4 Intelligent Systems: Properties and Principles

In the 1960s, the Japanese psychologist Masanao Toda proposed to study
hypothetical creatures he called “Fungus Eaters” as a fun way to think
about intelligence, an alternative to the traditional methods of academic
psychology. Fungus Eaters are artificial creatures that are sent to a distant
planet to collect uranium ore. Because they have to collect ore, they must
be physical systems, i.e., they must be embodied—a computer simulation
simply wouldn’t do. Also, since there are no people on this planet, the
Fungus Eaters have to be autonomous—i.e., independent of human
control; they should be self-sufficient, which means that they should be
able to take care of themselves over extended periods of time, and they
must to be situated, i.e., they have to be able to learn about the environ-
ment through their own sensory systems. These hypothetical creatures are
called Fungus Eaters because they feed on a particular type of fungus that
grows on the planet. The planet is so far away that they cannot be remote
controlled because the signals take too long to travel between Earth and
the planet. By comparison, NASA’s engineers wanted to maintain as much
control as possible over the Mars Sojourner, because apparently they did
not fully trust its autonomous operating abilities. As a compromise, the
robot was extremely slow; it traveled only a few meters per day, adding up
to a little over 100 meters in three months. Sojourner’s replacements, the
twin Mars exploration rovers Spirit and Opportunity,can travel more than
100 meters per day (very speedy compared to Sojourner), but the target
locations to which they have to move are still commanded from Earth.
Toda’s Fungus Eaters illustrate the many challenges facing a complete
agent:it must fend for itself, deal with unforeseen situations, create its own
objectives, and forage for energy, among other things. In traditional artifi-
cial intelligence, on the other hand, agents were much more limited and
did not have to deal with all of the difficulties of the real world.
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Toda further argued—and many psychologists would probably agree
with him—that in laboratory studies people are often tested on tasks that
are not only somewhat artificial but also unusually difficult for humans:
subjects are asked, for example, to remember long lists of numbers or to
read text upside down. Toda stressed that if we are to learn something
rclevant about intelligence—something that holds truc in rcal-world
behavior—we need to study complete systems, i.e., systems that have to
act and perform tasks autonomously in the real world (Toda, 1982).
While Toda’s Fungus Eaters provide a rough intuition about the sorts of
systems we are interested in, we will make the notion of complete agents
more precise in this chapter.

In the previous chapter we outlined what a theory of intelligence
should look like, and we discussed some of the general theoretical con-
siderations in the study of intelligent systems: diversity-compliance,
frame of reference, the synthetic methodology, time scales, and emer-
gence. But we have not yet said much about how to actually design real
agents when applying the synthetic methodology; we will do so in this
chapter. The agents we are interested in designing are complete crea-
tures—Fungus Eaters, so to speak—endowed with everything needed to
behave in the real world, which obviously implies that they have to be
embodied and situated, autonomous, and self-sufficient. All of the robots
that we discuss in this book are autonomous in the simple sense that they
are not directly controlled by a human. Of course, their level of auton-
omy is still very limited because they depend on humans for their energy
supply, for maintenance, and to be placed in their proper task environ-
ment. Clearly, like intelligence, autonomy is not an all-or-none property;
an agent may be controllable to a greater or lesser extent by another
agent. There is a long-running philosophical debate about the concept of
autonomy and how it relates to intelligence, but we will not go into that
debatc here; the interested reader is referred to Pfeifer and Scheier, 1999.

In this chapter we will briefly describe what we mean by the “real
world,” and contrast it to virtual ones. Then we will discuss the proper-
ties of embodied agents and describe what happens when they interact
with the real world. Finally, we will introduce the basic set of design
principles.

4.1 Real Worlds and Virtual Worlds

This book is about embodied agents that have to function in the real
world. The real world has properties very different from those that char-



4. Intelligent Systems: Properties and Principles 21

acterize virtual or formal worlds, and intelligent agents have to be able
to deal with the physical world if they are to survive or function in it for
an extended period of time. Moreover, unlike virtual worlds, the real
world challenges an agent in various ways. First, because real-world
agents are embodied, acquisition of information always takes time: if I
want to know who is in the room next door, I have to go there and look,
call them, or ask someone.

Second, the information that an agent can acquire about the real world
is always very limited: we can only see what is in the range of our visual
field or hear the sounds that reach our ears. Thus we can never have com-
plete information. This situation is different from a formal game like
chess, where knowledge of the board position constitutes all the infor-
mation about the state of the game, assuming that the strategies of the
players are not part of the game proper. Moreover, it is not clear what
“complete information” in the real world would mean in the first place:
would it imply that an agent must have knowledge about the state of all
the atoms in the universe? This is clearly an absurd idea. One way of
summarizing information about a part of the rcal world is to make an
abstract model of it. For example, we can characterize a lecture hall by
specifying the number of students in it, the temperature, the light set-
tings, and whether the projector is on or off, which for many purposes
will be entirely sufficient. But such a model abstracts away most of the
potential information available: it does not contain anything about the
students’ blood flow or their thoughts about the quality of the lecture.

Third, physical devices are always subject to disturbances and
malfunctions, and since sensors are physical devices, the information
acquired through them will always contain errors. From these consider-
ations it follows that since knowledge about the real world is always very
limited, it is therefore intrinsically uncertain and only predictable to a
limited extent: For example, if it’s noisy you may not hear the car that is
approaching you from behind because of the physical limitations of your
ears: they only deliver the summed noise, so that you may not pick out
the sound of the car. Note that this point holds irrespective of the speed
and accuracy of the agent’s sensors: even if we have an ultra-high-
resolution camera, if it suddenly gets dark, the images it delivers will be
blurred and noisy. The uncertainty and limited predictably of informa-
tion collected from the real world is a principle that holds for any agent.

Fourth, the real world is not characterized by clearly defined, discrete
states: the weather is never simply good or bad, but rather sunny, cloudy,
misty, rainy, windy, or dull, all to greater or lesser extents. Because there
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are no discrete states, there are therefore no clearly defined actions that
can be executed when the world is in a particular state: it is a good idea
to take your umbrella with you when it is raining outside, but what if it
is only cloudy, or raining a little bit, or perhaps likely to rain later? This
lack of definable states is different from formal worlds like chess, where
there are uniquely prescribed board positions—a piece cither is or is not
occupying a square—and for every board position there is a finite set of
possible moves from which a player has to choose.

Fifth, agents in the real world always have several things to do simul-
taneously: animals have to eat and drink, but they also have to take care
that they are not eaten by predators, they have to build nests, clean them-
selves, breathe, fight off infection, reproduce, and care for their offspring.
Similarly, robots which have to function in the real world always have
many tasks to perform in parallel. For example, a robot designed to serve
coffee to employees in an office has to keep itself functioning, recharge
its batteries, avoid breaking or bumping into things, and not harm
humans, all while it is serving coffee. In contrast, in the formal world of
chess there is only one thing to do: make one move at a time in order to
win the game.

Sixth, because the real world has its own dynamics—things out in the
world happen even if we do not do anything—there is always time pres-
sure due to ongoing change. Thus agents are always forced to act,
whether they want to or not. In many formal settings an agent can take
as long as nceded to decide which action to take. And finally, related to
this point, the real world is a highly complex dynamical system, making
it intrinsically unpredictable because of its nonlinear nature and its sen-
sitivity to initial conditions (scc focus box 4.1). (Herbert Simon has
coined the term bounded rationality to designate, in essence, decisions
that have to be taken under such circumstances [Simon, 1976, 1969]).

To summarize before continuing, the real world requires time to
extract information from it, and extraction is always partial and error-
prone; it is not neatly divisible into discrete states; it requires agents
operating in it to do several things at once; and finally the real world
changes of its own accord, not only in response to agent action. So, the
real world is challenging and “messy.” Clearly, there are several con-
straints that a physical agent faces as a result of being in the real world:
there are certain things it simply cannot do, such as extract noise-free
information instantaneously from the environment. In the next section
we will describe how these constraints place certain hard limitations
on real-world agents, but also provide them with opportunities. These
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Focus Box 4.1
Dynamical Systems

There is a vast literature on dynamical systems, and although at a high level there
is general agreement on the basic concepts, a closer look reveals that there is still
a considerable diversity of ideas. We will use the terms dynamical systems, chaos,
nonlinear dynamics, and complex systems synonymously to designate this broad
research field, although there are appreciable differences implied by each of these
terms. Our purpose here is to provide a very short, informal overview of the basic
notions that we need for the book. Although we do not employ the actual mathe-
matical theory, we will make use of the concepts from dynamical systems theory
because they provide a highly intuitive set of metaphors for thinking about physi-
cally embodied agents and groups of agents.

A dynamical system in the real world is one that changes according to certain
laws: examples include the quadruped robot Puppy, human beings, economical
systems, the weather, a swinging pendulum, or a society of monkeys. Dynamical
systems can be modeled using differential equations (or their discrete analogs, dif-
ference equations). The mathematical theory of dynamical systems investigates how
the variables in these equations change over time: for example the angles of Puppy’s
joints can be used as variables in a set of differential equations that describe, math-
ematically, how the robot moves. However, to keep matters simple, we will not use
differential equations in this book.

