Cover

Given universe of elements U={u,,...,u,}
andsets S,,..., S, c U

Encode vertex cover as an instance of max f (S)

Sof sizek
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Influence Maximization is NP-hard

Given a vertex cover instance with sets §,,..., S,

Construction:

Uy €.g.. « Create edge
u S1={uy, Uy, Ug} (S;,u) VS; V ueS,
2 -- directed edge
Us from sets to their
elements
* Put weight 1 on
u, each edge

Note: Optimal solution is always a set of S,
This is hard in general, could be special cases that are easier
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Summary so Far

Input: Influence set of each node u =1{v,, v,, ... }

If we activate u, nodes {v,, v,, ... } will eventually get active

Algorithm: At each step take the node u that gives
best marginal gain: max f(S; ;. {u})
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(Greedy) Hill Climbing

Algorithm:
Start with S;={}
Fori1=1...k

Take node v that max f(S; ;\{v})
Let S;=S; AV}

Example: b b
Eval f({a}),... f({d}), pick max % ¢
Eval f({a,b}),... f({a,d}), pick max ¢ °

Eval f(a,b,c},... f({a,b,d}, pick ... e

f(SiU{v})
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Approximation Guarantee

Hill climbing produces a solution S
where: f(S) >(1-1/e)*OPT (f(S)>0.63*OPT)

(activating more nodes doesn’t hurt)

if S T then f(S) < AT) and f({})=0

(activating each additional node helps less)
adding an element to a set gives less improvement
than adding it to one of its subsets: VSc T

f(s Huf)=f(S) 2 AT wiuf)—f(T)

Gain of adding a node to a small set Gain of adding a node to a large set
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Submodularity— Diminishing returns

f(X)
|

VScT
f(T W{u})

Adding u to T helps less!

Solution size, |X]

f(s Huf)=f(S) 2 AT wiuf)—f(T)

Gain of adding a node to a small set Gain of adding a node to a large set

10/13/2009 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Plan: Prove 2 things

(1) Our f(S) is submodular
(2) Hill Climbing gives near-

optimal solutions
(for monotone submodular functions)




Background: Submodular Functions

We must show our f() is

VS - T (triviallyueT)
fS vHuf) =f(S) 2 AT viup) = f(T)
Gain of adding a node to a small set Gain of adding a node to a large set
If f,(x), ....f(x) are ,and c,,...,.c, =0

then F(x) = X;¢; - fi (x)

(Linear combination of submodular functions is a submodular function)
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Background: Submodular Functions

vsc T f(S viup) = f(S) 2 AT wiuf)—f(T)

Gain of adding uto asmallset  Gain of adding u to a large set

A simple function
Sets A, ..., A,
f(S) =|U;eqAil (size of the union of sets A, i€S)
Claim: f(S) is submodular!

The more sets
you already
have the less
new area a hew
set will cover
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Our f(S) is Submodular!

Flip all the coins at the
beginning and record
which edges fire successfully.

Now we have a
deterministic graph!

Influence sets:

Edges which succeed are live f(a) = {afc.q}
For the i-th realization of coin flips Iggg = ?t:)i’e}ih}
(b) ={b,c}, ...

f.(S={a,b}) = {a,f,c,g,b}
f.(S={a,d}) = {a,f,c,g,d,e,h}
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Our f(S) is Submodular!

fi(v) = set of nodes
reachable from v on
live-edge paths

f,(S) = size of cascades
from S given coin flips i

fi(S) = |Upes i) = f(S)is

f.(v) are sets and f.(S) is the size of the union

f(8) =2:fi(S) =1(5)is

f(S) is linear combination of submodular functions
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Plan: Prove 2 things
(1) Our f(S) iIs submodular
(2) Hill Climbing gives near-

optimal solutions
(for monotone submodular functions)




Proof for Hill Climbing

Claim:
If f(S) is monotone and submodular.
Hill climbing produces a solution S
where: f(S) >(1-1/e)*OPT (f(S)>0.63*OPT)

Setting
Keep adding nodes that give the largest gain
Start with S,={}, produce sets S, S,,...,S,

é;':f(si) 'f(si-1)
Let T={t,...t,} be of size k

We need to show:
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Basic Hill Climbing Fact

f(AUB) = f(A) < ZE[f(AU{b}) — f(A)]
where: B={b,,...,.b,} and f is submodular,

Proof:
Let B,= {b,,...b;}, so we have B, B,, ..., B,=B

fLAUB) = f(A) =3, f(AUB) — f(AU B;_y)

=T fAVB Vb — fUAUVBL)
< K 1f(A U {bl}) — f(A) Work out the sum.

