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Bayes Classifier

• A probabilistic framework for solving classification problems.
• Let P be a probability function that assigns a number between 0 and 1 to 

events.
• X = x an events is happening.
• P(X = x) is the probability that events X = x.
• Joint Probability P(X = x, Y = y)
• Conditional Probability P(Y = y | X = x)
• Relationship: P(X,Y) = P(Y|X) P(X) = P(X|Y) P(Y)
• Bayes Theorem: P(Y|X) = P(X|Y)P(Y) / P(X)
• Another Useful Property: P(X =x) = P(X=x, Y=0) + P(X=x, Y=1)



Bayes Theorem

• Consider a football game. Team 0 wins 65% of the time, Team 1 the 
remaining 35%. Among the game won by Team 1, 75% of them are won 
playing at home. Among the games won by Team 0, 30% of them are won 
at Team 1’s field.
• If Team 1 is hosting the next match, which team will most likely win?
• Team 0 wins: P(Y = 0) = 0.65
• Team 1 wins: P(Y = 1) = 0.35
• Team 1 hosted the match won by Team 1: P(X = 1|Y = 1) = 0.75
• Team 1 hosted the match won by Team 0: P(X = 1|Y = 0) = 0.30
• Objective P(Y = 1|X = 1)



Bayes Theorem

• P(Y = 1|X = 1) = P(X = 1|Y = 1)P(Y = 1) / P(X = 1) =
• = 0.75 x 0.35 / (P(X = 1, Y = 1) + P(X = 1, Y = 0))
• = 0.75 x 0.35 / (P(X = 1|Y = 1)P(Y=1) + P(X = 1|Y = 0)P(Y=0))
• = 0.75 x 0.35 / (0.75 x 0.35 + 0.30 x 0.65)
• = 0.5738

• Therefore Team 1 has a better chance to win the match



Bayes Theorem for Classification

• X denotes the attribute sets, X = {X1, X2, … Xd}
• Y denotes the class variable
• We treat the relationship probabilistically using P(Y|X)
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Bayes Theorem for Classification

• Learn the posterior P(Y | X) for every combination of X and Y.
• By knowing these probabilities, a test record X’ can be classified by 

finding the class Y’ that maximizes the posterior probability P(Y’|X’).
• This is equivalent of choosing the value of Y’ that maximizes 

P(X’|Y’)P(Y’).
• How to estimate it?



Naïve Bayes Classifier

• It estimates the class-conditional probability by assuming that the 
attributes are conditionally independent given the class label y.
• The conditional independence is stated as:
• 𝑃 𝑋 𝑌 = 𝑦 = ∏&'(

) 𝑃(𝑋&|𝑌 = 𝑦)
• where each attribute set X = {X1, X2, … Xd}



Conditional Independence

• Given three variables Y, X1, X2 we can say that Y is independent from 
X1 given X2 if the following condition holds:
• P(Y | X1, X2) = P(Y|X2)

• With the conditional independence assumption, instead of computing 
the class-conditional probability for every combination of X we only 
have to estimate the conditional probability of each Xi given Y.
• Thus, to classify a record the naive Bayes classifier computes the 

posterior for each class Y and takes the maximum class as result
• 𝑃 𝑌 𝑋 = 𝑃 𝑌 ∏&'(

) 𝑃 𝑋& 𝑌 = 𝑦 /𝑃(𝑋)

How to estimate ?



How to Estimate Probability From Data

• Class P(Y) = Ny/ N
• Ny number of records with outcome y
• N number of records
• Categorical attributes 
• P(X = x | Y = y) = Nxy / Ny

• Nxy records with value x and outcome y

• P(Evade = Yes) = 3/10
• P(Marital Status = Single|Yes) = 2/3



How to Estimate Probability From Data

Continuous attributes
• Discretize the range into bins

• one ordinal attribute per bin
• violates independence assumption

• Two-way split: (X < v) or (X > v)
• choose only one of the two splits as new attribute

• Probability density estimation:
• Assume attribute follows a normal distribution
• Use data to estimate parameters of distribution (e.g., mean and standard deviation)
• Once probability distribution is known, can use it to estimate the conditional 

probability P(X|y) 



How to Estimate Probability From Data

• Normal distribution

• P(Xi = xi | Y = y) = (
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• 𝜇&. can be estimated as the mean of Xi
for the records that belongs to class yj.

• Similarly, 𝜎&. as the standard deviation.
• P(Income = 120|No) = 0.0072
• mean = 110
• std dev = 54.54



Example

Given X = {Refund = No, Married, Income = 120k}

• P(Refund=Yes|No) = 3/7
• P(Refund=No|No) = 4/7
• P(Refund=Yes|Yes) = 0
• P(Refund=No|Yes) = 1
• P(Marital Status=Single|No) = 2/7
• P(Marital Status=Divorced|No)=1/7
• P(Marital Status=Married|No) = 4/7
• P(Marital Status=Single|Yes) = 2/3
• P(Marital Status=Divorced|Yes)=1/3
• P(Marital Status=Married|Yes) = 0/3
For taxable income:
• If class=No: 

• mean=110, variance=2975
• If class=Yes: 

• mean=90, variance=25

P(X|Class=No) = P(Refund=No|Class=No)
× P(Married| Class=No)
× P(Income=120K| Class=No)

= 4/7 × 4/7 × 0.0072 
= 0.0024

P(X|Class=Yes) = P(Refund=No| Class=Yes)
× P(Married| Class=Yes)
× P(Income=120K| Class=Yes)

= 1 × 0 × 1.2 × 10-9 
= 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)
=> Class = No



M-estimate of Conditional Probability

• If one of the conditional probability is zero, then the entire expression 
becomes zero.
• For example, given X = {Refund = Yes, Divorced, Income = 120k}, if 

P(Divorced|No) is zero instead of 1/7, then
• P(X|No) = 3/7 x 0 x 0.00072 = 0
• P(X|Yes) = 0 x 1/3 x 10-9 = 0

• M-estimate P(X|Y) = 
!!""#$
!""#

(if P(X|Y) = 
!!""%
!""|'|

is Laplacian estimation)

• m is a parameter, p is a user-specified parameter (e.g. probability of 
observing xi among records with class yj.
• In the example with m = 3 and p = 1/m = 1/3 (i.e., Laplacian estimation) we have
• P(Married |Yes) = (0+3x1/3)/(3+3)  = 1/6



Naïve Bayes Classifier

• Robust to isolated noise points
• Handle missing values by ignoring the instance 

during probability estimate calculations
• Robust to irrelevant attributes
• Independence assumption may not hold for 

some attributes
• Use other techniques such as Bayesian Belief 

Networks (BBN, not treated in this course)
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