The dynamical systems we look at here are nonlinear because interesting systems
in the real world are typically nonlinear. One of the implications of nonlinearity is
that we can no longer, as we can with linear systems, decompose the systems into
subsystems, solve each subsystem individually, and then reassemble them to give the
complete solution. In real life, this principle fails miserably: if you listen to two of
your favorite songs at the same time, you don’t double your pleasure! (We owe this
example to Strogatz, 1994.) Similarly, we cannot understand the motion of one of
Puppy’s legs without considering how it is affected by the other three. In other
words, the system must always be treated as a whole (see the complete-agent prin-
ciple). Another important property of nonlinear systems is their sensitivity to initial
conditions: if the same system is run twice using very similar initial states, after a
short period of time, they may be in completely different states. This is also in con-
trast to linear systems, in which two systems started similarly will behave similarly.
The weather is a famous example of a nonlinear system—small changes may have
enormous cffects—which is what makes weather forecasting so hard.

The phase space of a system is the space of all possible values of its important
variables. For Puppy we could, for example, choose the joint angles as important
variables and characterize its movement by the way the angles change over time. If
there are two joints per leg, this yields an eight-dimensional phase space: each point
in phase space represents a set of values for all eight joints. (Alternatively, we could
use the contact sensors on the feet only, a different and simpler way of defining the
phase space, which would then be only four-dimensional). Neighboring points in
phase space represent similar values of the joint angles. As Puppy runs, the joint
angles change continuously. Thus we can say that these changes are analogous to
the way the point in phase space (the values of all joint angles at a particular
moment) moves over time. The path of this point in phase space, i.e., the values of
all these joint angles over time, is called the trajectory of the system.

An attractor state is a preferred state in phase space toward which the system will
spontancously move if it is within its basin of attraction. There are four types of
attractors: point, periodic, quasi-periodic, and chaotic. Physical systems, such as
Puppy, by their very nature as physical systems, have attractor states. It is important
to realize that the attractors will always depend on the way the actuators are driven
and on the environmental conditions.




94 Il. Toward a Theory of Intelligence

Focus Box 4.1
(continued)

If Puppy runs and settles into a particular gait, the joint angles, after a short period
of time (less than 1sec), will more or less repeat, which means that the trajectory
will return to roughly the same location as before: the values of the joint angles will
be very similar to what they were in the previous cycle. This cyclic behavior is known
as a periodic attractor, or, because the angles in the real world never exactly repeat,
a quasi-periodic attractor. Puppy’s different gaits correspond to different (quasi-)
periodic attractors: this is illustrated by figure 4.2. If Puppy falls over and stops
moving, then its joint angles no longer change over time, and the trajectory in the
phase space remains at a single point: such points are called—not surprisingly—
point attractors. Finally, if the trajectory moves within a bounded region in the phase
space but is unpredictable, this region is called a chaotic attractor. Systems tend to
fall into one of their attractors over time: the sum of all of the trajectories that lead
into an attractor is known as the basin of attraction. Attractors—and this is relevant
for our ideas on emergence of cognition (see chapter 5)—are discretely identifiable
entities within a continuous system: Puppy’s joint angles change smoothly over time,
but we can reliably tell whether Puppy is walking, running, or standing still.

Again, there is a frame-of-reference problem here. How do you know the system
is in an attractor state? And how does the agent itself know it? So, you need to
provide some way of measuring the system’s change over time: for example, if you
are interested in locomotion, you can measure joint angles using sensors (as in the
example given), or you can put pressure sensors on the feet. On the basis of these
measurements, the robot (or the researcher) can then detect its attractor states and
may change its actuation pattern: changing the frequency of actuation and the phase
difference between front and hind legs (e.g., when the front legs start stretching, the
hind legs may start bending), alters the dynamics and thus the system might transi-
tion into another attractor state, such as from walking to running. While the notion
of an attractor is powerful and has intuitive appeal, it is clear that transitions
between attractor states are equally important, e.g., for generating sequences of
behavior.

Attractors, together with the transitions between them, reflect in some sense the
natural dynamics of the system, in our case the agent. If the agent is driven by an
oscillator (to generate periodic motion), the complete system will, depending on the
frequency, settle into a (quasi-periodic) attractor state whose period is emergent
from the coupling of the neural and the physical system yet different from the period
dictated by the oscillator. This phenomenon is known as mutual entrainment: the
resulting frequency will represent a “compromise” between the systems involved
(see also our discussion of Sten Grillner’s experiments on the Lamprey in chapter 5).

For those who would like to know more about the mathematical foundations of
dynamical systems we recommend Strogatz (1994), and for those interested in its
application to cognition, Port and van Gelder (1995) and Beer (2003).
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limitations and opportunities can be described as a set of properties that
all complete agents share.

4.2 Properties of Complete Agents

Here are the most important properties of complete agents that follow
from their embodied nature:

1. They are subject to the laws of physics (cnergy dissipation, friction,
gravity).

2. They generate sensory stimulation through motion and generally through
interaction with the real world.

3. They affect the environment through behavior.

4. They are complex dynamical systems which, when they interact with the
environment, have attractor states.

5. They perform morphological computation.

The interesting point here is that these properties are simply unavoid-
able consequences of embodiment. These are also the properties that can
be exploited for generating behavior, and how this can be done is spec-
ified in the design principles. Before we go on to the design principles,
let us briefly clarify each of these properties.

1. A complete agent is subject to the laws of physics. 'Walking requires
energy, friction, and gravity in order to work. Because the agent is embod-
ied, it is a physical system (biological or not) and thus subject to the laws
of physics from which it cannot possibly escape; it must comply with them
(see also our discussion of compliance in chapter 3). If an agent jumps up
in the air, gravity will inevitably pull it back to the ground.

2. A complete agent generates sensory stimulation. When we walk, we
generate sensory stimulation, whether we like it or not: when we move,
objects seem to flow past us (this is known as optic flow); by moving we
induce wind that we then sense with our skin and our hair; walking also
produces pressure patterns on our feet; and we can feel the regular
flexing and relaxing of our muscles as our legs move.

3. A complete agent affects its environment. When we walk across a
lawn, the grass is crushed underfoot; when we breathe, we blow air into
the environment; when we walk and burn energy, we heat the environ-
ment; when we drink from a cup, we reduce the amount of liquid in the
glass; when we drop a cup it breaks; when we talk we put pressure waves
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out into the air; when we sit down in a chair it squeaks and the cushion
is squashed.

4. Agents tend to settle into attractor states. Agents arc dynamical
systems, and as such they have a tendency to settle into so-called attrac-
tor states. Horses, for example, can walk, trot, canter, and gallop, and
we—or at least experts—can clearly identify when the horse is in one of
these walking modes, or gaits, the more technical word for these behav-
iors. These gaits can be viewed as attractor states. The horse is always in
one of these states, except for short periods of time when it transitions
between two of them, for example from canter to gallop. We should point
out here that the attractor states into which an agent settles are always
the result of the interaction of three systems: the agent’s body, its brain
(or control system), and its environment. Because the concept of dynam-
ical systems and attractor states is important for our arguments, we will
claborate it a bit more by returning to the casc study of Puppy, the four-
legged running robot that we introduced in chapter 3 (see also focus box
4.1 and chapter 5).

5. Complete agents perform morphological computation. By “morpho-
logical computation” we mean' that certain processes are performed by
the body that otherwise would have to be performed by the brain (see
figure 4.1). An cxample is the fact that the human leg’s muscles and
tendons are elastic so that the knee, when the leg impacts the ground
while running, performs small adaptive movements without neural
control. The control is supplied by the muscle-tendon system itself, which
is part of the morphology of the agent.

It is interesting to note that systems that are not complete, in the sense
of the word used here, hardly ever possess all of these properties. For
example, a vision system consisting of a fixed camera and a desktop com-
puter does not generate sensory stimulation because it cannot produce
behavior, and it influences the environment only by emitting heat and
light from the computer screen. Moreover, it does not perform morpho-
logical computation and does not have physical attractor states that
could be useful to the system.

The Quadruped Robot Puppy as a Dynamical System

In what follows we will use the robot Puppy to illustrate how cognition
might emerge from the simple, basic actions of walking or running. We
have tried to capture this idea of going from locomotion to cognition
with the phrase “bootstrapping cognition from the bottom up,” in order
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Figure 4.1

Morphological computation. (a) Sprawl robot exploiting the material properties of its legs
for rapid locomotion. The elasticity in the linear joint provided by the air pressure system
allows for automatic adaptivity of locomotion over uneven ground, thus reducing the need
for computation. () An animal exploiting the material properties of its legs (the elastic-
ity of its muscle-tendon system) thus also reducing computation. (¢) A robot built from
stiff materials must apply complex control to adjust to uneven ground and will therefore
be very slow.

to distinguish it from the goal of traditional Al, which was to somehow
program “thinking” directly into a computer.

We mentioned that running is considered a hard problem in robotics.
Running by definition includes a certain time when all legs are off the
ground, which is known as the flight phase; the stance phase refers to the
rest of the time, when one or more feet are on the ground. Figure 3.2
shows some of the details of Puppy’s morphology. Continuing our
description from chapter 3, there are two springs attached to each leg,
inspired by the muscle-tendon systems in four-legged animals. Also, there
is a strong elastic metal blade that can bend up and down, providing the
robot with a spine that is flexible, although somewhat different in design
from the segmental spines of animals or the humanoid robot Kenta
(Japanese for “tendon boy”; we will come back to Kenta in chapter 5).
The springs and blade give Puppy a more dynamic and organic feel com-
pared to most other robots, which are tightly engineered and move
rigidly using complex control programs and strong motors: this aspect of
traditional robotics is parodied by a dance called the Robot that was
popular in the 1970s and the 1980s, which required the dancer to hold
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Attractor states. (a) Different gait patterns for Puppy as recorded from pressure sensors
on the feet: the dark lines in the graph indicate when a foot is touching the ground; the
dotted lines indicate when it is not. These gait patterns correspond to attractor states of
the joint physical/neural system. (b) The same gait patterns shown in the “attractor land-
scape.” The gait patterns correspond to minimum energy basins in the attractor landscape.

his body rigid and produce a disconnected series of localized, discrete
movements.

