titolo

autore

September 3, 2008

Abstract

abstract

1 Introduction

text typing prediction assistance via text prediction

1) Mettiamo in evidenza I'idea che 1'uso dei g-grammi per la predizione, con
q arbitrario, possibile grazie agli indici compressi. L’approccio dunque senza
usi di DB-linguistici, ma sfrutta solo ’evidenza statistica.

in linea di principio usare anche le informazioni linguistiche puo’ essere piu’
efficace, ma sottolineavo che il ritmo di crescita di capacita’ di memoria e di
calcolo delle macchine ha un’ordine di grandezza diverso dal ritmo di crescita
della dimensione dei corpus linguistici disponibili, quindi da un certo punto in
poi (e gia da ora) Papproccio statistico su corpus non taggati sempre piu’ grandi
sara’ piu’ efficace degli approcci su corpus taggati.

2 The Problem of statistical prediction enhanced
text typing

We consider the text typing process as a sequential human-machine interac-
tion process, where, in response of one or more keystrokes, a text fragment is
appended to the already typed text.

In the case of natural language, the user usually doesn’t really need to type
a particular text but simply wants to communicate a message that can be ex-
pressed through several alternative texts (not only the case of alternative phrase
construction or alternative synonyms, but punctuation and typesetting choices
too): we relax the problem definition of text statistical prediction enhanced
text typing assuming that the user needs to type exactly a particular target
text S € ¥* of length ¢t = |S|.

In the case of the standard typing environment we assume that the effect of
every keystroke is the appending of a single character to the already typed text
and that there is a distinct key for every possible character in 3; therefore, |S|
keystrokes are needed in order to produce the target string S.

We want to decrease the number of keystrokes needed in order to produce
S, making use of a text statistical prediction system.

2.1 p-keys extended interface

In order to take advantage of a text statistical prediction system, we extend the
standard input interface with p additinal keys, associated to variable character
sequences.

In every human-machine interaction step, our text statistical prediction sys-
tem will associate some character sequences to every one of the p additinal keys;
if the user finds that one or more of the proposals are exact prefixes of the suffix
of the text he need to type, then the additional key associated to the longest
correct proposal p; is pressed and the sequence p; is appended to the alredy
typed text; otherwise, if none of the proposals turns out to be correct, the user
press one of the standard interface keys, appending only a single character.

2.2 Linguistic domain

We can fix the linguistic domain of the prediction system defining the perfect
corpus C), as the set of all the possible texts of finite length that the user will
eventually write, associated to their relative frequencies.

The perfect corpus assumption is useful for a theoretical formulation of the
text statistical prediction problem and for an exact solution analysis; the case
of a real corpus and all the related problems that arise will be discussed where
some heuristical solutions to the real case will be exposed (section 3.3).

2.3 From the text typing to the path selection paradigm

We can build a trie data structure 7' from the string elements of the perfect
corpus Cj,. We append a special string terminator character to every string
s € Cy, in order to obtain a distinct leaf for every s.

For every node i of T" we define:

e the associated string s;, as the concatenation of the character labels of the
edges that form the path from the root node to the node 1.

e the associated relative frequency f;, as, in the case of leaf nodes, the
relative frequency of s; (without the terminator character) from the perfect
corpus Cj, in the case of internal nodes, the sum of the relative frequencies
associated to the leaves of the sub-trie rooted by the node 1.

Considering the trie T', in the standard typing environment, the text typing
process of a target string .S can be viewed as a path selection process, starting
from the root node, with every keystroke corresponding to the label of the next
edge to sequentially append to the path, until the node ¢ with the associated
string s; = S is reached.

Given T, the text statistical prediction enhanced text typing with a p-keys
extended interface problem can be formulated as the problem of adding to evey
internal node ¢ of T, p additional edges pointing to internal nodes of the sub-trie
rooted by ¢, with associated labels corresponding to the concatenation of the
single character labels of the standard edges that form the path from node ¢ to
the pointed node.

