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Dimensionality Reduction

* Dimensionality reduction is ummmmmmmm

the process of reducing the 11 10 03 05 15 13 a
number of random variables 12 12 03 07 A O D 19 18 P
under consideration by

obtaining a set of principal

variables.

* Approaches can be divided

into feature selection and X | Xo |

feature projection. 18 5.4

19 6.3



Feature Selection

 Select a subset of the features according to different strategies:
e the filter strategy (e.g. information gain),
* the wrapper strategy (e.g. search guided by accuracy),

* the embedded strategy (selected features add or are removed
while building the model based on prediction errors).

* Classification and/or regression or can be done in the reduced space
more accurately than in the original space.



Feature Selection

* Variance Threshold. It removes all features whose variance does not meet some
threshold. By default, it removes all zero-variance features, i.e. features that have the
same value in all samples.

* Univariate Feature Selection. It selects the best features based on univariate statistical
tests. For instance, it removes all but the k highest scoring features. An example of
statistical test is the ANOVA F-value between label/feature.
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« where Y, denotes the sample mean in the it" group, n; is the number of observations in
the ith group, y denotes the overall mean of the data,Y is the j* observation in the it" out
of K groups, K denotes the number of groups, N the overall sample size.

* F-value is large if the numerator is large, which is unlikely to happen if the population
means of the groups all have the same value.



Recursive Feature Elimination (RFE)

* Given an external estimator that assigns weights to features (e.g., the
coefficients of a linear model, or feature importance of decision tree),
RFE selects features by recursively considering smaller and smaller
sets of features.

* First, the estimator is trained on the initial set of features and the
importance of each feature is obtained.

* Then, the least important features are pruned from current set of
features.

* That procedure is recursively repeated on the pruned set until the
desired number of features to select is eventually reached.



Feature Projection (a.k.a Feature Extraction)

* It transforms the data in the high-dimensional space to a space of
fewer dimensions.

* The data transformation may be linear, or nonlinear.

* Approaches:
* Principal Component Analysis (PCA)
* Non-negative matrix factorization (NMF)
* Linear Discriminant Analysis (LDA)

* Multidimensional Scaling
e Sammon
* [soMap
* t-SNE

* Autoencoder
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Principal Component Analysis (PCA)

* The goal of PCA is to find a new set of
dimensions (attributes or features) that
better captures the variability of the data.

* The first dimension is chosen to capture as
much of the variability as possible.

* The second dimension is orthogonal to the
first and, subject to that constraint, captures
as much of the remaining variability as
possible, and so on.



PCA — Conceptual Algorithm

* Find a line such that, when the data is projected onto that line, it has
the maximum variance; minimize the sum-of-squares of the

projection errors. /
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PCA — Conceptual Algorithm

* Find a line such that, when the data is projected onto that line, it has
the maximum variance; minimize the sum-of-squares of the
projection errors.




PCA — Conceptual Algorithm

* Find a second line, orthogonal to the first, that has maximum
projected variance.




PCA — Conceptual Algorithm

* Repeat until have k orthogonal lines.

* The projected position of a point on these lines gives the coordinates
in the k-dimensional reduced space.




Background: Covariance, Eigenvalue and Eigenvectors

* The covariance of two attributes is a measure of how strongly the
attributes vary together.
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 Eigenvector of matrix X: a vector v such that Xv=Av
 A: eigenvalue of eigenvector v

* A square matrix X of rank r, has r orthonormal eigenvectors v,, v,,...,
v, with eigenvalues 4,, 4,, ..., 1.

* Eigenvectors define an orthonormal basis for the column space of X



Steps in PCA

 Calculate the mean value of the data of every dimension

 Calculate the covariance matrix of all pairs of attributes

e Given matrix of data X, remove the mean of each column from the column
vectors to get the centered matrix C

* The matrix 2 = CTC is the covariance matrix of the row vectors of X.

 Calculate eigenvalues and eigenvectors of 2
* Methods: power iteration method, Singular Value Decomposition
* Eigenvector with largest eigenvalue A, is the 15t PC
* Eigenvector with k" largest eigenvalue A, is the k" PC
* \./ 2\ is the proportion of variance captured by the kt" PC



Applying the PCA

* The full set of PCs comprise a new orthogonal basis for feature space,
whose axes are aligned with the maximum variances of original data.