The body, the legs and the feet are built from aluminum, which implies
that on most surfaces the feet will slip a little. This slippage turns out to
be an important factor in stabilizing the robot when it is running: if we
increase the friction by putting rubber pads on the feet, the robot has a
strong tendency to fall over. All Puppy’s controller does is move the legs
back and forth in a periodic manner. When the robot is put on the ground
it will, after a few steps, settle into a natural running rhythm: the robot’s
interaction with the environment causes a particular gait pattern to
emerge (see figure 4.2). For example, all four feet occasionally leave the
ground together for a short period of time, causing the robot to exhibit
alternating flight phases and stance phases.

In the Puppy experiment, the speed at which the robot runs cannot be
varied arbitrarily, even though the speed of the motors can: within certain
ranges, the robot moves erratically or even falls over, but within others,
stable gaits emerge. A few observations about Puppy’s behavior are in
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order here. First, the number of stable gaits for any given system is
limited: a legged robot (or animal, for that matter) has certain preferred
speeds corresponding to those gaits. Second, because the gaits are attrac-
tor states that the robot “falls into” based on its motor speeds, mor-
phology, and environment, the robot will resettle into an attractor after
it has been perturbed slightly. For example when the robot moves from
smooth to rough terrain it may struggle a bit, but when it re-enters an
environment with smooth terrain it will settle back into its original gait.
However if the perturbation is too big, the robot will change behavior
and settle into a new attractor: it may fall over and come to rest, or fall
on its side and kick itself around in a circle (Mimicking the infamous
stage antics of Angus Young, lead guitarist for the rock band AC/DC),
or switch from running to walking. If the perturbation is not too large,
the system will move back into the original attractor state, as we men-
tioned before. This region of states is called a basin of attraction. The
important point here is that this falling back into a natural gait—or
falling into a new one, for that matter—does not have to be controlled
by a program running on the robot’s microprocessor but arises naturally
as a result of the usual suspects: the robot’s morphology and environ-
ment. And third, related to this point, some gaits are more stable than
others, i.e., they have a larger basin of attraction.

One of the big differences between a legged and a wheeled robot is
that wheeled robots can typically move at any speed, and they can speed
up and slow down continuously. In other words, there are no preferred
patterns of motion or speeds that are clearly distinct from others, except
perhaps for stopping. Legged robots and animals, by contrast, do have
preferred speeds, corresponding to the different types of gaits: walking
very quickly or jogging very slowly often feels uncomfortable for us, and
we tend to want to slow down or speed up. Wheeled robots, like legged
robots, can also have attractor statcs, but because of their simpler dynam-
ics, the attractor states are less interesting and their number is much
smaller. For example, a light-seeking Braitenberg-style vehicle moves
toward a light source by performing a kind of “wiggling” behavior: the
robot always turns in the direction of its most stimulated light sensor,
which then causes the opposing sensor to face the light and become more
stimulated, causing the robot to turn back, and so forth. This behavior
might be called an attractor state of the robot. In any case, it will not
have many of them. The point here is that all physical systems, because
they are physical, will have attractor states, but those with complex mor-
phologies have more (Kauffman, 1993). Therefore, although so far we
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have restricted ourselves to simple robots, in the future we want to work
with more complex ones that have a large number of attractor states. It
is important to have many, because attractor states may ultimately
become the building blocks for cognition, as we will see in detail later
on. For now, it is sufficient to think of the connection between attractor
states and cognition by adapting an ancient metaphor: the wider you
build the base (the more attractor states there are), the higher you can
build your tower (the richer are the possibilities for combining attractor
states). In the next chapter we will explore how attractor states can be
used to form the basis of a kind of symbol-processing system.

To summarize the discussion so far, complete agents must comply with
the laws of physics; they generate sensory stimulation when they act; they
perform morphological computation—bodies can perform functions that
would otherwise have to be performed by brains—and finally, complete
agents are dynamical systems and their behaviors can be viewed as
attractors. Also, because unlike formal systems, the real world is messy,
so to speak, we cannot expect a clean, axiomatic theory or a set of prin-
ciples that logically follow from one another. So the set of design
principles that we will present is not a formal system, but a tightly inter-
dependent set of design heuristics that on the one hand provide guid-
ance on how to go about building agents, and on the other characterize
the nature of intelligent systems. There is partial overlap and a certain
level of redundancy among the principles, but this is not undesirable: they
support one another because of this overlap. Morecover, all the design
principles apply to all agents, to a greater or lesser degree. Finally, the
individual principles should always be viewed in the context of the other
principles: they form an interdependent set and should not be consid-
ered in isolation.

Let us now go through the agent design principles one by one.

4.3 Agent Design Principle 1: The Three-Constituents Principle

Designing an intelligent agent involves the following constituents: (1) de-
finition of the ecological niche, (2) definition of the desired behaviors and
tasks, and (3) design of the agent.

Intelligence, as we have said, is not a property of an agent, nor is it a
“thing” that resides in a box inside an agent’s brain, but rather it arises
from the interactions of an agent with its physical and social environ-
ment. Thus, when designing an agent it is not sufficient to focus on the
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agent itself, but we also have to think about the ecological niche in which
it is to function, as well as what the agent is supposed to do.

The three-constituents principle can be summarized as follows.
Designing an intelligent agent involves the following constituents: (1)
definition of the ecological niche, (2) definition of the desired behaviors
and tasks, and (3) design of the agent itself. The first two constituents arc
often collectively referred to as the task environment. The ecological
niche, in the case of robots, is always a physical and social environment:
for entertainment robots the niche encompasses children’s homes,
including other people, the siblings, the parents, friends, and pets. In this
chapter we focus on the physical aspects of the task environment, and in
the next we consider the social aspect.

Design Stances

If we design a robot to entertain children, it will have to function in
people’s homes and should behave so that it achieves the desired goal:
keeping kids amused over extended periods of time. Finding the kinds
of properties and behaviors that the robot should have in order to
achieve this goal has turned out to be a formidable challenge. Cute
robots like Sony’s AIBO (the Artificial Intelligence roBOt, which in
Japanesc also means something like “buddy”), Omron’s NeCoRo (a cat
robot covered with fur), or NEC’s PaPeRo (Partner-type Personal
Robot) that, to some extent, can respond to sentences uttered by a
human partner arc popular examples of this particular species of robot.
More straightforward examples are robots for mowing lawns or assem-
bling motorbikes on an assembly line in a factory: in these cases the eco-
logical niche and the desired behaviors can be more clearly defined.

In the design of such robots, the ecological niche—people’s homes,
backyards, factory environments—and the desired behaviors and tasks
are taken as given, and the agent is designed such that in its interaction
with the environment, the desired behaviors emerge and the robot
achieves its tasks. But there are two additional versions of the design
task. The second alternative is to take a given robot, put it into an eco-
logical niche, and observe what sorts of behaviors appear. And the third,
given the robot and the desired behaviors, is to look for the niches in
which it will in fact function properly. We will give examples of some
“design stances” in this chapter and in chapter 9 when discussing busi-
ness applications of the design principles.

Recall from our discussion about frame of reference and about
Puppy’s gaits that behavior always emerges from the agent-environment
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interaction and cannot be directly programmed into the robot. Therefore
robot behaviors can only be indirectly designed: to use the term intro-
duced in the last chapter, we have to design for emergence. If we want
to make a robot walk, we have to account for adaptivity: it has to be able
to deal with uneven ground, slopes, walking over loose material, walking
while carrying something, and so on. It becomes impossible to prepro-
gram all the different varieties of walking needed for the near-infinite
variety of agent-environment interactions that the robot will encounter
in the real world. More simply, if the walking movements are entirely
preprogrammed, the robot will fall over whenever something unantici-
pated—something not programmed into the robot—arises. Indeed, many
walking robots do fall over when they encounter uneven ground.

The relationship between an agent and its ecological niche is complex;
s0, let us briefly discuss some of the implications. First, the ecological
niche of a robot is not simply the environments in which it can operate
successfully: as in biology, there is always competition for resources.
Entertainment robots have to compete not only with other entertain-
ment robots, but also with toys, pets, and humans. Ultimately, the market
will decide which (if any) entertainment robots get to share this niche
with the occupants (toys, pets, and humans). If on the other hand we are
interested in explaining the behavior of natural systems we can start from
a particular set of behaviors that we observe, try to identify the ecolog-
ical niche, and then ask how the behaviors come about. The orientation
behavior of desert ants that we alrcady discussed is a casc in point. Their
highly specialized sensors enable them to navigate over large areas in
relatively featureless terrain. Recognizing the characteristics of their
unique ecological niche—the desert—has helped biologists to better
investigate and understand their behavior.

We can also turn the design problem around. If we already have an
agent designed for a particular ecological niche, such as the AIBO robot
designed for entertainment, we can drop it into a different ecological
niche and ask what kinds of behavior will emerge. A company with a
robot already on the market might look for additional ecological niches
in which the robot will display its desirable behaviors and achieve its
tasks, and thus widen its consumer base. For example, in addition to
homes, AIBO might in fact also be useful in schools, thereby serving as
an educational tool.

There is yet another way in which we can look at the design problem.
Often engineers—the clever ones—design the agent and its ecological
niche at the same time because in this way much better solutions can be
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achieved. The global positioning system or GPS is a great example of this
idea. Putting satellites into the sky largely solves the navigation problem
on Earth once and for all, at least outdoors; robots that need to orient
can be made much simpler because they don’t require sophisticated
navigation strategies, but only a sensory system for tuning into the GPS
signals!

