DATA MINING 2 Naïve Bayes Classifiers

Riccardo Guidotti
a.a. 2021/2022

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Bayes Classifier

- A probabilistic framework for solving classification problems.
- Let P be a probability function that assigns a number between 0 and 1 to events.
- $X=x$ an events is happening.
- $P(X=x)$ is the probability that events $X=x$.
- Joint Probability $P(X=x, Y=y)$
- Conditional Probability $P(Y=y \mid X=x)$
- Relationship: $P(X, Y)=P(Y \mid X) P(X)=P(X \mid Y) P(Y)$
- Bayes Theorem: $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{P}(\mathrm{X} \mid \mathrm{Y}) \mathrm{P}(\mathrm{Y}) / \mathrm{P}(\mathrm{X})$
- Another Useful Property: $P(X=x)=P(X=x, Y=0)+P(X=x, Y=1)$

Bayes Theorem

- Consider a football game. Team 0 wins 65% of the time, Team 1 the remaining 35%. Among the game won by Team 1, 75% of them are won playing at home. Among the games won by Team 0, 30\% of them are won at Team 1's field.
- If Team 1 is hosting the next match, which team will most likely win?
- Team 0 wins: $P(Y=0)=0.65$
- Team 1 wins: $\mathrm{P}(\mathrm{Y}=1)=0.35$
- Team 1 hosted the match won by Team 1: $P(X=1 \mid Y=1)=0.75$
- Team 1 hosted the match won by Team 0: $P(X=1 \mid Y=0)=0.30$
- Objective $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=1)$

Bayes Theorem

- $P(Y=1 \mid X=1)=P(X=1 \mid Y=1) P(Y=1) / P(X=1)=$
- $=0.75 \times 0.35 /(P(X=1, Y=1)+P(X=1, Y=0))$
- $=0.75 \times 0.35 /(P(X=1 \mid Y=1) P(Y=1)+P(X=1 \mid Y=0) P(Y=0))$
- $=0.75 \times 0.35 /(0.75 \times 0.35+0.30 \times 0.65)$
- $=0.5738$
- Therefore Team 1 has a better chance to win the match

Bayes Theorem for Classification

- X denotes the attribute sets, $X=\left\{X_{1}, X_{2}, \ldots X_{d}\right\}$
- Y denotes the class variable
- We treat the relationship probabilistically using $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

Bayes Theorem for Classification

- Learn the posterior $P(Y \mid X)$ for every combination of X and Y.
- By knowing these probabilities, a test record X^{\prime} can be classified by finding the class Y^{\prime} that maximizes the posterior probability $P\left(Y^{\prime} \mid X^{\prime}\right)$.
- This is equivalent of choosing the value of Y^{\prime} that maximizes $P\left(X^{\prime} \mid Y^{\prime}\right) P\left(Y^{\prime}\right)$.
- How to estimate it?

Naïve Bayes Classifier

- It estimates the class-conditional probability by assuming that the attributes are conditionally independent given the class label y.
- The conditional independence is stated as:
- $P(X \mid Y=y)=\prod_{i=1}^{d} P\left(X_{i} \mid Y=y\right)$
- where each attribute set $\mathrm{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{d}}\right\}$

Conditional Independence

- Given three variables Y, X_{1}, X_{2} we can say that Y is independent from X_{1} given X_{2} if the following condition holds:
- $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{2}\right)$
- With the conditional independence assumption, instead of computing the class-conditional probability for every combination of X we only have to estimate the conditional probability of each X_{i} given Y.
- Thus, to classify a record the naive Bayes classifier computes the posterior for each class Y and takes the maximum class as result
- $P(Y \mid X)=P(Y) \prod_{i=1}^{d} P\left(X_{i} \mid Y=y\right) / P(X)$

How to Estimate Probability From Data

- Class $\mathrm{P}(\mathrm{Y})=\mathrm{N}_{\mathrm{y}} / \mathrm{N}$
- N_{y} number of records with outcome y
- N number of records
- Categorical attributes
- $P(X=x \mid Y=y)=N_{x y} / N_{y}$
- N_{xy} records with value x and outcome y
- $P($ Evade $=$ Yes $)=3 / 10$
- $P($ Marital Status $=$ Single \mid Yes $)=2 / 3$