L= Everything but 1t and

/ last term cancels out.
By submodularity +f 5) —= 1
since AuX U{b} o Au{b} m ..

+ f(AUBy) — f(AU Bi_y)
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What is 0. (e.l., Gain in step 1)?

10/13

/2009

f(T) < f(Sl U T) (by monotonicity)
=f(S;UT)—f(5)+ f(S)
< Zig:l[f(si U {t]-}) — f(Sl)] 4 f(Si) (by prev. slide)

I — T={t, ... t}

< Xj=10i01 + f(S) = f(S) + k 84y s one choee
element, and

Thus: f(T) < f(S;) + k 644 e greedly

choose the
best one, for a

=041 = [f(T) f(S)] gain of 5.,

d CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



What is £(S;,,)?

We just showed: §;,{ = %[f(T) — f(S5;)]
What is f(S,,,)?
f(Siv1) = f(S) + 6i4q

> f(S) + [f(T) = f(S)]
= (1=3) FGSD + (D)
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What is f(S,)?

Claim: f(S;)> 1—(1—%) f(T)

1 = 0:
fS)=f{H =0

[1 _ (1 _ %)O] F(T) = 0
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What is f(S,)?

Claim: f(S;)> 1—(1—%) f(T)

Ati + 1:
F(Sie) = (1—7) F(S) + L F(T)
> 1—1[1— r—l1fav+%faj

l+1

P—-1—— ]f@)
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What is f(S,)?

Thus:

| e
F(S) = F(5) 2 1—(17) F(T)

Q| =

Then:

1
f(Sk) = (1 — g)f(T) oc
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Solution Quality

Hill climbing finds solution S which
f(S) = (1-1/e)*OPT
this is a data independent bound

This is a worst case bound

No matter what is the input data (influence sets) we
know that Hill Climbing won’t do worse than 0.63*OPT

We want a bound whose value depends on
the input data

If the data is “easy”, we are likely doing better than 63% of OPT
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Data Dependent Bound

Suppose to
argmax. f(S) s.t. |S| <k

f() is monotone & submodular

and let be the solution
CLAIM;

Foreachu ¢ S let
Order o, sothato, >0, >...2>

Then:

10/20/2010 Jure Leskovec, Stanford CS224W: Social and Informatio



Data Dependent Bound

10/2

0/2010

Foreachu ¢ S let
Order o, sothato, >0, >...2>

Then:
Proof:

f(r)y<f(Tus) =
f(S)+
CAfS Uty ) - FSU{ty .t D]
< fS) + ZislfSutd — (O]
= f(S) + 2?21 Ot,

S+ 6 2| <)+ X6

d CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Speeding Up Hill Climbing:
Lazy Hill Climbing



Background: Submodular Functions

What do we know about

Hill-climbing optimizing submodular
reward functions?

a A hill-climbing is near optimal

] (1-1/e (~63%) of OPT)

C

d Hill-climbing algorithm is slow

A At each iteration we need to re-
evaluate marginal gains

It scales as O(n k)
Add node with highest

marginal gain
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[Leskovec et al., KDD ‘o07]

Speeding up Hill-Climbing

So far we picked S. = {s,,...,S;}
Now pick s.,, = argmax, F(S, U {u}) - F(S))

maximize the “marginal benefit” o (S))

(S Ufud) — £(S) = f(S; u{u}) — £(S;) fori<j
Submodularity implies

i <j=9d,(S) > 8X(Sj) since S.cS. > 8.(S..)

="
q

Activating node u in step i helps
more than activating it at step j (j>1)
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[Leskovec et al., KDD ‘07]

Lazy Hill Climbing

Use o; as upper-bound on o, (j>i) Marginal gain

Lazy hill-climbing: a S,={a}
Keep an ordered list of marginal b
benefits o, from previous .
iteration
Re-evaluate o, only for top node j

Re-sort and prune

fs vHuj)=f(S) 2 (T wHuf)=fT)  scr

4W: Socia tp://cs2

10/20/
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[Leskovec et al., KDD ‘07]

Lazy Hill Climbing

Use o; as upper-bound on o, (j>i) Marginal gain

Lazy hill-climbing: a s,={a}
Keep an ordered list of marginal d S,={a,b}
benefits o, from previous X
iteration .