Scaffolding

Scaffolding describes the way in which we, and other agents, structure
our environments to simplify our tasks. In the GPS example, having
many satellites in orbit makes the lives of robots—and of many car
drivers—much casier. Another example is the use of road signs: if signage
is done properly, the driver needs absolutely no geographical knowledge
and can easily arrive at the target location by simply following the signs.
Thus with adequate scaffolding, the mechanisms required for successful
navigation will be very cheap, so to speak: there is no need to plan the
route or consult a map. This exemplifies the principle of cheap design,
which we will shortly discuss. Information and communication tcchnol-
ogy provides powerful scaffolding, leveraging our intellectual abilities far
beyond those of our ancestors two thousand years ago, even though our
brains have not grown in the meantime. Bioinformatics, which is the
combination of new scientific instruments, database and networking
technology, and pattern detection and modeling algorithms, has provided
the “scaffold” which enabled the research community to sequence the
human genome.

Aside from technology, language is another extremely potent means
of scaffolding: because our knowledge can be written up in books, and
thus communicated, we are now able to perform tasks that before the
existence of written language would simply not have been possible. Now
we can build on top of what has alrcady been established and written
down: the ideas in one text rely (directly or indirectly) on those in other
texts, and so on. The World Wide Web, stuffed as it is with text, images,
sound and video, has simply made this web of ideas more explicit and
much more easily accessible. Natural language and information technol-
ogy are among the most powerful scaffolding tools around, a point that
is claborated in the engaging book by the British philosopher Andy
Clark, Natural-Born Cyborgs.

Recall how embodied agents always affect their environment when
they act: as the “Swiss robots” make their clusters, they also make free
space to move around in. But manipulating the environment to serve
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one’s purposes can be found everywhere: we take notes, we write docu-
ments and books, we type things into computers, we use sticky-note pads,
we store phone numbers in our mobile phones, we put information on
bulletin boards, we take pictures and videos, and we put up Web pages.
Given the obvious usefulness of changing the environment to simplify
our lives—that is, of scaffolding our environment—it is truly surprising
that most robots do not significantly change their environments to make
their tasks easier! Thus, scaffolding is an important part of the three-
constituents principle, because it requires consideration of the agent’s
niche, what tasks it is to perform, and how it should be designed.

4.4 Agent Design Principle 2: The Complete-Agent Principle

The complete agent principle states that when designing agents we must
think about the complete agent behaving in the real world.

This principle contrasts with the paradigm of “divide and conquer”
that pervades virtually all scientific disciplines: decompose a problem or
system into simple subsystems which can then be developed separately.
Once the subsystems have been designed, they can then be put together
again. But it often turns out that in practice, subsystems create unneces-
sary problems, known as artifacts, which would not exist if the system
were taken into account in its entirety. A good example of this comes
from the ficld of computer vision, where it sccmed obvious at the outsct
that vision could be understood as a separate process from the rest of
the agent’s behaviors. Computer vision thus focused almost exclusively
on the analysis of static photographic pictures, such as desks cluttered
with objects. Highly sophisticated and computationally intensive algo-
rithms were developed to “understand” the images by identifying and
categorizing the object in the image. However, vision turns out to be
much easier when the agent interacts with the environment. In other
words, we should treat vision as an interactive process, not just a set of
operations performed on a set of static images. If you move your head
back and forth, objects that move more quickly over your visual field are
closer to you than objects that move less; if one object blocks your view
of another object, you can simply walk to another location and look
again. Simple. Having a body and being able to act in the world simpli-
fies vision—and many other things as well, as we will see. This insight
helps us when building agents, but it is also useful in trying to understand
existing agents, like ourselves.
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Here is another example drawn from the related research area of per-
ception, in which researchers in the cognitive sciences, psychology, and
neuroscience try to figure out how individuals can interpret sensory stim-
ulation in the real world. It has been demonstrated in many experiments
that the function of a particular part of the brain can be very different
depending on whether the agent—typically an animal—is studied as it
behaves in the real world, or the particular subsystem, in this case the
vision system, is studied in isolation. In what would eventually lead to a
Nobel Prize in 1981, the neuroscientists David Hubel and Torsten Wiesel
conducted a famous experiment in the late 1950s in which they inserted
a microelectrode into individual cells in the visual cortex of an anes-
thetized cat. They then presented the immobilized animal with different
kinds of visual stimuli while recording the signals from these cells. One
of their fascinating results was that some cells did not respond to light
intensity but rather to orientation of edges. In other words, some of these
cells would respond only if the left of the visual scene was light and the
right was dark (or vice versa), while others would respond only if the top
was light and the bottom dark, and so on. It seemed natural to conclude
from this that some neurons in the cat’s visual cortex act as edge detec-
tors. Later, when experiments with moving cats became technologically
possible, it was found that these cells were in fact involved in many other
activities as well (Haenny et al., 1988). Although it is correct to say that
there is a correlation of the activity of these so-called edge-detection cells
and the presentation of the visual stimuli containing the edges, it cannot
be said that they are edge-detection modules, because they are involved
in other behaviors as well. We are not criticizing Hubel and Wiesel’s
groundbreaking experiments but merely pointing out that these neurons
cannot be considered basic modules from which the complete system could
be assembled. The results still hold: they only need to be reinterpreted.

Often, it turns out that viewing only part of an agent when explaining
its behavior causes us to attribute more “brainpower” to it than may actu-
ally be there. In other words, by considering the entire agent we can often
find other, simpler mechanisms for achieving the behavior. So the com-
plete agent principle is related to the principle of cheap design that we
will discuss next: given the right body for the job, and keeping the agent’s
behavior and environment in mind, agents can get away with less com-
putational hardware. Remember the navigation behavior of the desert
ant Cataglyphis? It has been shown in many experiments that the ant can
use landmarks to find the precise location of the nest when it returns from
a foraging trip. In these experiments, the landmarks are typically large
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black cylinders that are placed around the nest. In order for the land-
marks to be useful, the ant has to recognize them first, then make a deci-
sion in which direction to move; at least that is what we would think
should happen. Recognizing landmarks is a difficult task that would
require a perceptual system potentially entailing a lot of computation, as
we explained in the computer vision example. However, as described in
chapter 2, the ants take a kind of “snapshot” of the surroundings as they
leave the nest. When they come back near the nest, they simply compare
the stored snapshot with what they currently see—the current sensory
stimulation—and they move in the direction that will further reduce the
difference between the two. When the two fully match, the ant is precisely
at the location of the nest. At this point, we can say that the ant has rec-
ognized the landmarks, but the “recognition” is fully integrated into the
behavior of the ant, and we cannot separate “finding the nest” from “rec-
ognizing the landmarks.” This implies on the one hand that there are not
two separate modules for these tasks, and on the other that by looking at
the behavior of the complete agent, rather than at the perceptual subtask
only, we can see that the solution is much “cheaper,” from the perspective
of the agent’s design (for more details see Lambrinos et al., 2000).

Furthermore, when observing complete agents behaving in the real
world, we are less prone to modularize our systems inappropriately: in
the previous example, two incorrect modules that we could have pro-
posed to explain the ants’ behavior are “find the nest” and “recognize
landmarks.” Psychology has as its rescarch topic the most complex
known system in the universe, the human. In order to come to grips with
the awesome complexities involved, researchers in this field carve up the
human psyche in particular ways for the purpose of investigation, for
example into cognition, perception, categorization, memory, attention,
social interaction, learning, development, motivation and emotion, motor
action, problem solving and rcasoning, planning, crcativity, communica-
tion, language, awareness, and consciousness, to mention but a few. Sep-
arate fields within psychology are devoted to the study of many of these
areas. If we look at the complete agent and ask what processes underlie
behaviors such as walking, talking, or recognizing a face in a crowd, we
see immediately that these subdisciplines do not so much correspond to
actual “modules” but are in fact different perspectives on the same (or
at least largely overlapping) set of processes. For example, learning
makes no sense without perception, and memory makes no sense without
learning. Planning can only be performed on the basis of perception and
memory, and so on.
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Moreover, when studying complete agents, we always have to deal
with complete sensory-motor loops. If we follow this principle we will
never be in danger of decoupling certain aspects—such as the planning
of movements—{rom the sensory system, as is usually done in classical
robotics. In 1999, I (Rolf) was a guest in a research laboratory of a large
car manufacturer in Germany, where, for the first time in my life, I was
served coffee by a robot. It was a great experience: the robot went over
to a table, grabbed a cup, moved over to the coffee machine, deposited
the cup, pushed the button, waited for the cup to be filled, moved over
to my chair, and handed me the cup. I was impressed. But in fact it was
not actually as smooth as all that: motion planning had been developed
separately from the rest of the agent, which led to a few problems. For
example, while performing the planned movement, at the time (I am sure
this has changed meanwhile) the robot received no sensory feedback
from the environment. As a result, the robot grasped the cup in a slightly
different way from how it was supposed to, causing the cup to bend and
almost break the tube where the coffee came out of the machine. In a
completec-agent approach, onc is forced to always take the complete
sensory-motor loops into account: if the robot had been able to sense the
way it grasped the cup or the strain the cup was placing on the coffee
dispenser, this particular problem would have been avoided. This also
illustrates the principle of sensory-motor coordination, described below.

In summary, the complete agent principle has important implications
both for how we study agents, as in psychology and ncuroscicnce, and
for how we design and build them, as in robotics. This principle also
emphasizes that in a complete agent, everything is tightly interconnected.

