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ABSTRACT
Query recommendation is an integral part of modern search
engines. The goal of query recommendation is to facilitate
users while searching for information. Query recommenda-
tion also allows users to explore concepts related to their
information needs.

In this paper, we present a formal treatment of the prob-
lem of query recommendation. In our framework we model
the querying behavior of users by a probabilistic reformula-
tion graph, or query-flow graph [Boldi et al. CIKM 2008].
A sequence of queries submitted by a user can be seen as
a path on this graph. Assigning score values to queries al-
lows us to define suitable utility functions and to consider
the expected utility achieved by a reformulation path on the
query-flow graph. Providing recommendations can be seen
as adding shortcuts in the query-flow graph that“nudge”the
reformulation paths of users, in such a way that users are
more likely to follow paths with larger expected utility.

We discuss in detail the most important questions that
arise in the proposed framework. In particular, we provide
examples of meaningful utility functions to optimize, we dis-
cuss how to estimate the effect of recommendations on the
reformulation probabilities, we address the complexity of the
optimization problems that we consider, we suggest efficient
algorithmic solutions, and we validate our models and algo-
rithms with extensive experimentation. Our techniques can
be applied to other scenarios where user behavior can be
modeled as a Markov process.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Query formulation ; Search process
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1. INTRODUCTION
Query recommendations are a prominent feature of mod-

ern search engines. Query recommendations serve several
purposes: correcting possible spelling mistakes, guiding users
through their information-seeking tasks, allowing them to lo-
cate information more easily, and helping them explore other
concepts related to what they are looking for.

The simplest form of query recommendation is spelling
correction, a topic that we do not address in this paper. In-
stead we focus on more elaborate forms of query recommen-
dations. For instance, by submitting the query “chocolate
cookie” a user may be prompted to other queries such as
“chocolate cookie recipe”, or “chocolate chip cookie

recipe”, but also to related concepts such as “brownies”,
“baking”, and so on.

A key technology for enabling query recommendations
is query-log mining, which is used to leverage information
about how people use search engines, and how they rephrase
their queries when they are looking for information. Most of
the proposed query-recommendation algorithms in the lit-
erature use aggregate user information mined from query
logs and allowing to identify queries that are relevant to
what the user is searching [2–4, 13, 14]. Current state-of-
the-art methods often produce relevant query recommenda-
tions, but typically there is no clear objective to optimize
and query-recommendation methods are fairly ad-hoc.

In this paper we propose a general and principled method-
ology for generating query recommendations. We model the
query-recommendation problem as a problem of optimizing
a global utility function. Our approach consists of the fol-
lowing ingredients:

• First, we assume that it is possible to aggregate his-
torical information from a query log to build a query-
reformulation graph [3]. The nodes of this graph are
distinct queries, and an edge (q, q′) is annotated with
the probability that a user will submit query q′ after
submitting query q. We then model the querying be-
havior of users as random walks on this graph.

• Second, we assume that the queries in the query-flow
graph have intrinsic score values w(q), which model a



desired property of the queries. For example, w(q) may
represent the probability that users who submit query
q will be satisfied with the search-engine results. We
assume that during the random walk on the query-flow
graph, users collect the scores of (a subset of) the nodes
that they visit. The higher the total value collected,
the higher the overall utility of the system.

• Last, we assume that query recommendations can be
viewed as a perturbation of the transition probabilities
in the query-flow graph. The motivation is that while
searching for information users tend to follow edges
according to their propensity to reformulate queries,
but they also move to queries that are recommended
to them by the search engine.

• Given the objective to maximize the overall utility of
the system, we formulate the query-recommendation
problem as deciding how to perturb the transition prob-
abilities so as to maximize the expected utility of a
random walk. From the algorithmic point of view, the
problem of finding k shortcut edges to add at each
node order to maximize the overall utility is an NP-
hard optimization problem. In this paper, we discuss
the complexity of the problem and we propose approxi-
mate algorithms for obtaining solutions of high quality.

Contributions. We propose an optimization framework
for query recommendation. The framework is based on the
use of a random walk over the query-flow graph. An im-
portant ingredient of our framework is a model, supported
by experimental evidence, of the way in which the addition
of query-recommendation links affects the above mentioned
random walk.

We design optimization algorithms to place query rec-
ommendation links so as to optimize the expected benefit
achieved by navigating the perturbed query-flow graph. The
effectiveness of the algorithms we propose is supported by
theoretical analysis. For the special case of adding recom-
mendation links to a single node, we are able to provide
a characterization of optimal solutions. Our characteriza-
tion allows to design a heuristic strategy that achieves near-
optimal performance. For the general case of adding rec-
ommendation links from each node, we propose a heuristic
based on the optimization of a modified objective function,
which is a good proxy of the original objective function when
the perturbation induced by adding recommendations is rel-
atively small.

We perform experiments addressing the following issues:
(i) testing the validity of our model on real query-log data;
(ii) assessing the performance of our algorithms with respect
to other reasonable heuristics on real data. Note that the
algorithms that we propose maximize the expected benefit
over the entire navigation of the user, not just the benefit
over the next recommendation. To understand the effects
of this choice, we also present the results of a user study
intended to assess the user-perceived quality of query rec-
ommendations provided by our heuristics and the top ones
returned by other systems.