We will refer to the trie T' with all the additional edges as the prediction
graph G. We will continue to refer to the root node in T" as the root of G, and
all the edges are directed toward the root-to-leaves direction.

Thanks to the additional edges, in G there can be several different paths
from the root to a node i in addition to the only one in T, and the length of
every additional path is less than |s;]|.

Following the same paradigm of viewing the text typing as a path selec-
tion, all the paths from the root node to node 7 in G represents all the possible
keystroke sequences in the p-keys extended interface that produce s;, but, given
that the user doesn’t have the possibility of doing any look-ahead in the pre-
diction graph, the path followed is the greedy one, not necessarily the shortest
one.

2.4 Prediction graph optimality conditions

Obviously, some additional edge choices can be better than others, but every
definition for the optimality can focus on different properties of the prediction
graph. We propose two different optimality conditions:

Total keystrokes saving : minimize the number of keystrokes needed in or-
der to produce the whole corpus, taking into account the corpus text
frequencies.

We fulfill this condition minimizing the sum, for all the nodes ¢ such that
s; € Cp, of the product of f; and the length of the greedy path from the
root to the node 3.

Mean keystrokes saving ratio : minimize the frequencies weighted mean ra-
tio keystrokes over produced text length for the strings in the corpus.

We fulfill this condition minimizing the sum, for all the nodes ¢ such that
s; € (), of the product of f; and the ratio of the length of the greedy path
from the root to the node i over |s;|.

Over all the possible additional edges choices, the optimum choices that
maximize the total keystroke saving can be different from the choices that max-
imize the mean keystrokes saving ratio. Figure 1 is a simple trie exemple where
the optimal choices with p = 1 for the two optimality conditions are different:
for the case of total keystroke saving, the sum to minimize for the left additional
edges choice turns out to be 2 and 2.05 for the right choice, for the case of mean
keystrokes saving ratio, the sum to minimize in the left turns out 0.8 and in the
right 0.75.

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Figure 1: Two different additional edges (the red ones) choices with p = 1, the
left choice is optimal for the case of total keystroke saving optimality condition,
the right choice is optimal for the case of mean keystrokes saving ratio optimality
condition.

Even if the two optimality conditions lead to chose different prediction graphs
from the same trie, each of them deserve consideration. The mean keystrokes
saving ratio condition is in line with the quite common practice to test the
performance of predictors with a mean keystroke saving ratio over a set of test
texts; adopting this condition will likely make the prediction system score better
performance in this typology of tests than the other condition. On the other
hand, we consider the total keystroke saving a better condition for the abitual
user point of view: of course if we assume the use case of a single text typing the
mean keystrokes saving ratio condition will ensure an higher mean time saving
(short time better performance), but in the use case of an abitual user that will
adopt the predictor enhanced typing environment for a big number of texts, at
the end the total keystroke saving condition will give an higher keystroke saving
(long time better performance).

Therefore we chose to focus our work on the first condition and we will
propose solutions for the problem of the total keystroke saving maximization.

2.5 Space Complexity Constrains

The focus of our work is to develop a text statistical prediction system with the
lowest possible space complexity, in order to take advantage of huge untagged
corpus.

In the section 4 we will describe how we can obtain the trie structure 7" and
the frequencies numbers f; of the nodes, making use of a compressed index data
structure that take only a space that is essentially bounded by the k** order
empirical entropy of the corpus. Anyway, we are unable to precompute and
store the additional edges in the same space complexity, therefore our system
needs to have an algorithm that compute the edges on the fly.

2.6 Problem formulation

Taking into account the space complexity constrains, our target problem became
the fast computation of the additional edges of a particular node a € T, such
that, executing the computation for every node in T', the resulting prediction
graph G satisfy the total keystroke saving condition.

3 Problem Solution

The problem of computing the additinal edges choice for a particular node a
turns out to be a not trivial task.
From the analysis of the problem we are able to make two observations:

Observation 1 The optimum additional edges choice for the node a depends
on the additional edges choices of all the nodes in the greedy path from the root
to a.

As previously stated, even if in the prediction graph there can be
several alternative paths from the root to node a, the user unability
of making any look-ahead in the path selection process will cause
that the only possible path to a is the greedy one.