4.5 Agent Design Principle 3: Cheap Design

The principle of cheap design states that if agents are built to exploit the
properties of the ecological niche and the characteristics of the interaction
with the environment, their design and construction will be much easier,
or “cheaper.”

Recall for a moment our discussion of what we intuitively mean by
intelligence. We suggested that the concept is related to compliance and
diversity. Agents that comply with and exploit their ecological niche in
order to generate diverse behavior are intuitively considered more intel-
ligent. We have to comply with the givens: there is no way in which we
can ignore the fact that there is gravity on Earth; or rather, to ignore it
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will generally not be very beneficial to the organism. If I step off a roof-
terrace, I will fall, whether I like it or not. But this is not always a nega-
tive thing: the laws of physics can also be exploited in smart ways. It is
worth distinguishing here between two closely related aspects of exploit-
ing the ecological niche: the properties of the niche, which includes the
laws of physics, gravity, friction, clectromagnetic forces; and the proper-
ties of the interaction with the environment, such as the sensory stimu-
lation generated as an agent moves. The principle of cheap design simply
states that if agents are built to exploit these kinds of properties, their
design and construction will be much easier. So cheap design is about
exploitation of the properties of a niche, and the term cheap should not
be taken too literally. However, it is indeed often the casc that if the prin-
ciple is applied properly, the resulting agents will be cheap in the literal
sense of the word: if they are simple, they will be inexpensive to design,
manufacture, and maintain. The related design principle of ecological
balance (described below) helps us to figure out sow this exploitation
should be done; cheap design simply illustrates that the more and better
the exploitation, the simpler agent it will be.

We are now going to illustrate these points with a few examples: the
Swiss robots that we have already introduced; the “passive dynamic
walker,” a “brainless” and nonmotorized robot capable of walking down
a slope without control, and its successor, “Denise,” which has a little bit
of brain mass and some actuation; and finally we will look at how insects
can coordinate their legs when they are walking even though there is no
center in their brain that actually manages the synchronization of the
movements. We introduce these examples in the context of the cheap
design principle, but it should be kept in mind that all of the design prin-
ciples apply to all agents to a greater or lesser extent.

The Swiss Robots

Recall the case study of the Swiss robots that we introduced in the pre-
vious chapter where the task was to design robots that together tidy up
an arcna cluttered with Styrofoam cubes. (This is admittedly not the most
glamorous of tasks, but it is definitely related to one of the reasons we
want robots in the first place!) Intuitively we would think that the fol-
lowing steps have to be taken. First, the robot has to find a cube. Once
it has found one it has to look for the nearest heap or cluster. Then it
has to move and deposit the cube there, and the procedure is repeated
until all the cubes are clustered. These steps all require sophisticated
visual processing and planning, and would thus be computationally
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expensive, so to speak. Remember that just because visual perception is
natural and effortless for us humans by no means implies that it is a
simple process.

The Swiss robots take an alternative approach: they master the job by
exploiting their own morphology and the properties of the ecological
niche. Remember that in fact they achieve the task by being programmed
only with simple reflexes for obstacle avoidance. In order for the clus-
tering to come about, the following aspects of the ecological niche had
to be exploited: the size of the cubes (if they are too big or too small it
does not work), their weight (if cubes were too heavy for pushing, it
would no longer work), the fact that the environment is enclosed by sur-
rounding walls (otherwise, the robots would drive away, rather than
cleaning up), the fact that the ground is flat and provides, together with
the tires of the wheels, the right kind of friction (if you put soap on the
ground, it will no longer work). If any of these constraints do not hold,
the Swiss robots will miserably fail to achieve their task. But if they are
fulfilled, this solution works very well, and it is cheap: the Swiss robots
exploit the properties of their niche, the laws of physics, and their own
morphology in clever ways, so that computationally expensive vision is
not required. The Swiss robots do not need to know what they are doing;
they merely react to sensory stimulation.

The Passive Dynamic Walker and “Denise”

The passive dynamic walker, illustrated in figure 4.3b, is a type of robot
(or, more accurately, a mechanical device, since it has no sensors or
motors and no control program) that was first proposed by McGeer
(1990). It is capable of walking down a ramp without any sensing, actu-
ation, or control: in other words, it is literally brainless, if you like. In this
sense, it is not really an agent. Nonetheless, in order for this task to be
achieved, the dynamics of the robot—how gravity, friction, and the forces
generated by the swinging of the legs and arms act on it—must be
exploited. The result of this exploitation is that the walking behavior is
very energy efficient and looks surprisingly natural.

However, its ecological niche, i.e., the environment in which the robot
is capable of operating, is extremely narrow: it consists only of slopes of
certain angles. Just as in the casc of the Swiss robots, if you change any-
thing whatsoever in the ecological niche, such as the angle of inclination
or the surface properties (e.g., by putting a soft rug on it), the device will
no longer work. The fact that an agent will cease to function if some
aspect of its niche (specifically some aspect that the agent exploits) is
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Figure 4.3

Passive dynamic walkers. (a) The patron saints of the city of Zurich in Switzerland: Felix,
Regula, and Exuperantius. They were beheaded in the third century because of their reli-
gious beliefs. The legend says that they carried their heads under their arms to a spot where
later the Grossmiinster church, the symbol of Zurich, was built. Legend? No, passive
dynamic walkers! (b) The “classical” passive dynamic walker by Steve Collins that walks
down a declined ramp with no actuation (left), together with the 3D biped robot “Denise”
by Martijn Wisse (right). Denise is a hybrid passive dynamic walker: its ankle and knee
joints swing passively, while a motor drives the hips to induce walking over flat ground.
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changed is an unavoidable trade-off of the principle of cheap design.
Energy efficiency is achieved because the leg movements are entirely
passive, driven only by gravity in a pendulum-like manner. To make this
work, a lot of attention was devoted to morphology and materials. For
example, the robot is equipped with wide feet of a particular shape,
clastic heels, and counterswinging arms that all help it to walk in this way
(Collins et al., 2001).

Loosely speaking, we can also say that the neural processing normally
required for controlling walking is taken over by the proper morphol-
ogy and the right materials, and thus is another instance of morpholog-
ical computation. In fact, the neural control for this robot reduces to zero.
But, if anything is changed, c.g., the angle of the incline, the agent ceases
to function—the price of cheap design.

Because the fully passive dynamic walker exploits many properties of its
ecological niche, it is entirely dependent on that niche. But the ecological
niche can be widened if we augment the agent’s capabilities: by adding
motors, adding some control, and modifying the morphology of a passive
dynamic walker we enable the robot to walk over flat terrain. This has been
achieved by the team led by Martijn Wisse, a highly creative young engi-
neer at the Technical University of Delft,in Holland, who was also involved
in the development of the passive dynamic walker at Cornell University.
He recently created “Denise” (figure 4.3b), an almost completely passive
dynamic walker, by augmenting the earlier model with some actuation,
adding two clectrical motors to move the legs. Its walking behavior (or
should we say “her” walking behavior?) is actually quite natural, presum-
ably because it exploits the passive forward swing of the leg.

One might be inclined to say that cheap design only works for very
simple systems, and admittedly the examples we have given so far are all
indeed very simple. But look at humans for a moment. When we walk, the
forward swing of our legs is—like “Denisc’s”—mostly passive, i.c., the
muscles are passive and the leg swings forward like a pendulum, thereby
exploiting gravity. Our legs are complex indeed, with their bones, joints,
tendons, ligaments, muscles, nerve cells, and skin, but complexity does not
preclude exploitation. In this sense we can say that we ourselves as humans,
even though we are incredibly complex, are “cheaply” designed. It will cer-
tainly be interesting to scc whether Wisse’s approach to robot walking will
scale up to even more complex systems, in particular complex humanoid
robots, or whether alternative approaches will have to be employed.

Even though the passive dynamic walker is an artificial system (and a
very simple one at that), it has a very natural feel. The term “natural”



112 Il. Toward a Theory of Intelligence

applies not only to biological systems but to artificial ones as well:
perhaps the natural feel comes from the exploitation of the dynamics,
c.g., the passive swing of the leg (for an claboration on this point sce
Pfeifer and Glatzeder, 2004).

Leg Coordination in Insect Walking
The first two examples were drawn from robotics, so let us now look at
one from biology: leg coordination in insect walking. It has been known
for a long time that leg movements in insects are controlled by largely
independent controllers (von Holst, 1943), in other words, there seems
to be no center in the brain that coordinates the legs in walking. But if
there is no such coordination center, how then can insects walk in the
first place, and how does leg coordination come about? And the legs do
need to be coordinated, otherwise walking is not possible. A couple of
years ago the radical thinker and trendsetting German biologist Holk
Cruse, who has been studying insect walking for many years, cracked the
conundrum. It turns out that the trick these insects use is to exploit their
interaction with the environment (Cruse, 1990). Assume that the inscct
stands on the ground and then, in order to move forward, pushes back-
ward with one of its legs. As a result, the joint angles of all the legs stand-
ing on the ground will instantaneously be changed. The body is pushed
forward, and consequently the other legs are also pulled forward and the
joints will be bent or stretched. This is one of those unavoidable reper-
cussions of being an embodied agent, and the insect can do nothing about
it. However, and this is Cruse’s fascinating finding, this fact can be
exploited to the animal’s advantage. All that is needed is angle sensors
in the joints—and they do exist—for measuring the change, and there is
global communication between the legs! But the communication is through
the interaction with the environment, not through neural connections.