Tid	Refund	Marital Status	Taxable Income						
Evade				$	$	1	Yes	Single	125 K
:---	:---	:---	:---						
2	No	Married	100 K						
3	No	Single	70 K						
4	Yes	Married	120 K						
5	No	Divorced	No						
6	No	Married	60 K						
7	Yes	Divorced	220 K						
8	No	Single	85 K						
9	No	Married	75 K						
10	No	Single	Yes						

How to Estimate Probability From Data

Continuous attributes

- Discretize the range into bins
- one ordinal attribute per bin
- violates independence assumption
- Two-way split: ($\mathrm{X}<\mathrm{v}$) or ($\mathrm{X}>\mathrm{v}$)
- choose only one of the two splits as new attribute
- Probability density estimation:
- Assume attribute follows a normal distribution
- Use data to estimate parameters of distribution (e.g., mean and standard deviation)
- Once probability distribution is known, can use it to estimate the conditional probability $\mathrm{P}(\mathrm{X} \mid \mathrm{y})$

How to Estimate Probability From Data

- Normal distribution
- $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mid \mathrm{Y}=\mathrm{y}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{i j}} e^{-\frac{\left(x_{i}-\mu_{i j}\right)^{2}}{2 \sigma_{i j}^{2}}}$
- $\mu_{i j}$ can be estimated as the mean of X_{i} for the records that belongs to class y_{j}.
- Similarly, $\sigma_{i j}$ as the standard deviation.
- $\mathrm{P}($ Income $=120 \mid \mathrm{No})=0.0072$
- mean = 110
- std dev $=54.54$

Tid	Refund	Marital Status	Taxable Income						
Evade				$	$	1	Yes	Single	125 K
:---	:---	:---	:---						
2	No	Married	100 K						
3	No	Single	70 K						
4	Yes	Married	120 K						
5	No	Divorced	No						
6	No	Married	60 K						
7	Yes	Divorced	220 K						
8	No	Single	85 K						
9	No	Married	75 K						
10	No	Single	Yes						

Marital

Example

Given X $=$ \{Refund $=$ No, Married, Income $=120 \mathrm{k}\}$

- $P($ Refund $=$ Yes \mid No $)=3 / 7$
- $P($ Refund $=$ No \mid No $)=4 / 7$
- $P($ Refund=Yes \mid Yes $)=0$
- $P($ Refund $=N o \mid Y e s)=1$
- $P($ Marital Status $=$ Single \mid No $)=2 / 7$
- $P($ Marital Status=Divorced \mid No $)=1 / 7$
- $P($ Marital Status=Married \mid No $)=4 / 7$
- $P($ Marital Status=Single \mid Yes $)=2 / 3$
- $P($ Marital Status=Divorced|Yes)=1/3
- $P($ Marital Status=Married \mid Yes $)=0 / 3$

For taxable income:

- If class=No:
- mean=110, variance=2975
- If class=Yes:
- mean=90, variance=25

$$
\begin{aligned}
P(X \mid \text { Class } & =\text { No })=P(\text { Refund }=\text { No } \mid \text { Class }=\text { No }) \\
& \times P(\text { Married } \mid \text { Class }=\text { No }) \\
& \times P(\text { Income }=120 \mathrm{~K} \mid \text { Class }=\text { No }) \\
& =4 / 7 \times 4 / 7 \times 0.0072 \\
& =0.0024
\end{aligned}
$$

$P(X \mid$ Class $=Y e s)=P($ Refund $=$ No \mid Class $=Y e s)$

$$
\times \mathrm{P}(\text { Married } \mid \text { Class }=\text { Yes })
$$

$$
\times \mathrm{P}(\text { Income }=120 \mathrm{~K} \mid \text { Class }=\text { Yes })
$$

$$
=1 \times 0 \times 1.2 \times 10-9
$$

$$
=0
$$

Since $P(X \mid N o) P($ No $)>P(X \mid Y e s) P($ Yes $)$
Therefore $\mathrm{P}(\mathrm{No} \mid \mathrm{X})>\mathrm{P}(\mathrm{Yes} \mid \mathrm{X})$