* Projection of original data into first kK PCs gives a reduced
dimensionality representation of the data.

* Transforming reduced dimensionality projection back into original
space gives a reduced dimensionality reconstruction of the data.

 Reconstruction will have some error.
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Select the dimension k

* Rank eigenvalues in decreasing order.

* Select eigenvectors that retain a fixed percentage of variance (e.g., at
least a minimum threshold.
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Singular Value Decomposition - SVD
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Singular Value Decomposition - SVD

mxn

X:our m x n data
matrix, one row
per data point

X =US-VT
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Each row of US
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projected space
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PCA via SVD

* Create mean-centered data matrix X
e Solve SVD: X = USVT

* Columns of V are the eigenvectors of 2 sorted from largest to smallest
eigenvalues.

* Limits of PCA:
* Limited to linear projections



Partial Least Squares (PLS)

e Supervised alternative to PCA

* Attempts to find the set of orthogonal directions that explain both
outcome and features.

e First direction:

* Calculate simple linear regression (see next lectures) between each feature
and outcome

* Use coefficients to define first direction giving greatest weight to predictors
which are highly correlated with outcome (large coefficients)

* Repeat procedure on residuals of predictors



Random Subspace Projection

* High-dimensional data is projected into low-dimensional space using
a random matrix whose columns have unit length.

* No attempt to optimize criterion.
* Preserve structure of data (e.g. distances)
* Computationally cheap.



Multi-Dimensional Scaling (MDS)

e Given a pairwise dissimilarity matrix (no need to be a metric), the goal
of MDS is to learn a mapping of data into a lower dimensionality such
that the relative distances are preserved.

* If two points are close in the feature space, it should be close in the
latent factor space.
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MDS methods

 MDS is a family of different algorithms designed to map data into a
very low configuration, e.g., k=2 or k=3.

* MDS methods include
 Classical MDS
* Metric MDS
* Non-metric MDS

e MDS cannot be inverted



Distance, dissimilarity and similarity

* Distance, dissimilarity and similarity (or proximity) are defined for any
pair of objects in any space. In mathematics, a distance function (that
gives a distance between two objects) is also called metric, satisfying:

* d(x, y) 20,

*d(x, y)=iffx=y,

* d(x, y)=dly, x)

* d(x, z)<d(x, y) + dy, 2)

* |f the last condition does not hold, than d is a distance function but it
IS hot a metric.



MDS — Conceptual Algorithm

* Given a pairwise dissimilarity matrix D and the dimensionality k, find
a mapping such that d; = [ [x; - x;/ [ for all points in D.

e Usually, a gradient descent approach is adopted to solve an
optimization problem that aims at minimizing the function

* J(x) = 21" 2/ dl(dij/ dy(x, Xj))
* Depending on the distances adopted to calculate D and the distance
function used for d; and d, the approach returns a different result.

* The Classic MDS adopts the Euclidean distance for every calculus.
* Metric-MDM adopts metrics as distances
* Non metric-MDM deals with ranks of distances instead of their values



Sammon Mapping

« Sammon mapping is a generalization of the usual metric MDS.

* It introduces a weighting system that normalizes the squared-errors in
pairwise distances by using the distance in the original space.

* J(x) =22 di(d;, dy(x;, Xj))/dij
* As a result, Sammon mapping preserves the small d;, giving them a

greater degree of importance in the fitting procedure than for larger
values of d;;



Classic-MDS vs Sammon Mapping

« Sammon mapping better preserves inter-distances for smaller
dissimilarities, while proportionally squeezes the inter-distances for
larger dissimilarities.
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Isometric Feature Mapping (IsoMap)

* Preserves the intrinsic geometry of the data

* Uses the geodesic manifold distances between all pairs.
* Itis a MDS method.

* [soMap Handles non-linear manifold
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IsoMap Algorithm

* Step 1
e Determine neighboring points within a fixed radius based on the input space
distance (Euclidean)
* These neighborhood relations are represented as weighted graph G over the
data points.
* Step 2
* Estimate the geodesic distance between all pairs of points on the manifold by
computing their shortest path distances on the graph G
* Step 3
* Construct an embedding of the data in a k dimensional Euclidean space that
best preserves the manifold geometry



t-Distributed Stochastic Neighbor Embedding (t-SNE)

* PCA tries to find a global structure
* Low dimensional subspace

 Can lead to local inconsistencies
* Far away points can become neighbors

* t-SNE tries to preserve local structure

* Local dimensional neighborhood should be the same as original
neighborhood

* Distance Preservation
* Neighbor Preservation

e Unlike PCA almost only used for visualization
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SNE Intuition

* Measure pairwise similarities between high-dimensional and low-
dimensional objects.