So, the local ncural leg controllers need only cxploit this global com-
munication. There is an additional benefit of all this. Because the insect
is moving forward, the angles of the other legs are all moving in the right
direction—information that, in addition to being free, i.c., available
without computation—is extremely useful and can be directly exploited
for controlling the individual legs. This is not trivial, but Cruse and his
colleagues have worked out a neural network architecture that does the
job (Diirr et al., 2003). And this architecture, the WalkNet, can also be
used to control six-legged robots.

This is another beautiful instance of cheap design: if the insect had to
do everything through computation, it would be more costly and much
slower. This is also an instance of morphological computation: part of the
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task that would have to be done by the brain—the communication
between the legs and the calculation of the angles on all the joints—is
performed by the interaction with the real world.

The principle of cheap design is very general because it only states that
the ecological niche can be exploited to simplify the agent, but does not
tell us how the exploitation should be accomplished or what dynamics
should be exploited. Other design principles such as ecological balance,
redundancy, and sensory-motor coordination are more specific and more
about the how. But cheap design can be applied to more specific issues,
such as the design of the visual system—a field that is becoming known
as “cheap vision.” The literature on vision is full of examples of how an
ecological niche and specific interactions with the environment can be
exploited. An instructive and entertaining example, the “Eyebot” robot,
is discussed later in this chapter.

To conclude the discussion of cheap design let us briefly mention some
examples that do not conform to this principle, in order to clarify it a bit.
A laptop computer, as explained before, does not exploit the environ-
ment in interesting ways, and neither does a humanoid robot in which
the movements required for walking are largely “programmed into” the
robot. Famous humanoids like Asimo, Qrio, or HRP (from the Japanese
Humanoid Robotics Program) are largely preprogrammed, and there is
no substantial exploitation of their system-environment interaction (yet).

4.6 Agent Design Principle 4: Redundancy

The redundancy principle states that intelligent agents must be designed
in such a way that (a) their different subsystems [unction on the basis of
different physical processes, and (b) there is partial overlap of functional-
ity between the different subsystems.

The redundancy principle is geared toward designing robust systems,
i.e., systems that continue to function even if there are significant changes
in the environment. The term redundancy has a long history and is used in
many different ways, and so, once again,rather than trying to come up with
a definition we introduce the term intuitively using a number of examples.

Visual and Haptic Systems in Humans

The term modality is often used in the literature to designate different
sensory channels: we talk about the visual, the haptic, or the auditory
modality. The visual system, or visual modality, provides us with precise
spatial information that enables us to move around very quickly because
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we can see where to go and where obstacles and desired objects are.
Because this visual information is so extremely valuable, many species
have evolved, one way or another, visual systems. But what if it suddenly
gets dark? Vision, alas, only works in the presence of light. But all is not
lost: we can resort to other sensory modalities; we can still hear and feel.
Although we can extract some spatial information from our auditory
system—we can roughly hear where a sound is coming from—it is much
less precise than what we get from the visual system. But from our sense
of touch—also called the haptic system—we can get very precise spatial
information: we can feel with our hands and fingers, and it is relatively
easy to identify an object. Moreover, we often consider touch to be more
reliable than what we observe with our eyes: sometimes we have to touch
things because we do not fully trust what we see. One of the authors of
this book (Josh) learned this lesson the hard way: when a guest at a party,
it is best to reach out with your hand when crossing from the house into
the backyard so as not to blunder headfirst through a hard-to-see screen
door and thereby turn yourself into the focus of the party.

While touch is good at short distances, it is not very cfficient in the
long range. For walking around, it can be used as long as we go slowly,
because unlike the visual system it requires physical contact. All this is
common sense, of course, but the essential point is that even if we have
to slow down, we can still function because we can rely on a different set
of sensors appropriate to the new situation. The reason this works is that
the two systems are based on different physical processes: the visual one
on stimulation by electromagnetic waves, and the haptic one on mechan-
ical pressure. Nevertheless, the two modalities yield partially overlapping
information: the information extracted from one can be used to—at least
partially—predict the information that can be extracted from the other.
If you see a glass of beer on the table with condensation on the outside
you already know more or less what it will feel like when you touch it.
The information contained in both sensory channels is technically
referred to as mutual information and plays an important role in build-
ing concepts: the concept of a glass of beer e.g., includes not only infor-
mation extracted from the visual system but information from the haptic
and the taste systems as well.

The Meaning of Redundancy

Because the information extracted from one sensory system includes
some information that can also be extracted from another, this phe-
nomenon is called redundancy. The term redundancy is actually a tricky
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one because it depends very much on the point of view we are adopting
and it has many different interpretations. Sometimes redundancy is taken
to mean duplication of components, or the part of a message that can be
deleted without essential loss of information.

Natural language is a good example of this latter interpretation of the
word. We can understand others even if there is a lot of noisc in the envi-
ronment and we physically hear only part of the message, or when the
sentences are grammatically wrong and some words are missing. If we
ask someone how they are and they reply with either “I’m feeling better,
thanks,” or simply a mumbled “better,” the same message is conveyed.
Granted, we often repeat what we say if we think the listener did not
understand us, but more often than not we tend to say the same thing in
different ways—or support our ideas with a bunch of examples—in order
to make sure we get our message across. In fact this entire book is filled
with different versions of the same message: intelligence requires a body.

In general, biological systems are extremely redundant because redun-
dancy makes them more adaptive: if one part or process fails, another,
similar part or process can take over. Brains also contain a lot of redun-
dancy; they continue to function even if parts are destroyed—which
should come as comfort to many of us since we know that alcohol has a
tendency to destroy brain tissue. So, it sounds like redundancy is a good
thing. Note, however, that redundancy also has its price. Additional parts
have to be genetically represented (one way or other), they consume
energy, they have weight, they take up space on the organism, etc. In
short, adaptivity has to be paid for: there is no free lunch.

In engineering, redundancy often means duplication of components.
In an airplane, instead of having one navigation system, there are two.
But duplication on its own is not very interesting. If you have, say, two
eyes instead of one, or even if you have a thousand, this is not very
helpful if it gets dark. However, if you then have a touch system and an
acoustic system, which are independent of whether there is light or not,
you can still function. Interesting redundancy is also found in aircraft
engineering. The braking system consists of two or three parts: the
wheels, the jets, and sometimes, in high-speed aircraft, the parachutes. If
there is ice on the runway, wheels are not very efficient, but then the jets
can be used becausc their functioning docs not depend on the condition
of the runway. If the electrical system of the airplane ceases to function,
the parachutes, which are purely mechanical, will still work. Wheels
are used not only for braking but for maneuvering on the ground in
general, jets are also—in fact, mostly—used for propulsion, whereas the
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parachutes are used only in emergency situations for braking; they
usually do not cost much in terms of weight and manufacturing expense,
but might come in handy.

What we can learn from these examples is that we should design
agents that must function reliably under many different conditions with
redundancy in such a way that there is partial overlap of functionality. If
the overlap were complete, the two systems would be doing the same
thing, which is not very economical and—normally—not terribly inter-
esting in terms of adaptivity.> Another way of viewing partial overlap of
functionality is that the same task can be achieved in different ways:
braking can be done by using the wheels or the jets; recognizing an object
can be achieved by looking at it or by touching it.

Robot Whisker Systems: The Artificial Mouse

Let us now look at an example from robotics: the “Artificial Mouse”
developed at the Artificial Intelligence Laboratory at the University of
Zurich by the engineer Hiroshi Yokoi, the neuroscientist Miriam Fend,
and the theoretical physicist Simon Bovet (Fend ct al., 2002). Rats and
mice have sophisticated whisker systems that they can employ to acquire
all kinds of information about the world. They can be used to detect
the distance to an object (if the object is within rcach of the whiskers),
surface texture, and vibrations. Often water in the jungle is too muddy
to see through: cats can solve the problem of hunting fish by dipping
their whiskers into the water so that, through the vibrations produced
by the movement of the fish, they can with uncanny precision locate and
catch them. Rats and mice perform active whisking, i.e., they not only
passively sense the environment with their whiskers as they move past
objects, they also have muscles that enable them to move their whiskers
back and forth. This ability has been built into the Artificial Mouse as
well.

If a whisker from a real rat is attached to a microphone which in turn
is connected to an amplifier, and the whisker is moved over different sur-
faces such as plastic, glass, wood, fabric, or sandpaper, one can, by merely
listening to the sound produced, easily discriminate the different tex-
tures. The goal of the Artificial Mouse project is to study the use of the
whisker system, in particular how the information from two morpholog-
ically very different sensor modalities, such as the visual and the whisker
system, can be exploited by an animal or a robot to solve a problem, such
as finding its way through a maze in which the walls have different tex-
tures. If there is a partial overlap in the kind of information that can be
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extracted by two sensor systems, it may be possible that over time, infor-
mation that at first has to be extracted from the whisker system can—at
least partially—be acquired through vision, which would presumably
enable the rat or mouse to move around faster than if it had to test every-
thing with its whiskers first. At least in the Artificial Mouse, this is defi-
nitely the case. This idca, known as cross-modal lcarning, will be further
explored in the context of the principle of sensory-motor coordination
and development in the next chapter.

At first sight, the redundancy principle might seem to contradict the
principle of cheap design because the former calls for additional sub-
systems, whereas the latter calls for more simplicity. However, the two
principles arc complementary: cven a highly redundant system like a
human being can exploit, for example, passive dynamics. The systems can
also work together. For example, discriminating textures by vision alone
might require a lot of computation, whereas combining vision with a
touch sensor—whisker or skin—might make the task much simpler. This
is closely related to the fact that through a particular type of interac-
tion—scnsory-motor coordination—one scnsory modality can help
structure the stimulation in others, an idea which is covered by the prin-
ciple of sensory-motor coordination.