Applications. While we present the problem using query
recommendations as a motivation, our model and meth-
ods can be applied to other scenarios where user behav-
ior can be modeled as a Markov process. A concrete ap-
plication that also partly motivated our work is leisure-

related search in entertainment sites such as Yahoo! OMG
(celebrity/fashion/gossiping columns). Usually, users start
browsing these services either from the frontpage or by per-
forming some query. Our goal in this case is to show recom-
mendations that take into account the browsing behavior of
users in order to deliver an entertaining experience to the
user, which involves a path along several of the best pages
in the site.

As another example, consider exploring media sites such
as YouTube or Flickr, where the system allows for browsing
the collection in a guided way, suggesting related contents in
order to provide an entertaining experience. In such a sce-
nario, content should be recommended according to some
“interestingness” criteria, and recommendations should de-
pend not only on the next step of the user navigation, but
also on the user future browsing path.

Roadmap. This paper is organized as follows. Section 2
discusses related work. Section 3 defines the scenario that
we are interested in and formally describes the model we
adopt in the rest of the paper. Section 4 formalizes providing
effective recommendations as a suitably defined optimization
problem. Section 5 addresses the complexity of the general
problem we consider. In Section 6, we present our analysis
of historical data to model the user browsing behavior and
query utility. In Section 7 we build on this model to solve
the query recommendation problem, and we compare our
method with other natural baselines. Finally, in Section 8
we conclude and present some ideas for future work.

2. PREVIOUS WORK

2.1 Query recommendations
Devising effective strategies for query recommendation has

been recognized as an important task since the early 2000’s.
Query recommendation tools are commonly part of the in-
terface provided nowadays to users of search engines.

A first line of research has focused on the task of find-
ing queries that are related to those submitted by the user.
To find related queries, various strategies have been pro-
posed, including measures of query similarity [2], query clus-
tering [13], or association rules [8].

A different approach has been taken by Zhang and Nas-
raoui [14], who attempted to model the user sequential search
behavior. Zhang and Nasraoui consider query graphs in
which nodes represent queries and edges consecutive queries
in the same user session. Edges are weighted by a damp-
ing (or forgetting) factor, providing a measure of similarity
between consecutive queries, whereas the similarity for non-
consecutive queries within the same session is calculated by
multiplying the similarity values of arcs along the path con-
necting them. An overall similarity value is obtained by
adding up the contributions of different sessions.

The concept of a query graph has been further expanded
by Boldi et al. [3]. Here, the authors introduce the concept
of a query-flow graph. The authors define a graph in which
an edge (q, q′) denotes the fact that at least one user has
submitted query q′ after submitting q in the same session.
Edges are associated to weights, which estimate the proba-
bility that a query transition connects related queries, and
are computed from aggregate information extracted from the
query log. Boldi et al. consider three heuristics for query
recommendations: (i) a simple one based on recommend-
ing, for a user at query q’s search results page, the query



q′ such that the weight of arc (q, q′) is maximum; (ii) two
heuristics based on random walks with restart, where restart
may either occur at q or at some of the last k nodes visited
by the user in the current session, according to a suitable
probability distribution.

Different types of graphs can be defined over the summary
information contained in query logs. In the previous para-
graphs, we discuss only the approaches that are most closely
related to this paper. An overview of literature, techniques,
and a broader range of applications of graphs extracted from
query logs is presented by Baeza-Yates [1].

One of the differences of our research with previous work,
is that we use the summary information contained in the
query-flow graph to define a whole optimization framework
with respect to the browsing behavior of the average user. In
this context, we define several optimization problems, inves-
tigating important properties of optimal solutions in signif-
icant cases. Finally, we propose and analyze heuristics that
have provable performance with respect to the optimization
objectives we consider.

2.2 Perturbation of Markov chains
The approach that we consider in this paper considers

the scenario of perturbing a Markov chain so as to opti-
mize some suitable function.1 While perturbation theory is
a well-studied area of matrix analysis, there is less literature
on sensitivity analysis of probability distributions defined
over a (possibly non-ergodic) Markov chain. In fact, most
literature addresses the topic of sensitivity analysis of Page-
rank [12, Chapter 6], mostly providing bounds on the change
in norm in the Pagerank vector when perturbations occur.
One key contribution in the area [6] provides an interesting
and deep analysis to prove the intuitive fact that Pagerank
is monotonic, that is, adding a link to a Web graph cannot
decrease the Pagerank value of the target page.

In this paper, we consider a related, but different prob-
lem: we are interested in optimizing the change in the ex-
pected utility achieved by a random walk on a (generally
non-ergodic) Markov chain when at most k outgoing links
are added to the same node (or, in general, at most k links
are added to each node in a subset of the nodes).

2.3 Link optimization
A scenario in which links have to be added to a weighted

graph in order to optimize some function is considered in
[7] and [11], which address the hotlink assignment problem.
Here, we are a given a DAG with a distinguished root node,
representing the home page of a web site. Leaf nodes have
associated weights, representing the probability with which
a leaf node will be visited. The goal is adding at most one
link per internal page, so as to minimize the expected num-
ber of steps needed for a user to reach the desired leaf from
the root. This problem is NP-hard in general and the au-
thors prove several approximation results that depend on
the probability distribution on the leaves.