Then, if a node along the root to a greedy path has an additional
edge pointing to the node b, and b is in the a-rooted sub-trie, we
know that any path going from the root to node a and then to any
node in the b-rooted sub-trie isn’t a greedy path.

Therefore, all the additional edge choices done for the nodes along
the root to a greedy path needs to be considered in order to prune
the a-rooted sub-trie when computing the additional edges for node
a.

For example, consider the simple case of Figure 2: if we doesn’t
consider the additional edge of the root, the greedy choice to add a
link to the node with 0.6 frequency turns out to be suboptimal.

Observation 2 FEven if we impose a mazximum length for the additional edges,
in order to chose the optimal additional edges of the node a, in the general case,
the structure of the sub-trie rooted by a needs to be analyzed up to the leaves.

The fact that the additional edges of the nodes on the greedy path
from the root to node a can alter the additional edges choice for a
(observation 1), imply that the choice done in a will have repercus-
sions on the a-rooted sub-trie.

For example in Figure 3 it’s shown how, analyzing the sub-trie up
to several incremental depths, different choiches for the root node
additional edge are computed as optimal: the example construction
can be extended to any depth, therefore the sub-trie needs to be
analyzed up to the leaves.

0.4 0.6

Figure 2: The additional edges choice with p = 1 of node a depends on the
previous additinal edges.

3.1 Exact Solution

From the previously described observations it turns out that a local alteration
of the additional edges of a single node can generate a global repercussion on the
whole prediction graph G. Therefore we are not able to find any problem decon-
struction trivial approach, needed in order to develop a dynamic programming
exact solution algorithm.

Without problem deconstruction, in order to compute the additional edge
choice for a particular node, we have to read a big portion of the trie (from the
observation 2).

Given our needs of computing the choice on the fly in a text typing envi-
ronment using huge corpus (and therefore an huge trie), we consider the exact
solution approach too much computational time consuming.

Therefore, until a problem decomposition is found, we will drop the exact
solution approach: in this work we propose a local heuristical algorithm that
try to approximate the global total keystroke saving condition.

3.2 Heuristical Naive Solution

We define:
depth(i) : node — N

as the depth in the trie T' of the node 3.

The more naive heuristical solution to the a node additional p edges choice
problem is to chose the p distinct edges pointing to nodes b1, b2, ...b, of the
a-rooted sub-trie, such that the sum:

P

> (depth(b;) — depth(a) — 1) - fy,

i=1

101 100 101 100

2 25 25 25

4 25 27 25 25
a
100
49 52 50 50
24 25 27 25 25 25 25 25

Figure 3: In this figure the additional edges choice with p = 1 of node a has the
additional constrains to admits only additional edges of length < 2. Even with
this constrains we have the necessity of inspecting the sub-trie up to the leaves:
in the first two cases we inspect the trie only for 2 depth levels and the better
additional edge choice turns out to be a connection to the left node (keystroke
savings 101 for the left case, 100 for the right), inspecting up to depth level
3 the better choice turn out to be a connection to the right node (keystroke
savings 151 for the left case, 152 for the right), inspecting up to depth level 4
it turns out to be the left again (keystroke savings 203 for the left case, 202 for
the right).

is maximized (there is a —1 because we want to express the keystroke saving
obtained thanks to the additional edges in respect to an interface with the
standard single character keys).

But we have to consider the fact that, even if we remain in the naive condition
of not taking into account the additional edges of the nodes of 7' (with the only
exception of node a), the p edges of node a will interact with the same mechanism
described in observation 1.

Consider for example Figure 4: the more keystroke saving additional edge
is the one present only in the left, with a saving of 2, but if we consider that
we have to choose another edge, then the optimal choice is the one in the right
(total keystroke saving of 2.5 for the left choice, 3 for the right one).

a a

0.5 0.5 0.5 0.5

Figure 4: The additional edges choice with p = 2 of node a, without considering
edges interaction on the left, considering edges interaction on the right.