$$
\Rightarrow \text { Class }=\text { No }
$$

M-estimate of Conditional Probability

- If one of the conditional probability is zero, then the entire expression becomes zero.
- For example, given $X=\{$ Refund $=$ Yes, Divorced, Income $=120 k\}$, if P (Divorced \mid No) is zero instead of $1 / 7$, then
- $P(X \mid N o)=3 / 7 \times 0 \times 0.00072=0$
- $P(X \mid$ Yes $)=0 \times 1 / 3 \times 10^{-9}=0$
- M-estimate $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\frac{N_{x y}+m p}{N_{y}+m}$ (if $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\frac{N_{x y}+1}{N_{y}+|Y|}$ is Laplacian estimation)
- m is a parameter, p is a user-specified parameter (e.g. probability of observing x_{i} among records with class y_{j}.
- In the example with $m=3$ and $p=1 / m=1 / 3$ (i.e., Laplacian estimation) we have
- $P($ Married \mid Yes $)=(0+3 \times 1 / 3) /(3+3)=1 / 6$

Naïve Bayes Classifier

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
- Use other techniques such as Bayesian Belief Networks (BBN, not treated in this course)

References

- Bayesian Classifiers. Chapter 5.3. Introduction to Data Mining.

Exercises - NBC

Play-tennis example. estimating $P\left(x_{i} \mid C\right)$

Play-tennis example. estimating $P\left(x_{i} \mid C\right)$

Play-tennis example. estimating $P\left(x_{i} \mid C\right)$

$P(p)=9 / 14$
$P(n)=5 / 14$

Outlook	Temeprature	Humidity	Windy	Class
rain	hot	high	false	$?$

outlook		$P(X \mid p) \cdot P(p)=$
P (sunny\|p) $=2 / 9$	$\mathbf{P}($ sunny \mid n) $=3 / 5$	
\mathbf{P} (overcast \mid) $)=4 / 9$	$\mathbf{P}($ overcast \mathbf{n}) $=0$	$P(X \mid n) \cdot P(n)=$
$\mathrm{P}($ rain $\mid \mathrm{p})=3 / 9$	$\mathrm{P}($ rain $\mid \mathrm{n})=2 / 5$	
temperature		
$\mathbf{P}(\mathbf{h o t} \mid \mathrm{p})=\mathbf{2 / 9}$	$\mathrm{P}(\mathrm{hot} \mid \mathrm{n})=2 / 5$	
$\mathrm{P}($ mild $\mid \mathrm{p})=4 / 9$	$\mathrm{P}(\mathrm{mild} \mid \mathrm{n})=2 / 5$	
$\mathbf{P}(\mathbf{c o o l \|} \mid \mathrm{p})=3 / 9$	$\mathrm{P}(\mathbf{c o o l \|} \mid \mathbf{n})=1 / 5$	
humidity		
$\mathbf{P}($ high \mid) $)=3 / 9$	$\mathrm{P}(\mathrm{high} \mid \mathrm{n})=4 / 5$	
$\mathrm{P}($ normal $\mid \mathrm{p})=6 / 9$	$\mathrm{P}($ normal \mid) $)=1 / 5$	
windy		
$\mathbf{P}($ (rue \mid p $)=3 / 9$	$\mathbf{P}($ true \mid) $)=3 / 5$	
$\mathbf{P}($ false \mid) $)=6 / 9$	$\mathbf{P}($ false $\mid \mathbf{n})=2 / 5$	

Play-tennis example. estimating $\mathbf{P}\left(\mathrm{x}_{\mathrm{i}} \mid \mathbf{C}\right)$