The scenario we consider is similar in spirit to those con-
sidered for the hotlink assignment problem [7,11], even though
there are important differences: (i) the hotlink assignment
problem typically involve DAGs and trees, while here we
consider general graphs; (ii) the addition of hotlinks does
not change the underlying probability while in our case,

1More precisely, some suitable probability distribution de-
fined over the Markov chain under consideration.

as explained further below, providing recommendation links
modifies the structure of the underlying Markov chain; (iii)
the goal in the hotlink assignment problem is to minimize
the expected distance traveled to reach the desired leaf,
while we define different objective functions that depend on
node weights and the visiting probabilities of a non-ergodic
Markov chain.

Chakrabarti et al. [5] consider the problem of adding“quick-
links” (i.e., shortcuts) to search engine results to optimize
some utility measure. In more detail, the authors assume
that for some queries the most relevant page is the home
page of some web site W , which becomes the source of a
possible, further user navigation of the web site W . User
navigation paths from W are called trails. A trail will pos-
sibly meet the information needs of a user. The problem
considered in [5] is to recommend at most k “deep” links
that are likely to meet the user information needs. The au-
thors assume that (i) each page u in W has some probability
α(u) to be considered a useful page in a trail meeting the
user information needs; and (ii) the usefulness of pages is
described by a suitable benefit function. The objective is to
choose the links to add so as to maximize the sum of the ben-
efits achieved over a given set of possible navigation trails.
The authors prove that the problem is in general NP-hard
and that it admits a constant approximate solution under
mild assumptions on the benefit functions.

Our approach differs from the one considered in [5] in sig-
nificant ways: (i) the problem studied is different, since their
goal is to provide a set of quicklinks to pages belonging to a
web site reported in the top position of a search engine’s re-
sult list, while we consider the problem of suggesting queries
that maximize the benefit over the entire navigation path of
the user; (ii) their objective to optimize depends on the set
of suggested quicklinks and on a measure of noticeability as-
signed to nodes, which is inferred from click-through data,
while in our case, it depends on the Markov chain underlying
the query-flow graph, which is itself perturbed by the addi-
tion of recommendation links, thus modifying the objective
function itself and complicating the optimization task.

3. USER-BEHAVIOR MODEL
We now describe the modeling of user behavior as a ran-

dom walk on the query graph.

3.1 Query reformulation graph
The query-flow graph [3] is a directed graph G = (V, E).

Nodes in V represent queries plus one special symbol t in-
dicating the end of a search goal in our case. Let |V | = n.
The edges E ⊆ V × V of the query-flow graph represent
query transitions. When the second element of an edge is
not the terminal symbol t, then the edge represents a query
reformulation.

We associate a Markov chain to the query-flow graph. In
particular, let Pn×n be a row-stochastic matrix, arranged
so that its last row represents the terminal symbol t. Ac-
cordingly, Pn,i = 0 for all i 6= n and Pn,n = 1, so that state
t is an absorption state of the Markov chain. The other
transition probabilities of P can be estimated either (i) as
observed reformulation frequencies, or (ii) by a machine-
learning algorithm that uses many types of features; see [3]
for details.

When a user submits a query q ∈ V , we expect that,
in the absence of any query recommendation, the user will



submit the next query according to the distribution Pq,·,
the q-th row of matrix P. In other words, we assume that
the user’s querying behavior is modeled by a random walk
on the matrix P. Let τq = Pq,n, the probability that a user
will terminate her session at query q, possibly after clicking
on a search result for q.

In the remainder, we let w : V → R represent node
weights, so that w(q) provides a quantitative indication of
the intrinsic value of query q to the users (or to the search
engine, as we see shortly). We assume that w(n) = 0. The
generic weight w(q) models the quality of a query q, for in-
stance, how satisfied is a user with the search results of q.
Obviously, it is impossible to know if a user is satisfied or
not from the results of a query. However, we can use cheap
proxies available in the query logs, such as clicks to search re-
sults, dwell time, etc. Another option for setting the weights
w(q) is to consider the monetization of a query q, which can
be also estimated by query-log analysis, for instance by the
clicks on advertisement links. We can also consider combi-
nations of the two. Finally, other options are possible and
in this paper, we are completely agnostic about the inter-
pretation of the weights w(q).

3.2 Query-recommendation model
The Markov chain P models the behavior of users re-

garding query reformulations when they are not shown any
query recommendations. When users are shown recommen-
dations, their behavior can change in complex ways. Defin-
ing sound and reasonably simple models for estimating tran-
sition probabilities between queries in the presence of recom-
mendations is important when investigating effective query
recommendation strategies. Naturally, any proposed query-
recommendation model has to be validated with respect to
real query-log data.

In general, providing recommendations to a query q in-
duces a perturbation of P. In the remainder, we assume
that this perturbation only affects Pq,·, leaving other rows
unaffected. We emphasize that this assumption and others
that follow are consistent with experimental observations,
as shown in Section 6. Correspondingly, the perturbation
induced by adding a set of recommendations Q to q can
be described by a set of values ρP

q,q′(Q) ∈ [−1, 1], which in
general depend on P and Q. In the remainder, we drop P
(and possibly Q) from ρP

q,q′(Q) when they are clear from
the context. As a result, if a set of queries Q is recom-
mended to users who submit q, the change induced for the
matrix P is described by P′

q,· = Pq,· + ρP
q,·(Q) (so actually

we have that −Pq,q′ ≤ ρP
q,q′(Q) ≤ 1 − Pq,q′). Of course,

a perturbation of Pq,· affects Pq,t = τq. More precisely,
τ ′

q = P′
q,t = 1−

P

q′∈V \{t} P′
q,q′ .