In order to select the optimal choice we have to take into account quite
complex mechanisms, but in this heuristical naive solution we doesn’t want
to develop a too much complex algorithm. The trade-off we will adopt is the
following:

ST = a-rooted sub-trie of T
additionaledges(ST) {

ST, = ST,
fori=1—-p{
select b; in ST; such that ((depth(b;) — depth(a) — 1) * (fv,/fa)) is
maximized;

ST;+1 = ST; where {
for every nodes c along the path from a to b; : f. = fc — fp,;
the b;-rooted sub-trie is disconnected from b;’s father and con-
nected to node a;

for every nodes d in the b;-rooted sub-trie : depth(d) = depth(a)+
(depth(d) — depth(b;)) + 1;

}

3.3 Real corpus

In the section 2 we defined the perfect corpus C,, as the set of all the possible
texts of finite length that the user will eventually write, associated to their
relative frequencies.

In the real case, expecially for the linguistic domain of natural languages,
we doesn’t have the perfect corpus, but a real corpus C, composed by the
concatenation of various texts, more or less statistically representative of the
linguistic domain.

Adopting a single string C,. of concatenated texts, T is the trie of the suffixes
of C,, with all the frequencies of the suffixes set to 1/|Cy|.

3.4 Statistical significance: supM I[N parameter

We say that a real corpus C, is statistically representative of a linguistic do-
main if, assuming a prefix string P, the relative frequencies for all the alphabet
characters to follow an occurrences of P in C, is statistically similar to the
same frequencies we can calculate from the perfect corpus C, (weighing every
occurrence in a string of C, with the string’s associated relative frequency).

Intuitively, for the case of a natural language very statistically representative
corpus composed by real world texts, the previously described statistical evalu-
ation of the character that will follow a prefix string P will become less similar
to the correct linguistic domain statistics when the number of occurrences of P
in C, decrease.

The supMIN parameter denote the minimum number of occurrences of a
text prefix we consider acceptable in order to assure a statistical significance.

In the text typing process of path selection in T, every time we are in a node
a whose associated string s, has a frequency of f, < supMIN/|C,|, then we
have to reduce the considered prefix s,, recursively removing the first characters,
until the node associated to the reduced prefix has a frequency that can assure
the statistical significance.

3.5 Locality of the heuristic: dM AX parameter

In order to develop a fast on-line algorithm, we doesn’t want to analyze all the
a-rooted sub-trie, but only the first dM AX depth levels of the sub-trie.

The effect on the user side of the dM AX parameter is that the length of
the p proposed strings will be limited to dM AX characters. The prediction

performance effect of this parameter will became negligible when the linguistic
domain doesn’t have many frequent occourring strings of length greater than
dMAX (in the case of formal languages probably there will be the need of a
bigger dM AX than in the case of natural languages).

3.6 Fast sub-trie search: pruningFraction parameter

Our heuristical method, as previously stated, needs to select a node b in the
a-rooted sub-trie that maximize the function:

(depth(b) — depth(a) — 1) - (fo/ fa)

Unluckily, descending through a path in the trie, the depth values are strictly
increasing but the frequency values are non-increasing, therefore the target func-
tion is non-monotonic.

This means that on the general case we will needs to scan all the dMAX
levels of the sub-trie in order to find the node that maximize the function, an
exponential X4MAX nodes in the worst case.

In order to decrease the number of the nodes we need to analize, we propose
the pruningFraction parameter: the search for the node that maximize the
function will be a depth-first sub-trie traversal, but restricted only to the nodes
1 with f; > pruningFraction - f,.

This heuristical search method will analyze not more than dM AX /pruningFraction
nodes, and, if the node that maximize the function in the sub-trie has a value
> (dMAX —1) - pruningFraction then the heuristical search will surely find it.

3.7 Heuristical Look-back Solution

An heuristical algorithm less naive than the one exposed in section 3.2 will take
into account the observation 1 about the additional edges already chosen along
the greedy path from root to node a.