Re-evaluate o, only for top node i

Re-sort and prune

fs vHuj)=f(S) 2 (T wHuf)=fT)  scr

4W: Socia tp://cs2
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Outbreak Detection In
Networks



[Leskovec et al., KDD ‘07]

Problem: Water Network

Given a real city water
distribution network

And data on how
contaminants spread
in the network

Detect the
contaminant as quickly
as possible

Problem posed by the
US Environmental
Protection Agency
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[Leskovec et al., KDD ‘07]

Problem Setting

Given a graph G(V,E)
Data on

for each outbreak i we know the
time T(i,u) when outbreak i contaminated node u

Select a subset of nodes A that maximize
the expected reward:

max R(A Z P(i ( A)),

ACY

Reward for detecting
outbreak i

Reward: Save the most people
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[Leskovec et al., KDD ‘07]

Structure of the Problem

Observation: Diminishing returns

Placement A={s_, s_}

1 22 Placement A'={s_, s, SR
I Adding s" helps a lot I Adding s helps
very little
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[Leskovec et al., KDD ‘07]

Reward Function is Submodular

Claim:

The reward function is submodular

Consider outbreak i
R.(u,) = set of nodes saved from u,
R.(A) = size of union R(u,), u, €A

Ri 1S outbreak i

Global optimization:
R(A) = 2., Prob(i) R(A)
= R(A) is
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[Leskovec et al., KDD ‘07]

Case study: Water Network

V =21,000 nodes
E = 25,000 pipes

Use a cluster of 50 machines for a month
Simulate 3.6 million epidemic scenarios
(152 GB of epidemic data)

By exploiting sparsity we fit it into main
memory (16GB)
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Bounds on optimal solution

“Offline”

1.2 the (1-1/e) bound
< 7 N\ Data-dependent|
g / bound
42\5 -0 ao—0—0-0"C »
<< | 08" S
o A
S 2 Rob6 . o -
25 Hill Climbing
ek
A 0.4 |

0.2

0 i L L L

0 5 10 15 20

Number of sensors placed

Submodularity gives data-dependent bounds on the
performance of any algorithm
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[Leskovec et al., KDD ‘07]

Water: Heuristic Placement

0.8

0.6

Diameter

/_Population Iflow

Reduction in population affected
(@)
N
|

0 5 10 15 20
Number of sensors

Placement heuristics perform much worse
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Question...
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Detecting information outbreaks

= . _. hu:nﬂ‘lh-::n.inaﬁ
Detect blue & S ——
soon but miss red. £ jor=
©USAtSns B
| s s - |
T — pe
| . :
| &=

Detect all
stories but late.
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[Leskovec et al., KDD ‘07]

Blogs: Solution Quality

13% instead of 37%

5 1.4 | |
Q Offline bound b d
S 1.2 (1-1/e) boun
= N
4y]
c 1+ Online ]
2 bound Data dependent
4]
5 081 4 bound
@) . . .
Q 0.6 Hill Climbing
S 04) CELF .
‘g’ 0.2 solution )
O
o 0 | | | |
0 20 40 60 80 100

Number of blogs
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[Leskovec et al., KDD ‘07]

Blogs: Heuristic Selection

o
0o

o
o

=
N

Reduction in population affected
o
»

CELF

fBIog out-links

/

In—unks /

_ All oqﬁtlinks YI iy
| —+# Posts .
//Random
20 40 60 80

Number of blogs

Heuristics perform much worse
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[Leskovec et al., KDD ‘07]

Blogs: Scalability

400 R | |
—~ ! Exhausti h - :
Tl s Lazy evaluation
: : .. A runs 700 times
U : Naive 'e j
g2000 | hill climbing > 1 faster than naive
g ol | = lay Hill Climbing
% \,., . . . .
> //A/./ hill ch:nbmg algorlthm

O ———p—+—9L
2 4 6 8 10

Number of blogs selected
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