Note that this definition provides a quite general frame-
work that can model complex interactions, such as cases of
negative dependence in the transition probabilities to similar
queries.

For the sake of exposition, in the rest of the paper we as-
sume a model in which transition probabilities associated to
recommendations depend on the set Q of recommendations
and on P, but not on the order in which queries are rec-
ommended. Furthermore, we restrict to scenarios in which
a query appears at most once in Q (i.e., Q is not a multi-
set). In fact, our framework extends to these more general
settings as well.

Properties of query-recommendation models. In gen-
eral when the user has just submitted query q, it is not
sensible to recommend q itself, so ρq,q(Q) = 0, if q ∈ Q.
We also make other assumptions about the properties of
the recommendation model: (i) ρq,q′(Q) ≥ 0, for all Q and
q, q′ 6= t, q′ ∈ Q, that is, we expect an increase in the tran-
sition probabilities of the queries being recommended.

We also assume that recommending a query does not af-
fect the transition probabilities for other queries (except pos-
sibly the termination node t). Namely, we state property (ii)
as follows: ρq,q′(Q) = 0 if q′ 6∈ Q, for all Q and q, q′ 6= t.
If properties (i) and (ii) hold, we also require the following
property: (iii)

P

q′∈V
ρq,q′(Q) ≤ τq for all Q and q, q′ 6= t

also holds, since the matrix P′ has to be row stochastic.
Thus, recommending queries for a query q reduces the prob-
ability of a session terminating at q.

Empirical observations. While the properties that we
state in the previous paragraphs are in theory restricting,
they are motivated by our findings and experiments on real
query-log data. Those experiments are discussed in detail in
Section 6.3. Our main finding is the verification of proper-
ties (i) to (iii): adding recommendations to a query reduces
the termination probability associated to the query, without
significantly affecting other transition probabilities.

For example, we observe that, in the presence of recom-
mendations, average termination probability is reduced from
τq ≈ 0.90 to τ ′

q ≈ 0.84, while at the same time, we observe
for the sum of probabilities associated to recommendation
links, that

P

q′ ρP
q,q′(Q) ≈ 0.06, thus supporting assump-

tion (ii) above. Details are given in Section 6.

4. PROBLEM STATEMENT
The general problem that we are interested in is assisting

users to formulate queries by suggesting query reformula-
tions of potential interest and biasing the query graph navi-
gation towards queries of higher value. Given that we cannot
show an arbitrarily large number of suggestions in the search
engine interface, we will assume that we can provide at most
k recommendations per query.

4.1 Input
We assume that we can estimate the values ρP

q,q′(Q); de-
termining these values is an interesting but difficult statis-
tical problem, and outside of the scope of this paper. Sup-
ported by experimental observation, we will use an estimate
based on a linear function of Pq,q′(Q).

We also assume that we are given, or that we can es-
timate the weights w(q). Estimating these quantities can
be hard, for example, when they corresponds to estimat-
ing click-through rate (CTR) on ads, or even harder when
they estimate user satisfaction [9]. For our experiments we
used click-through-rates as a proxy, since the majority of
documents that users click are relevant for their interests;
however, our framework is general and other functions can
be used.

4.2 Objective functions
As we mentioned in the introduction, we consider query-

recommendation as an optimization problem, for which we
next define plausible objective functions. As we mentioned
in Section 3.1, every node in the query graph has an asso-
ciated weight representing its intrinsic value. Depending on



the application of interest, we can define a utility function
U(·), which associates a utility to every user session, typi-
cally a function of the weights of nodes visited during a user
session on the query graph. Let path(q) be the (non neces-
sarily simple) path that the user follows in the query graph,
with qt being the last query issued (just before terminating
by visiting the terminal state t).

Two natural choices for U(·) are

• Max-Sum: U(path(q)) =
P

q′∈path(q) w(q′); and

• Max-Last: U(path(q)) = w(qt).

The first choice captures scenarios such as maximizing total
user satisfaction through the entire session (by setting, for
example, w(·) to be the number of clicked results), or maxi-
mizing revenue by displaying ads, or minimizing user session
lengths (by setting the weights to −1).

The second choice can capture user satisfaction by setting,
for example, w(·) to 1 if the last session terminates with a
user clicking to a result.

We are now ready to formally define the optimization
problems that we consider in this paper.

Multi-step query recommendation. In the general prob-
lem, users start their navigation at an initial state according
to some distribution π0, whose i-th component we denote by
π0i. We sometimes need to consider the special case in which
π0 = eq for some q ∈ {1, . . . , n− 1}, with eq being the q-th
canonical column vector (the vector whose q-th element is 1
and the rest are 0). Given the transition matrix P of the un-
derlying query graph, perturbation functions ρP

·,·(·), a utility
function U(·) and a positive integer k, we seek a strategy for
recommending at most k queries per node so as to maximize
the expected utility for a user starting at any query in the

query graph, that is,
Pn−1

i=1 π0iE
P′

[U(path(i))], where P′ is
such that, for every q, P′

q,· = Pq,· + ρq,·(Q(q)), with Q(q)
being the set of queries recommended at q, while the ex-
pectation is taken with respect to the perturbed stochastic
matrix P′.

Single-step query recommendation. A simpler version
of the problem is when the search engine can only affect the
user trajectory at the initial step, but not afterwards. This
case can correspond to users issuing a query as a starting
point for browsing.

