DATA MINING 2 Deep Neural Networks

Riccardo Guidotti

a.a. 2019/2020

Why Now?

(Big) Data

GPU

A quick look on Deep Learning

Deep learning

• Age

- Weight
- Income
- ChildrenLikes sport

...

- Likes reading

Education high

35

65

23 k€

2

0.3

0.6

•••

- - -**-**

Higher-level representation

- Young parent 0.9
 - Fit sportsman
- High-educated reader 0.8
- Rich obese 0.0

0.1

...

Representation learning methods that

- allow a machine to be fed with raw data and
- to automatically discover the representations needed for detection or classification.

٠

•••

Multiple Levels Of Abstraction

Backpropagation through many layers has numerical problems that makes learning not-straightforward (Gradient Vanish/Esplosion)

Actually deep learning is way more than having neural networks with a lot of layers

Representation learning

- We don't know the "right" levels of abstraction of information that is good for the machine
- So let the model figure it out!

Feature representation "Edges" Pixels

3rd layer "Objects"

2nd layer "Object parts"

1st layer

Representation learning

Face Recognition:

- Deep Network can build up increasingly higher levels of abstraction
- Lines, parts, regions

Feature representation

2nd layer "Object parts"

1st layer "Edges"

Example from Honglak Lee (NIPS 2010)

Representation learning

Feature representation

Example from Honglak Lee (NIPS 2010)

Vectorial Data Processing

It is (almost) trivial to feed vectorial data to a neural network

> Neural networks can easily handle data of mixed type and distribution

> > However...

Preparing Vectorial Data for a Neural Network

Categorical Variables

- A categorical variable is a variable that can belong to one of a number of k discrete categories
- Categorical variables are usually encoded using 1-out-of k coding (one hot)
- E.g. for three colors: red = (100), green = (010), Blue = (001)
- If we used red = 1, green = 2, blue = 3, then this type of encoding imposes a representational bias which is not semantically supported

Preparing Vectorial Data for a Neural Network

Continuous Variables

- A continuous variable can be directly fed to a neural network.
- However, it is good practice to normalize data so that the dynamic range of inputs is limited
 - [0,1] normalization (min-max)
 - [-1,+1] normalization
 - Mean 0 and unitary variance (z-score)
 - Population normalization
 - Individual normalization

Autoencoders

Basic Autoencoder (AE)

Latent space projection (again)

- Train a model to reconstruct the input
- Passing through some form of information bottleneck
 - K << D, or?
 - h sparsely active
- Train by loss minimization

$$L(\boldsymbol{x}, \widetilde{\boldsymbol{x}}) = L(\boldsymbol{x}, g(f(\boldsymbol{x})))$$

A Very Well Known Autoencoder

Encoding-Decoding

$$\boldsymbol{h} = f(\boldsymbol{x}) = \boldsymbol{W}_e \boldsymbol{x}$$

$$\widetilde{\boldsymbol{x}} = g(\boldsymbol{h}) = \boldsymbol{W}_d \boldsymbol{W}_e \boldsymbol{x}$$

Tied weights (often, not always)

$$W_d = W_e^T = W^T$$

Euclidean Loss

$$L(\boldsymbol{x}, \widetilde{\boldsymbol{x}}) = \|\boldsymbol{x} - \boldsymbol{W}^T \boldsymbol{W} \boldsymbol{x}\|_2^2$$

What if we take f and g linear and K<<D?

Learns the same subspace of PCA

AE Applications - Visualization

Visualizing complex data in learned latent space

(a) Epoch 0

(b) Epoch 3

(d) Epoch 9

Visualizing learned neural encoding - t-SNE

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

Visualizing learned neural encoding - t-SNE

Denoising Autoencoder (DAE)

Train the AE to minimize the function $L(\mathbf{x}, g(f(\hat{\mathbf{x}})))$

where \hat{x} is a version of original input xcorrupted by some noise process $C(\hat{x}|x)$

Key Intuition - Learned **representations should be robust to partial destruction** of the input

Deep Autoencoder

Supervised learning

- Unsupervised training
- Hierarchical autoencoder
 - Extracts a **representation of inputs** that facilitates
 - Data **visualization**, exploration, indexing,...
 - Realization of a supervised task

Tips and Tricks

Unsupervised Layerwise Pretraining

Incremental unsupervised construction of the Deep AE

Unsupervised Layerwise Pretraining

Incremental unsupervised construction of the Deep AE

Unsupervised Layerwise Pretraining

Incremental unsupervised construction of the Deep AE

Optional Fine Tuning

Fine tune the whole autoencoder to optimize input reconstruction

Weight Sharing

Let us consider a learning to rank task

Possible solution to pairwise ranking

Weight Sharing

Weight sharing architecture inspired by prior knowledge on the task (i.e. simmetry)

Applications

Anomaly Detection

So, how do we realize it?

Using autoencoders of course...

References

- Artificial Neural Network. Chapter 5.4 and 5.5. Introduction to Data Mining.
- Hands-on Machine Learning with Scikit-Learn, Keras & Tensorflow. A practical handbook to start wrestling with Machine Learning models (2nd ed).
- Deep Learning. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. The reference book for deep learning models.