4.7 Agent Design Principle 5: Sensory-Motor Coordination

The principle of sensory-motor coordination states that through sensory-
motor coordination structured sensory stimulation is induced.

As we explained at the start of this chapter, one of the important prop-
erties of embodied agents is that as they move through their environ-
ment, they automatically generate sensory stimulation: they cannot help
it. When discussing the principle of cheap design we cxplained how this
sensory stimulation can be exploited for a particular purpose, as in
animals that exploit the signals from their angle sensors to coordinate
leg movements for locomotion. Another way of saying this would be that
the animal lifts its leg not only for walking, but in order to generate
sensory stimulation. And this is precisely the idea of sensory-motor coor-
dination: embodied agents can generate useful sensory stimulation by
interacting with the environment in particular ways.

The fact of the matter is that perception is really hard. Remember that
the real world is no clean eight-by-cight chessboard: it is a hectic, noisy
place. Imagine an agent such as yourself walking through Bahnhofstrasse,
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the posh shopping street in the center of the Swiss city of Zurich. The
sensory stimulation happening at the retinas of your eyes is continuously
and rapidly changing, on the one hand because other people, the trams,
and the cars move, but on the other because you yourself move. What
also happens when you move is that the distance between you and the
other objects in the environment changes, but also your relative orien-
tation to them varies: sometimes we see people from the front, then from
the side, then partly from behind; or they are partly hidden by other
people or objects. Moreover, the lighting conditions change, we walk into
a department store, we put on or take off sunglasses, it begins to rain or
it gets dark in the evening. Surprisingly, in spite of all this variation, we
have no problem recognizing—in no time flat—a friend, a shop, or a bar
of Toblerone lying on a pile behind a bunch of people.

So, the variation in the sensory stimulation is, in a way, the bad news:
how can we ever build robots that can handle all this change? The good
news is that through the interaction with the real world, this sensory
stimulation can be simplified so that it is easier to make sense of it. This
holds in particular for sensory-motor-coordinated interactions: shaking
your head around randomly—not sensory-motor coordinated—gener-
ates a lot of stimulation on your retinas and in your inner ear (which
senses your body’s orientation relative to gravity), but that stimulation
is probably not very useful. We will soon say more about what we mean
by sensory-motor-coordinated interactions, but for now it is enough to
think of them as interactions where the sensory stimulation influences
the action and the action in turn influences the sensory stimulation. A
very simple example of sensory-motor coordination is looking at an
object. Foveation is the technical term for this, i.e., moving the head and
the eyes in such a way that the object appears in the fovea, the high-
resolution center of the retina. This is a process of sensory-motor coor-
dination because the movement induces sensory stimulation and this
sensory stimulation in turn influences the movement—compensating
head and eye motions—so that the object remains at the center of the
visual field.

It is important to point out here that sensory-motor coordination is
always performed with respect to a particular goal or intention. If I walk
past the table on which a coffee cup is standing, without specifically
looking at the cup, then my behavior is not sensory-motor coordinated
with respect to the cup. But it is sensory-motor coordinated with respect
to walking, because in order to walk properly I have to react to the
sensory stimulation that I receive from the touch sensors of my feet, from
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the force sensors in the muscles and tendons, and from the inner ear,
which helps me keep my balance.

Inducing Correlations

Sensory-motor coordination turns out to be especially useful because it
induces correlations within a sensory channel and between sensory chan-
nels. When I look at the coffee cup on my desk by foveating on it—when
I center it in my visual field—the image on my retina is, at least for a
short period of time, stabilized and the resulting sensory signals can thus
be more easily processed by the visual system. When I then grasp the
cup, I also induce sensory stimulation in other sensory channels, such as
the touch scnsors on my fingertips and the proprioceptive sensors in my
arm (the sensors that measure internal stimulation such as force on
muscles or tendons). Through sensory-motor coordination, signals from
the different sensory modalities become correlated: when I grasp and lift
the cup, there is simultaneous stimulation of the touch and propriocep-
tive sensors in my hand and arm, and of the visual system. And because
these signals are correlated they can be more casily processed: instead
of a mass of complex, independent signals, there is a synchronized set of
signals from which useful information can more easily be extracted. But,
most important, these correlations allow learning to take place: associa-
tions between the different modalities can be formed. As simple as they
may sound, we believe that these ideas will in fact help us make inroads
toward clarifying the mystery of perception. The real beauty of sensory-
motor coordination is that it shows not only that, but how embodiment
affects the incoming sensory signals, and thus suggests what processing
needs to be done by the brain: when my touch sensors tell me I have
grasped a cup and I see that it’s full, I must prepare to support its weight
when I lift it, because I “know” that my proprioceptive sensors will soon
fire, indicating that the cup is heavy. Put differently, sensory-motor coor-
dination shows how body and information are connected. And this is one
of the deep implications of embodiment. For a more in-depth exploration
of thesc ideas sce Pfeifer and Scheier (1999); for a psychological per-
spective see O’Regan and Nog (2001).

So far the idea that the agent’s body induces correlations seems very
plausible, but admittedly it is also qualitative and intuitive. For scientific
purposes we have to “prove” this idea to be the case, i.e., we have to
support our intuitions with scientific evidence. In other words, we have
to be able to demonstrate quantitatively, using statistical or information-
theoretic methods, whether that is true. The young and innovative Italian
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computer scientist and engineer Max Lungarella from the University of
Tokyo, the Dutch ethologist Rene te Boekhorst of the University of
Hertfordshire, the American neuroscientist and ‘“neuroboticist” Olaf
Sporns of Indiana University, and I (Rolf) have shown that through
sensory-motor coordination, correlations are induced in the sensory
stimulation and these correlations provide the basis for perception and
learning.

The idea of sensory-motor coordination is in fact very old. We bor-
rowed the term from the American philosopher and psychologist John
Dewey, who introduced it in his famous and provocative article “The
Reflex Arc in Psychology,” published in 1896. (Note that the concept of
sensory-motor coordination also plays an important role in Jean
Piaget’s theory of intelligence development, where it is used to charac-
terize a particular stage; Piaget, 1952). Dewey argued that perception
should not be seen as a process that starts from sensory stimulation,
passes through internal processing, and finally produces an action: this
is the classical behavioral view of input-processing-output. Rather, he
suggested that “we begin not with a sensory stimulus, but with a sen-
sorimotor co-ordination. . . . In a certain sense it is the movement which
is primary, and the sensation which is secondary, the movement of the
body, head, and eye muscles determining the quality of what is experi-
enced” (Dewey, 1896; reprinted in McDermott, 1981, pp. 127-128). In
fact, we would not argue that the movement is primary but that, to use
once again the dynamical systems metaphor, both sensory and motor
processes are coupled—they depend on each other. Trying to identify
which is primary and which is secondary would be like attempting to
solve the chicken-and-egg problem. We speculate that what Dewey did
not know at the time was why sensory-motor coordination is so funda-
mental: we suggest that in addition to mastering the manipulation of
objects, there are significant information-theoretic implications, as we
just discussed.

We already pointed out that categorization is one of the most funda-
mental of cognitive abilities. Perceptual categorization, as well as per-
ception in general, in animals and humans has all the characteristics of
sensory-motor coordination, and once we consider different activities—
looking, grasping, drinking, walking, writing, and listcning—morc carc-
fully, we realize that we are always engaged in sensory-motor coordination.
It is one of the most important processes in the development from infant
to adult, and it constitutes the basis of many forms of learning. We will
come back to both of these points in the next chapter, where we sketch
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out how cognition might emerge from a developmental process in a
bottom-up fashion.

Recognizing Objects by Manipulating the Environment

To conclude our discussion of sensory-motor coordination for the time
being, let us look at an example from robotics. The Italian engineer and
computer scientist Giorgio Metta, while working at MIT’s Artificial
Intelligence Laboratory on the humanoid robot Cog, was interested in
getting the robot to recognize objects in its environment. Cog, developed
in Rodney Brooks’s laboratory during the 1990s, consists of a legless
torso, a head with vision and auditory systems, and two arms with hands.
Often, as we know from our discussion about computer vision, recog-
nizing objects is a hard task, especially if there are many objects heaped
together in a cluttered environment. The objects may be colored simi-
larly to the background, the lighting conditions may not be very good, or
contrast may be poor. One strategy, often used by humans, is to move the
head while looking at an object. Through these sensory-motor-coordinated
movements, scnsory stimulation is induced that can be cxploited to
extract information from the environment. This strategy of moving your
head and eyes—or the robot’s “head” and cameras—to support percep-
tual processes is also applied in so-called active vision systems.