Formally, our goal in this case is to recommend at most k
queries to users visiting q, (i.e., add at most k links leaving
q in the query graph), so as to maximize the expected utility
after the perturbation. Note that we still want to maximize
Pn−1

i=1 π0iE
P ′

[U(path(i))], but with the constraint that only
the q-th row of P is modified, that is, Q(q′) = ∅, for q′ 6= q.

5. ALGORITHMS
Next we address the problem of solving the multi-step and

the one-step query optimization problems. We first show
that both versions are NP-hard and we then we look at
heuristics for solving both versions of the problem.

5.1 Solving the problem
Complexity. Both of the query-recommendation problems
we consider are NP-hard.

Theorem 5.1. Both the multi-step and the single-step rec-
ommendation problems are NP-hard.

The proof follows from the fact that we can encode a
maximum-coverage problem instance in the function ρ. The
details are omitted due to space constraints and will appear
in an extended version of this paper.

Optimizing multi-step query recommendations. We
recall from Section 4.2 that our optimization objective is

maximizing
Pn−1

i=1 π0iE
P′

[U(path(i))], where π0 is the ini-
tial distribution of starting queries. In fact, this can be a
very difficult task and many questions remain open for the
moment. For example, we show in Subsection 5.2 that the
solution for the single-step case is independent of the ini-
tial distribution. It is not clear if this result carries over to
the multi-step case: the optimal solution might in principle
depend on the initial distribution and the set of recommen-
dations chosen at one node might in the optimal solution
depend on the choices performed at other nodes in complex
ways. In our quest for a practical solution, we propose below
a heuristic in which choices are performed independently for
every node of the query-flow graph.

First notice that, in the special case that π0 = eq for
some q (that is, given that the user started at query q) we
can write the optimization problem as follows:

max
P′

EP′

[U(path(q))] =

max
P′

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ ·EP′

[U(path(q′))]

1

A ,

or

max
P′

EP′

[U(path(q))] =

max
P′

0

@τ ′
q · w(q) +

X

q′∈V \{t}

P′
q,q′ ·EP′

[U(path(q′))]

1

A ,

depending on which utility function we consider. The first
corresponds to Max-Sum, the case that the utility equals
the sum of the weights in the path, and the second to Max-

Last, the case that the utility equals the weight of the last
node before termination. We focus on the first case as the
second one is similar. Instead of maximizing

max
P′

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ ·EP′

[U(path(q′))]

1

A ,

we perform a one-step approximation and we maximize the
expression

max
P′

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ ·EP[U(path(q′))]

1

A

= max
P′

q,·

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ ·EP[U(path(q′))]

1

A .

Note that, compared to the initial formulation, the expecta-
tion is now taken with respect to P and not P′, so that the
last equality above follows since the terms EP[U(path(q′))]
do not depend on the perturbation. We call this the one-
step approximation because we assume that the system will
perform recommendations only in the current query q and
not in the subsequent user browsing session.



Now we only need to compute the expressions Vq′

.
=

EP[U(path(q′))] and write for each query q′:

Vq′ = w(q′) +
X

q′′∈V \{t}

Pq′,q′′ · Vq′′ .

This yields a set of n linear equations with n unknowns
so we can compute all the values Vq′ = EP[U(path(q′))]
simultaneously. We can therefore cast the problem as

max
P′

q,·

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ · Vq′

1

A ,

for known values Vq′ . This decomposition allows us to solve
a large number of scenarios.

5.2 Single-step query recommendations
In this subsection, we consider the single-step query rec-

ommendation problem2. Given a query qj , our goal is to
choose a set Q of at most k recommendations to propose to
users viewing qj ’s search engine results, so as to optimize
some utility function. In the following, we label queries as
q1, . . . , qn−1 and we assume that P’s i-th row corresponds to

query qi. Our goal is to optimize
Pn−1

i=1 π0iE
P′

[U(path(qi))],
where P′ is the perturbed matrix and π0i is the probability
that the user starts her navigation at qi. For utility, we use
Max-Last, where the utility is the weight of the last query
before termination. We assume that the properties (i)-(iii)
described in Section 3.2 hold, so that the perturbation only
affects the row of the initial matrix P corresponding to q.

Note that, from the above paragraph, the objective ap-
pears to depend on the initial probability distribution π0.
In fact, the simple heuristic we propose below relies on the
interesting fact that the optimal set of query recommenda-
tions to add to some given query qj so as to maximize the
expression above does not depend on π0. This is stated by
the following fact:

Fact 5.2. Assume we add a set Q of recommendations at

qj, |Q| ≤ k, so as to maximize
Pn−1

i=1 π0iE
P′

[U(path(qi))],
where P′ denotes the perturbed matrix. Then, the optimal
solution is independent of π0.

This fact implies that, in order to optimize the placement
of links at some query q, we can limit ourselves to optimizing

EP′

[U(path(q))] and this choice is optimal with respect to
any initial distribution. We prove in the full paper that the
simple, greedy algorithm given in Figure 1 performs close to
optimum in the cases of practical interest.