Every time in the path selection process a proposal isn’t selected by the
user, it’s added to the set of discarded suffixes D. When a fragment of text S
is appended to the already written prefix of the target text, for every discarded
suffixes d € D, if d is prefixed by S and |d| > | S| then it’s replaced by its suffix
of length |d| — |5, else it is removed from the set of discarded suffixes.

The algorithm is essentially the same alredy described for the naive solution,
but the starting a-rooted sub-trie is pruned of all the i-rooted sub-tries such that
s; €D.

3.8 Heuristical Look-ahead Solution

From observation 2 we know that a sub-optimal local solution can be globally
optimal if we consider the effect of the a node additional edges constrain upon
the additional edges choices for all the nodes in the sub-trie.

10

In order to find the optimal additional edges choice we need to analyze the
whole a-rooted sub-trie structure, but in an heuristical solution we can limit the
depth of the node we will analyze.

Currently we don’t have developed any fast heuristical look-ahead algorithm,
therefore all the experiments will be done with the naive and with the look-back
solutions only.

4 Compressed Index

5 Experiments

In all the following experiments we will adopt tha same protocol; given the
untagged textual corpus C, the prediction algorithm P, and the number of
additional keys p:

e (is fragmented in 5 different texts, of size |C|/5, referred as Cy, Cs ... Cs.

e there will be 5 different prediction experiments: in the i-th experiment
the test corpus is the fragment C; and the training corpus is the ordered
concatenation of the other 4 remaining fragments.

e for every one of the 5 experiments, the typing of the test corpus is executed
by an automated writer: the writer simulate the use of the p-keys extended
interface. After every simulated keystroke, the additional p keys associated
strings are reassigned with the strings that P will propose, considering only
the training corpus and the keystrokes history.

e the numbers of keystrokes needed by the 5 experiments to simulate the
typing of the test corpus are summed up; the parameter prod that we
adopt to indicate the performance of P is the ratio |C| over the keystrokes
sum.

Intuitively, the performance parameter prod indicate the mean number of
character producted by each keystroke.

We will refer to the heuristical naive solution algorithm described in section
3.2 as naive, and to the heuristical look-ahead solution algorithm described in
section 3.8 as lookAhead.

5.1 Parameter analysis

Both look Ahead and naive algorithms use the same parameters:

supMIN : the minimum number of occurrences of a text prefix we consider
acceptable in order to assure a statistical significance. If, when computing
the additional edges for a node a, s, < supMIN, then

(described in section 3.4)

11

5.2 English natural language

http://pizzachili.di.unipi.it /texts/nlang

http://www.gutenberg.org

This file is the concatenation of English text files selected from etext02 to
etext05 collections of Gutenberg Project. We deleted the headers related to the
project so as to leave just the real text. Downloaded on May 4, 2005.

5.3 English Wikipedia
http://download.wikimedia.org/enwiki/20080524 /enwiki-20080524-pages-articles.xml.bz2

5.4 Italian Wikipedia

lingua inflectional

5.5 Dutch Wikipedia

lingua agglutinante

5.6 Multilingual News

http://www.di.unipi.it/ gulli/newsspace200.xml.bz (cos vediamo nel caso multi-
language)

5.7 Corpus tecnico da decidere

4.4) Consideriamo dataset specializzati (uno informatico, uno economico, uno
biologico???)

5.8 Corpus Size

4.1) Stimiamo l'impatto della dimensione di Wikipedia indicizzata sulla bont
della predizione.

5.9 Additional keys number

4.1) Stimiamo l'impatto della dimensione di Wikipedia indicizzata sulla bont
della predizione.

5.10 Comparation with other softwares

spiega perche’ e’ difficile

decidi protocollo

4.0) Occorre scaricare i dataset che sono indicati nella survey che ci ha
passato il Mancarella, per dimostrare che il nostro approccio funziona in diversi
contesti. Il dataset di Mancarella non ci porta all’accettazione dell’articolo;-)

12

L’idea di usare le prestazioni citate in quell’articolo per confrontarle con quelle
ottenute dal nostro metodo, a parit di dataset, ovviamente.

6 Conclusions

13