High Dim Low Diths
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Stochastic Neighbor Embedding (SNE)

* Encode high dimensional neighborhood information as a distribution

* Intuition: Random walk between data points.
* High probability to jump to a close point
* Find low dimensional points such that their neighborhood
distribution is similar.

* How do you measure distance between distributions?
* Most common measure: KL divergence



Neighborhood Distributions

* Consider the neighborhood around an input data point x;
* Imagine that we have a Gaussian distribution centered around x;

* Then the probability that x; chooses some other datapoint x; as its
neighbor is in proportion with the density under this Gaussian

* A point closer to x; will be more likely than one further away



Probabilities

* This p;;; probability is the probability that point x; chooses x; as its
neighbor o
exp(—||xi — xj||*/207)

p. T
W5 i exp(—|[xi — x|[2/207)

* The parameter sigma sets the size of the neighborhood
* Very low sigma -> all the probability is in the newest neighbor
* Very high sima -> uniform weights

* We set sigma differently for each data point

* Results depend heavily on sigma as it defines the neighborhood we
are trying to preserve

* The final distribution over pairs is symmetrized p; = 1/2N(p;;; + p;;)



Perplexity

* For each distribution p;;; depends on sigma we define the perplexity
* perp(p;;) = 211l where H(p) = - X p log(p) is the entropy

* If p is uniform over k elements perplexity is k
* Smooth version of kin kNN
* Low perplexity equals to small sigma
* High perplexity equals to large sigma
e Typically values of sigma between 5-50 work well

* Important parameter that can capture different scales in the data



SNE objective

* Given xy, ..., X, € R™ define the distribution p;
* Goal: find good embedding y,, .., y, ER  for k< n
* How do we measure embedding quality?

* For points y,, .., y,, we can define distribution g similarly to the same (but
not sigma and not symmetric)

_exp(=llyi — yjl*)
Zk;éi exp(—|lyi — y«l[?)

djli

* The idea is to optimize g to be close to p by minimizing the KL-divergence
* The embeddings y,, .., y, are the parameters we are optimizing



KL-divergence

 Measures distance between two distributions, P and Q

C =Y KUPIIQ) =32 pijlos "
i i i

* It is not a metric function as is not symmetric

* Based on the information theory intuition: if we are transmitting
information distributed according to p then the optimal lossless
compression will need to send on average H(p) bits

* Thus, K(P/[Q) is the penalty for using a wrong distribution



Distances to Conditional Probabilities

* Converting the high-dimensional Euclidean distances into conditional

probabilities that represent similarities
exp(—|xi — xjl|°/207)

* Similarities of datapoints in High Dimension  p;; = =—=——="""5 7
kti — X T Xk i

 Similarity of datapoints in Low Dimension exp(=llyi = yill?)
Ui = Zk;ﬁi exp(—||yi — Yk||2)

pjji
e Cost function €= ZKL Pil| Qi) —Zzpﬂ,log /!

.. : . aC
 Minimize C using gradient descent By =Y (pjji — qjji + Pitj — 9i)) (i — ;)
J#i



SNE problems

* Not a convex problem! No guarantees, can use multiple restarts.

* Crowding problem
* In high dim we have a lot of different neighbors

* In 2 dimensions we have few neighbors at the same distance and far from
each other

* Thus, we do not have space to accommodate all neighbors

* t-SNE solution: change the Gaussian in Q to a heavy tailed distribution

. (L+ |lyi —yl1?)7 "
1] — —
. > k(L + vk = yil|?) 1

Student-t Probability Density



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum (7).
Result: low-dimensional data representation ") = {y1,y,,....v,}.

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
~__ Djlitpiy
Set pij = =5,

sample initial solution () = {y,v5,...,y,} from A[(0, 10~*])

for 1=/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)

compute gradient g_;; (using Equation 5)
set (1) = oy (t=1) +n§_§ + ou(7) (y(f—l) _ y(f—2>)
end

end
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Complete slides available here: https://kawahara.ca/visualizing-data-using-t-sne-slides/



https://kawahara.ca/visualizing-data-using-t-sne-slides/

Data: data set X = {x1,x2,...,x,}, *-~

I ~

-~
~

cost function parameters: perplexity Perp, =~~~ N
optimization parameters: number of iterations 7, learﬁfngiqtg N, momentum (7).