Algorithm SSQR-Greedy requires the computation of the
expected utility achieved by a random walk starting at qℓ,
for ℓ = 1, . . . , n− 1, where the expectation is taken with re-
spect to the unperturbed matrix P. These quantities can be
precomputed once and stored beforehand. Denote by QALG

and QOPT the algorithm’s and the optimum’s choices for Q.
The optimal algorithm solves the problem exactly, comput-
ing the solution maximizing the expected benefit, generally
in non-polynomial time. Denote by h(QALG) and h(QOPT )
the corresponding values for the expected utility. Algorithm
SSQR-Greedy achieves a performance that is close to opti-
mum in cases of practical relevance, as shown by the follow-
ing
2All proofs of this subsection are omitted for the sake of
space and will appear in the extended version of the paper.

Algorithm SSQR-Greedy

Require: query qj , ρjℓ (ℓ = 1, . . . , n− 1), k
1: U ← V − {t, qj}
2: Q← ∅
3: while |Q| < k and ∃ℓ : EP[U(path(eℓ))] > w(j) do
4: i← arg maxℓ:qℓ∈U{ρjℓ(E

P[U(path(eℓ))]− w(j))}
5: Q← Q ∪ {qi}
6: U ← U − {qi}

Figure 1: Greedy algorithm for single-step query
recommendation.

Theorem 5.3.

h(QALG) ≥ (1− x)h(QOPT ),

where x depends on the the unperturbed matrix and it is
small for most non-pathological instances (possibly, x≪ 1).

The case of no incoming links. When qj has no incoming
links in the unperturbed Markov chain, it turns out that the
solution provided by Algorithm SSQR-Greedy is optimal. In
particular, in this case a random walk starting at qℓ has
zero probability of terminating at qj . We already observed
in Section 4.2 that this case is of practical interest in the case
of search done as an initial step for browsing, for example.

Remarks. If we replace EP[U(path(eℓ))] with w(ℓ) in the
pseudo-code of Algorithm SSQR-Greedy, we obtain one of
two natural heuristics, namely, maximizing the expected in-
crease in the weight of the next query navigated by the user
over the current one, provided the user follows a recom-
mended link. In the experimental part we consider a slightly
different version, that of maximizing ρjℓE

P[U(path(eℓ))].

6. EXPERIMENTS TO DETERMINE USER
BEHAVIOR

In this section we present the dataset we used and our
modeling approach. We mention again that our main goal
is to design a fairly accurate but simple model to use for our
optimization purposes.

6.1 Experimental framework
Dataset. We perform an experiment on the search-engine
results page, for a small fraction of users. In this experiment,
we remove the query recommendations (labeled“Also try ...”
in the user interface) from the top of the page. As a control
group, we sample a similar amount of normal sessions using
the default interface during the same period of time.

We process the search sessions to segment them into search
goals [10], which are sequences of queries corresponding to
an atomic information need. For instance, the queries “car
battery” and “buy a car battery” can be considered part
of the same goal, but the query “brake pads”, while related
to the other queries (for the topic of cars) is on a different
goal. Search goals contain a median of 2 queries.

Next, we aggregate information in a query-flow graph, by
considering for every pair of queries, all the sessions in which
those queries appear consecutively.

In the user-behavior characterization results below, we se-
lect queries q having frequency freq(q) ≥ 50 and having at
least 15 non-terminal transitions:

P

q′ 6=t freq(q, q′) ≥ 15.
We also discard queries that generate spell suggestions, to
avoid confusing spell correction with query recommendation.



Finally, we keep only the queries that match these conditions
in both the experiment and the control group.

6.2 Impact of reformulations on the
termination probability

The termination probability (the probability of stopping
a search session at a query) depends on a number of factors,
as it conflates both successful and unsuccessful queries. We
observe that in general the more frequent a query is, the
higher its termination probability, as shown in Figure 2(b).

With respect to the effect of query recommendations on
this probability, it is clear that recommendations reduce the
termination probability, as shown in the box-and-whisker di-
agram of Figure 2(a). For this query sample, without query
recommendations in most cases the termination probability
τq is between 0.8 and 1.0. When query recommendations are
shown, the termination probability τ ′

q is between 0.6 and 1.0,
with E[τq] ≈ 0.90 and E[τ ′

q] ≈ 0.84.

(a) Drop in termination prob-
ability

(b) Frequent queries tend to
have higher τq

Figure 2: Drop in termination probability with rec-
ommendations. τ ′

q can be approximated by a linear
function of τq

The relationship between τq and τ ′
q can be roughly ap-

proximated by a linear function, as shown in Figure 3(a):
τ ′

q ≈ 0.9τq. The linear model fits well this data, with Pear-
son’s correlation coefficient r = 0.82. In this and the follow-
ing plots, each point is a query and the size of its circle is
proportional to its frequency in the data.

Actually, the drop in the termination probability observed
in Figure 2(a) can be explained almost completely by the
user clicks on the query recommendations, as τ ′

q ≈ τq −
0.8

P

q′∈Q ρq,q′ (r = 0.95). In Figure 3(b) we can see the
linear approximation.

Finally, considering Pq,q′ does not seem to help increase
the accuracy, as the best linear we can obtain is τ ′

q ≈ τq −
0.7

P

q′∈Q
Pq,q′ (r=0.82); which basically relies on the cor-

relation between τ ′
q and τq. The plot looks very similar to

Figure 3(a) and is thus omitted.
We also gather two sets of weights for the queries. The

first is a proxy of user’s satisfaction: the click-through rate
on the organic search results of a query. The second is a
proxy for revenue for the search engine: the click-through
rate of advertising in the page of search results for a query.
These two sets of weights will be the weights w(q) that we
use in our experiments.