$P(p)=9 / 14$
$P(n)=5 / 14$

Outlook	Temeprature	Humidity	Windy	Class
rain	hot	high	false	N

outlook	
$\mathrm{P}($ sunny \mid p $)=2 / 9$	$\mathbf{P}($ sunny \mid n) $=3 / 5$
\mathbf{P} (overcast \mid P $)=4 / 9$	$\mathbf{P}($ overcast \mid n) $=0$
$\mathrm{P}($ rain $\mid \mathrm{p})=\mathbf{3 / 9}$	$\mathrm{P}($ rain $\mid \mathrm{n})=2 / 5$
temperature	
$\mathbf{P}(\mathrm{hot} \mid \mathrm{p})=2 / 9$	$\mathrm{P}(\mathrm{hot} \mid \mathrm{n})=2 / 5$
$\mathrm{P}($ mild $\mid \mathrm{p})=4 / 9$	$\mathrm{P}($ mild $\mid \mathrm{n})=2 / 5$
$\mathbf{P}(\mathbf{c o o l} \mid \mathrm{p})=3 / 9$	$\mathrm{P}(\mathbf{c o o l} \mid \mathrm{n})=1 / 5$
humidity	
$\mathbf{P}(\mathbf{h i g h} \mid \mathrm{p})=3 / 9$	$\mathbf{P}($ high \mid) $)=4 / 5$
$\mathrm{P}($ normal \mid p $)=6 / 9$	$\mathrm{P}($ normal \mid) $)=1 / 5$
windy	
$\mathbf{P}($ true \mid) $)=\mathbf{3 / 9}$	$\mathbf{P}($ true \mid n) $=3 / 5$
$\mathrm{P}($ false \mid P $)=6 / 9$	$\mathbf{P}($ false $\mid \mathrm{n})=2 / 5$

$P(X \mid p) \cdot P(p)=P($ rain $\mid p) \cdot P($ hot $\mid p)$. $P($ high $\mid p) \cdot P($ false $\mid p) \cdot P(p)=3 / 9 \cdot 2 / 9$. $3 / 9 \cdot 6 / 9 \cdot 9 / 14=0.010582$

$\mathbf{P}(\mathbf{X} \mid \mathbf{n}) \cdot \mathbf{P (n)}=$

 $P($ rain $\mid n) \cdot P($ hot $\mid n) \cdot P($ high $\mid n) \cdot P($ false \mid $n) \cdot P(n)=2 / 5 \cdot 2 / 5 \cdot 4 / 5 \cdot 2 / 5 \cdot 5 / 14=$ 0.018286
Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	
human	yes	no	Class		
python	no	no	no	no	nommals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

$$
\begin{gathered}
\text { A: attributes } \\
\text { M: mammals } \\
\mathrm{N}: \text { non-mammals } \\
P(A \mid M)=\frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7}=0.06 \\
P(A \mid N)=\frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13}=0.0042 \\
P(A \mid M) P(M)=0.06 \times \frac{7}{20}=0.021 \\
P(A \mid N) P(N)=0.004 \times \frac{13}{20}=0.0027
\end{gathered}
$$

Give Birth yes	no	Can Fly	Live in Water yes	Have Legs
no	Class			

$$
\begin{aligned}
& P(A \mid M) P(M)>P(A \mid N) P(N) \\
& =>\text { Mammals }
\end{aligned}
$$

a) Naive Bayes (3 points)

Given the training set below, build a Naive Bayes classification model (i.e. the corresponding table of probabilities) using (i) the normal formula and (ii) using Laplace formula. What are the main effects of Laplace on the models?

A	B	class
no	green	N
no	red	Y
yes	green	N
no	red	N
no	red	Y
no	green	Y
yes	green	N

Answer:
Normal

	Y	N		4	Y		N		
		3				0.43		0.57	
	$A \mid Y$		$\mathrm{A} \mid \mathrm{N}$		A \|		A \\| N		
yes		0		2 yes		0.00		0.50	
no		3		2 no		1.00		0.50	
	$B \mid Y$		B \| N		B \|	B \| N			
green		1		3 green		0.33		0.75	
red		2		1 red		0.67		0.25	

Laplace

	Y		N		Y		N	
		3		4		0.43		0.57
	A \| Y		$\mathrm{A} \mid \mathrm{N}$		$A \mid Y$		$\mathrm{A} \mid \mathrm{N}$	
yes		0		2 yes		0.20		0.50
no		3		2 no		0.80		0.50
	$B \mid Y$		B \| N		$B \mid Y$		B \| N	
green		1		3 green		0.40		0.67
red		2		1 red		0.60		0.33

a) Naive Bayes ($\mathbf{3}$ points)

Given the training set on the left, build a Naive Bayes classification model and apply it to the test set on the right.

SCORE	FIRST-TRY	FACULTY	class
good	no	science	Y
medium	yes	science	N
bad	yes	science	N
bad	yes	humanities	Y
good	no	humanities	N
good	no	science	Y
medium	no	humanities	Y

SCORE	FIRST-TRY	FACULTY	class
bad	no	humanities	
good	yes	science	
medium	yes	humanities	