~

Result: low-dimensional data representation 1) = {y;,v5, .. 93~ _ }
begin Tt~
compute pairwise affinities p ;; with perplexity Perp (using Equation 1) =
__ Pjitpi;
Setpij = =5

sample initial solution () = {y,v5,...,y,} from A[(0, 10~*])

for 1=/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)

compute gradient 65—(9; (using Equation 5)

set (1) = oy (t=1) +n§_§ + ou(7) (Qf(f—l) _ y(f—2>)
end

end



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Random Sampling of MNIST
Data: data set X = {x1,x2,...,X,},

cost function parameters: perplexity Perp,
—optimization parameters: number of iterations 7, learning rate 1. momentym oi(7).

| Ll lowbingisiy il damigsraitaton )7\ = (il |
begin TN
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
__ Pjitpi; hR
Setpij = = >

sample initial solution ¥(©) = {y1,y,,....y, " from A((0,10*])
for 1=/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)
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compute gradient 65—(9; (using Equation 5) %
set Qf(f) _ Qf(f—l) _+_n§_§ —+—Oﬂ<l‘) (9/(1—1) L 9/(1—2)) \\\\
end \\\
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(a) Visualization by t-SNE.



cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum (7).
Result: low-dimensional data representation ") = {y1,y,,....v,}.

I.beg.in __________________________________________

. | compute pairwise affinities p;; with perplexity Perp (using Equation 1

: set Pij = p—j“z—;pi“i
"1~ sample initial sofution 9 = {3132, ... 3, } from AC(0,107%7) i
for r=1/to T do \
compute low-dimensional affinities ¢;; (using Equation 4) )

compute gradient 85—(9; (using Elquation 5) ,
} 1
set (1) = oy (t=1) +n§_;/ +a(f) (Qf(f—l) _ 9/(1—2>) !

[p————

end

end
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(a) Visualization by t-SNE.



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},
cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum (7).

Result: low-dimensional data representation ") = {y1,y,,....v,}.

begin -~
computle pairwise affinities p ;; with perpdex1ty Perp (using Equation 1)
i e
Set pij = 5,

sample idjtial solution 9 = {y1,y,, ...y, } from AL(0,1074])
for r=1to T do

compute,low dimensional affinities g;; (us|ng Equation 4)
compute grachent '(usmg'EquatlmrS')-
set i‘_ (=1 4y 6<y H«\( ) (971 — oy (=2))

end

end 2

' Key assumption is that the high- i
. d P and the low-d Q probability
" distributions should be the same

_________________________________

Random Sampling of MNIST

L2 GEEE
ERNAN

e x + o .
O©CONOOO s WN=0O

(a) Visualization by t-SNE.



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},
cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum (7).

Result: low-dimensional data representation ") = {y1,y,,....v,}.

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
__ Pjitpij
set pij = =,

sample initial solution 9(*)

for 1=/ to T do
compute low- dlmensmnal affinities g;; (using Equation 4)

e

= {y1,72, ..,y } from AL(0,1077)

conqnﬂegnuh@ﬁ (umngIkumnonS)
set 910 = o ‘“T+'ﬁ§5+0¢()(7(’ D o=2)
end R
end R

Find a low-d map that minimizes the difference between the
P (high-d) and Q (low-d) distributions

(if xi,xj has high probability of being neighbors in high-d,
then yi,yj should have high probability in low-d)

Random Sampling of MNIST
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(a) Visualization by t-SNE.



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum (7).

Result: low-dimensional data representation ") = {y1,y,,....v,}.
begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
__ Pjitpi;
set pij = 2n

compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient 55—(9, (using Equation 5)

set ¥ (1) = oy (t=1) +n§_§ 0 (Qf(f—l) _ 9/(’—2>)

We will minimize the difference between the
high-d and low-d maps using gradient descent
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Random Sampling of MNIST

L2 GEEE
ERNAN
wiolrlr|e
v\ foo] o~
SENEE

W

e x + o .
O©CONOOO s WN=0O

(a) Visualization by t-SNE.
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