6.3 Impact on query transitions
We observe that 98.7% of the recommended queries at po-

sition 1 increase their transition probability with respect to
the control group. On the other hand, the distribution of re-
formulations to queries that are not recommended (q′ /∈ Q)
remains basically equal. We measured the Jensen-Shannon
divergence between the probability distribution of the tran-
sitions to non-recommended queries, and it is on average
0.03 with 95% of the query pairs having a divergence of less
than 0.08.

We are also interested in finding ρq,q′ given Pq,q′ . It turns
out that ρq,q′ depends on a number of factors, and sim-
ple models based only on termination probability do not
perform well. For instance, if we look at the sum of the
perturbations,

P

q′∈Q ρq,q′ ≈ 0.4 − 0.4τq + 0.4
P

q′∈Q Pq,q′

(r=0.51), shown in Figure 3(c).

(a) τ ′
q = f(τq) (b) τ ′

q = f(τq,
P

ρq,q′)

(c)
P

ρq,q′ = f(τq,
P

Pq,q′) (d) ρq,q′ vs Pq,q′

Figure 3: The drop in the termination probability
can be explained almost completely by the clicks in
the recommended queries

A simple model is the following: ρq,q′ ≈ 0.2 − 0.2τq +
0.6Pq,q′ (r=0.41). Basically, the recommendation will be
more clicked if the recommended query is done more fre-
quently by users. However we have to point out that this
does not hold deterministically, and for instance there are
some queries with Pq,q′ = 0 that have ρq,q′ > 0, as shown in
Figure 3(d). For q, these queries are never written as refor-
mulations by current users, but they are followed if shown
to them as suggestions.

We computed several lexical features for each query pair,
following [3], and found that if J(q, q′) is the Jaccard co-
efficient between the sets of character tri-grams of query
strings q and q′ (capturing basically if the queries are lexi-
cally related), then ρq,q′ ≈ 0.2−0.2τq +0.8Pq,q′ +0.1J(q, q′)
(r=0.50). Basically this model incorporates the fact that
people will click on suggested queries that are similar (lexi-
cally) to their original query.



6.4 Correlation of w(q′) with Pq,q′

Before attempting to solve the optimization problem, we
may first ask if users naturally select queries with high weight
on their own. For a fixed q, is Pq,q′ ∝ w(q′)? It does not
seem to be the case. If we measure the correlation coefficient
between these two values for a fixed query q, we observe an
average correlation of around 0.1. More generally, even when
we look at the relationship between w(q′) and w(q) for pairs
of reformulations done by users, we observe that users are
not consistent in reformulating to either queries with higher
or lower click-through rates than the queries they are at
currently.

7. EXPERIMENTS COMPARING RECOM-
MENDATION ALGORITHMS

We present below the results of experiments comparing
our heuristic with various other natural candidates.

7.1 Problem instances
Dataset. We take the top 420 queries by frequency and
then follow all possible reformulations observed in the query-
log up to distance 5 (distance=1 are direct reformulations).

We use the two sets of weights described in Section 6.1. In
terms of utility function we consider both approaches of Sec-
tion 4.2. For the experiments where we use the set of weights
corresponding to the click-through rate of organic search re-
sults, the utility is Max-Last, the click-through rate of the
last page before termination – this gives an indication of
the user’s satisfaction during her search session. For the ex-
periments where we use the set of weights corresponding to
sponsored advertisements, the utility is Max-Sum, the sum
of the weights of the queries visited – this is a proxy of the
expected number of ads clicked.

In the next two sections, we compare the performance of
our approach with other natural heuristics, by using histor-
ical results in the next section and then by performing a
user study. Our goal is two-fold. First, we want to examine
whether simpler approaches can also optimize the expected
future utility as much as our approach does. Second, since
we optimize not over the next step, but over the entire ses-
sion, we measure the decrease in the quality of the immediate
recommendations.

Interestingly, our experimental analysis shows that our
algorithms are significantly better than other heuristics with
respect to the optimization goals we pursue, at the same
time providing next-step recommendations whose quality is
comparable to that achieved by heuristics that are explicitly
designed to this purpose.

7.2 Comparison of our approach with other
heuristics

First, we examine to what extent other natural heuristics
optimize the objective that we are trying to optimize, the
expected future utility. We consider three different heuris-
tics. The first is to recommend the k queries that have the
highest weight. The second imitates a simple recommenda-
tion system and it recommends the k queries that have the
highest recommendation probability, that is, the queries qℓ

with highest value ρj,ℓ, assuming that the current query is
query qj . Finally, the third heuristic combines the previ-
ous two and it recommends the k queries that maximize the
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Figure 4: Average sum (over the top-k recommen-
dations) of the expected weight of the last query be-
fore termination. Expected values are approximated
using the 1-step heuristic. Weights correspond to
click-through rate of the organic search results.

quantity ρj,ℓ ·w(ℓ), in other words the queries that maximize
the expected utility of the next query.

In Figure 4 we can see the comparison of the aforemen-
tioned three heuristics with our method when we perform k
recommendations (Figure 4(a) shows the case of k = 5, while
Figure 4(b) the case of k = 3). To create each plot we con-
sider each query and we compute the top-k recommenda-
tions according to the various heuristics. For each recom-
mendation we compute the expected future value. In fact,
since this value is expensive to compute, we approximate
it with the one-step heuristic of Section 5.1 (note that this
is also the quantity that our approach maximizes). After
computing these values we sum them for each query and
then we consider the distribution over all queries. The plots
in Figure 4 are the box-and-whisker diagrams of those dis-
tributions. Recall that for the organic search results, the
utility of a path is Max-Last, the weight of the last query
before termination, and in this particular experiment, the
click-through rate (of organic search results) on the results
page after the users performed the query.

By definition our heuristic performs better than the al-
ternatives, so what the plots are depicting is whether more
standard and “myopic” solutions suffice, or our method per-
forms much better. From the plots we see that the three
simple heuristics perform similarly, and indeed, much worse
than our proposed solution. The overall improvement is
about 45%.

In Figure 5 we see the corresponding plots for the adver-
tising scenario, namely when query weights correspond to
the click-through rates on ads on the corresponding result
pages, and when the utility is the sum of the weights of the
pages that the user visited. Again we see that other heuris-
tics cannot achieve the performance of ours, our heuristic
giving values that are from 57% to 87% higher than the
next best heuristic.

While in this paper we make the case that we should op-
timize query recommendations for the entire user session,
nevertheless we would ideally like not to present recommen-
dations to the user that appear significantly worse to the
user, even if they provide better future results. In the case
that the weight of a query is a measure of the user satisfac-
tion (e.g., when the weight is the click-through rate of the
corresponding pages as in our first experimental scenario)
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Figure 5: Average sum (over the top-k recommen-
dations) of the expected sum of the weights of the
queries. Expected values are approximated using
the 1-step heuristic. Weights correspond to click-
through rate of the sponsored advertisements.
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Figure 6: Sum of the weights of the weights of top-5
recommendations. Weights correspond to (a) click-
through rate of organic search results, and (b) spon-
sored advertisements.

we would like the weight of the recommended queries to be
large for our heuristic as well. It is not hard for someone to
construct Markov chains where this can happen, and in fact,
in general the one-step heuristic will perform poorly under
this measure. In Figures 6(a) and 6(b) we see that this can
happen in practice as well: the weights of the queries rec-
ommended are much lower than the best possible (we show
results for top-5 recommendations, plots for top-3 recom-
mendations are analogous). To explore this matter more,
we perform a user study in the next section, to measure the
extent to which optimizing over the entire future reduces the
quality of the immediate recommendations and to examine
to what extent a lower weight corresponds to a much lower
user satisfaction.

7.3 User study
To address the issues raised at the end of the previous

subsection, we conducted a user study to test if the rec-
ommended queries are acceptable as recommendations to
users. For this, we ran our approach and the heuristics and
compared the top-3 recommendations side-by-side. We then
paired systems at random and showed to an assessor: (i)
the original query, (ii) the top-3 recommendations gener-
ated by one system, and (iii) the top-3 recommendations
generated by the other system. The identity of the system
used for generating each recommendation was not present

in the interface. For each query (original, or recommended),
we asked a web search engine to retrieve the top-3 results,
which were also shown to provide some context about the
query and the recommendations.

We asked the panel of assessors (3 of the authors of this
paper) to answer: which system provides better recommen-
dations?. The options were (a) the first set is better, (b) the
second set is better, (c) both sets are similar. We collected
980 such assessments.

This assessment task was highly subjective and Cohen’s
κ statistics of the inter-assessor agreement (on a set of 50
queries for which their assessments overlapped) shows κ =
0.61 which can be interpreted as a substantial level of agree-
ment.

Considering the cases in which the assessors declared one
set of recommendations to be better, we observed that the
method based on ρw out-performed the method based on ρ
in about 59% of the cases in which they were paired, which
is significant at p = 0.03. For the other pairs of systems,
we did not observe a significant (p < 0.1) advantage of one
system over the other.

These results suggest that the recommendations generated
by our method, are not perceived as being worse or better
by users, while still leading them through paths that have
significantly larger utility.

8. CONCLUSIONS
We have shown an approach to query recommendation

that is based on casting this problem in an optimization
framework, in which we perturb users’ query-reformulation
paths to maximize the expected value of some suitable util-
ity function defined over search sessions. We defined two
utility functions Max-Last and Max-Sum which, respec-
tively, formalize the goals of reaching a valuable destination
or traversing many valuable nodes. We have shown that
this problem is in general NP-hard, but that we can provide
effective and efficient approximation algorithms for it, with
provable performance in significant cases. Finally, we have
implemented our approximation heuristics and tested them
on real test sets, also carrying out a user study that con-
firms that our techniques can be used to generate query rec-
ommendations that are perceived similar in quality to what
users would consider more relevant to their search goals, but
that at the same time bias users’ browsing along reformula-
tion paths that achieve a much higher utility than without
such assistance.

Both our modeling framework and our solution approach
are general and can be applied to various settings by mod-
ifying the interpretation of weights, the exact definition of
utility, the transition probability matrix, and so on. While
our initial motivation was the query reformulation problem,
we believe that it can be applied to other settings in which
users’ behavior can be modeled as a Markov process.

Two key aspects of our method require further develop-
ment: the way of assessing the utility of individual queries
and the model for estimating the response of the user in the
presence of query reformulations. The methods we have de-
scribed in this paper can benefit from future improvements
in these two areas. Another interesting question is the in-
corporation of diversity in the entire framework. On the
theoretical side, providing an approximation algorithm for
the general multi-step recommendation problem seems to be
the hardest open problem from this research.
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