To take things one step further, Metta programmed Cog with a par-
ticular sensory-motor strategy that goes beyond mere head or eye move-
ment: Cog was programmed to actually manipulate the environment by
poking objects in front of it in order to see how they move. This is done
by tracking only the movement of the robot’s arm (which is easy to do
and requires relatively little computation), i.c., all the robot can “sec”
through its own vision system is the motion of its arm and hand. By
having a motion-detection algorithm, the robot continuously sees its
hand and arm moving through space. If as the robot moves there is a
sudden spread of motion activity in its field of vision, this is an indica-
tion that the robot is pushing an object, because the stationary object has
begun to move as well. Spread of motion activity means that the area in
which the robot detects motion suddenly becomes much larger than that
described by the arm alone. This can be very easily detected, and the
robot “knows” immediatcly what portion of the visual ficld constitutes
the object (see figure 4.4, which shows a similar robot, the Babybot, that
Metta had developed for his Ph.D. thesis). Through the interaction with
the environment—by poking an object—the robot has induced sensory
stimulation that distinguishes the moving arm and the moving object
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Figure 4.4

Generation of sensory stimulation through the interaction with the real world: sensory-
motor coordination. Lira Lab’s “Babybot” (University of Genova, Italy), exploring the clut-
tered area in front of it. The panels show the output from the motion-detection system. (a)
The arm is clearly visible because it is moving, whereas the apple and the other objects on
the table are at this point in time not visible by motion detection. (b) Babybot touches the
apple, but the apple is still not moving and thus invisible to the motion-detection system.
(c) Babybot pushes the apple, thus inducing motion so that the apple becomes visible and
can easily be identified as an object. Reaching toward the apple, touching it, and pushing
it are processes of sensory-motor coordination. (Experiments by Giorgio Metta and Paul
Fitzpatrick.)
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from the rest of the environment. This is a beautiful illustration of the
principle of sensory-motor coordination.

When discussing design for emergence we said that if we could demon-
strate that an agent designed by artificial evolution conformed to one of
the design principles, this would provide additional support for the valid-
ity of that principle. As we will see in chapter 6, the “Block Pushers”—
agents produced by artificial evolution—also exploit sensory-motor
coordination in order to move, even though this coordination was not
programmed into the system.

4.8 Agent Design Principle 6: Ecological Balance

The principle of ecological balance has two parts. The first states that given
a certain task environment, there has to be a match between the complex-
ities of the agent’s sensory, motor, and neural systems. The second aspect
is closely related to the first, it states there is a certain balance or task dis-
tribution between morphology, materials, control, and environment.

Let us briefly inspect the first aspect of ecological balance, the idea
that, given a certain task environment, there has to be a match between
the complexity of the agent’s sensory systems, motor systems, and neural
substrate. A nice illustration of this principle is given by Richard
Dawkins in his book Climbing Mount Improbable, where he describes a
hypothetical snail with human-like, and human-sized, eyes. This snail
would have a hard time carrying along these giant eyes, but more impor-
tantly, they would be only moderately useful, if at all: human eyes, and
the eyes of mammals in general, are adapted to our particular mode of
life, which requires the detection of fast-moving objects, high-resolution
images, and so on. A snail has little use for such abilities: why bother
detecting fast-moving predators if you cannot run away from them, or
detecting running prey if you are vegetarian? The complexity, weight,
and size of the human eyes would only constitute unnecessary baggage,
an example of an entirely unbalanced system.

Let us look at another, very different example. Recall the Braitenberg
vehicles we introduced in chapter 2,in which the light sensors are directly
wired to the motors in such a way that they would follow a light. The
“brains” of these robots are extremely simple, consisting of only two
wires, or “synapses” if you like, but they are sufficient for the purpose of
light-following or light-avoiding. If you now replace the two-synapse
brain by a brain of human complexity with 10" synapses, how does the
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agent benefit from such a brain? The answer is simply that there is no
benefit because the system is not ecologically balanced. Depending on
the tasks required of the robot, the complexity of the sensory and motor
systems would have to be augmented as well if the brain were to be
useful. A Khepera robot with only two motors that can turn either
forward or backward is, likc Dawkins’s snail, rather limited in what it can
accomplish: equipping it with a high-resolution camera, for instance, is
ecologically unbalanced, because it does not expand the behavior capa-
bilities of the robot; it only weighs it down.

Because biological agents—animals and humans—have evolved, they
are all ecologically balanced vis-a-vis their ecological niche. Humans, for
example, have enormous brains, but they also possess, taken as a whole,
the most sophisticated sensory and motor systems of any species on
Earth. Some animals admittedly possess amazingly dexterous
appendages, such as an clephant’s trunk or the tentacles of an octopus,
or impressive sensory organs—for example, the bat’s echolocation
scheme for catching flying insects—but consider the flexibility of the
human hand or the astounding intricacy of our vocal tract. A complex
hand allows good tool use; a complex vocal tract allows for language. A
heavy-duty brain indeed is required for coordinating our complex
sensory and motor systems in order to carry out a wide range of tasks.
Again, it is worth pointing out that one system did not evolve ahead of
the others; rather, they increased in complexity roughly together.

The second aspect of the principle of ecological balance is basically a
generalization of the first aspect: given a particular task environment,
there must be a certain balance or task distribution between morphol-
ogy, materials, control, and environment. This second part has been elab-
orated in great detail in many papers (e.g., Bongard and Pfeifer, 2001;
Hara and Pfeifer, 2000; Ishiguro and Kawakatsu, 2003; Pfeifer, 2000;
Pfeifer et al., 2004), so here we only provide a few example systems to
build an intuition of what this balance is all about.

The Human Hand-Arm-Shoulder System

Although the situation is slowly changing, most robots are still built from
hard materials like aluminum and plastics, and for actuation they rely on
clectrical motors. It turns out that the control programs for such systems
tend to be very complicated because every little movement of every
joint, down to the fingertips (if the robot has any) has to be explicitly
controlled (as illustrated in figurc 4.1c). By contrast, in the human hand-
arm-shoulder system the muscles and tendons have a certain degree of
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elasticity. One of the important points of ecological balance is that these
material properties will dramatically reduce the amount of control
required to achieve the same kinds of movement as compared to a com-
pletely stiff system. Imagine that you are sitting at your desk and you
intend to grab the coffee cup sitting on the desk in front of you. There
is a natural position for your arms which is determined by the anatomy
of your torso, shoulders, and arms, and by the elastic, material properties
of the muscle-tendon system. Grasping the cup with your right hand
would normally be done with the palm facing left, but you could also—
with considerable additional effort—grab the cup with your right hand
twisted such that the palm is facing to the right. If you now relax the
muscles from this awkward position, your arm will automatically turn
back to its natural position. This is achieved not by neural control but by
the material properties of the muscle-tendon system. Normally in robot-
ics, returning to a default position is a function of electronic control,
whereas for agents with biological muscles, it is achieved (mostly)
through the material properties of the muscle-tendon system. In other
words, the materials of the muscle-tendon system take over some of the
control tasks that the brain, if the system had been designed without
muscles, would have to deal with explicitly. So, to simplify the problem,
when building our robots we might consider using artificial muscles that
have properties similar to natural ones. Thus it could be said that neural
control or program control is traded against materials.

In our discussion we have focused on the material properties of the
muscle-tendon system. But it is clear that the morphology itself—or, as
we say when talking about humans, the anatomy—also provides impor-
tant constraints which make control much easier. For example, the skele-
tal arrangement of the human hand, together with the tissue holding the
hand together, guarantees that when it closes, the fingers naturally come
together.

Puppy as an Ecologically Balanced Robot

We can use our case study of the robot Puppy to illustrate some of the
important points about ecological balance. Robotics researchers often
come from a background of control theory, and some control theorists
argue that the bottleneck in achieving rapid locomotion in robots is the
electronics for controlling the sensors and motors. In other words, the
circuits are too slow to process the sensor signals and calculate the motor
commands fast enough. This is a puzzling idea, because today’s elec-
tronics have cycle times on the order of microseconds (10°sec) to



126 Il. Toward a Theory of Intelligence

nanoseconds (10”sec), whereas the neural substrate of biological
systems is much slower with “cycle times,” so to specak, somewhere
between 10 (1072sec) and 100 milliseconds (107'sec). Of course, we
cannot really speak of cycle times in biological neural networks because
they are continuous and have no clock like digital electronic circuits, but
clearly the operating time scale of biological neurons is much slower.
Nevertheless, there are biological organisms like dogs, horses, cheetahs,
and humans that move much faster than today’s legged robots. There are
probably two factors involved in this surprising fact. First, biological
organisms benefit from the massive parallelism of their neural systems,
as well as the existence of local reflexes. In other words the signals do
not have to travel all the way from the muscles up to the brain and back
but they can be processed directly by the spinal cord, thus shortening the
response times significantly.

But this alone would not suffice to make biological systems so fast.
What is required in addition is the exploitation of the morphological and
material propertics of their bodies as the agent interacts with the real
world. Let us briefly explain what this phrase means. Recent thinking in
biomechanics (e.g., Blickhan et al., 2003), the field in which locomotion
behavior of animals and humans is studied, draws our attention to the
importance of the springlike properties of the muscle-tendon system. For
example, the way that the knee joint moves when your foot hits the
ground is not controlled by the brain or the spinal cord: rather, it is a
result of the elastic properties of the leg’s muscle-tendon system. What
the neural system does control is the specific elasticity of the system:
necural signals create a particular clastic stiffness of the muscle in the leg
according to the phase of the gait that the animal is currently in. There-
fore the trajectories of the individual joints are not controlled completely
by the brain or spinal cord; some of the control is taken over by the mate-
rial properties of the system itself.

Another instance of exploitation of morphological properties is the
passive swing of the leg during human walking, a phenomenon that is
mirrored in the design of the passive dynamic walker and its offshoot
“Denise,” discussed earlier in this chapter. During the swing phase there
is little control of the leg’s motion: the desired movement is achieved by
passive exploitation of gravity and momentum. Robot designers have
traditionally ignored this fact, and instead have tried to reproduce the
walking movements in humanoid robots using complex control algo-
rithms. As a consequence, the robots, even though some have achieved
considerable speed, do not move naturally and only in certain environ-
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ments, for example only on flat surfaces with particular frictional
properties.

As we explained ecarlier, Puppy’s legs are moved back and forth by
servo motors at the “shoulder” and “hip” joints only; all the other joints
are passive: they are not driven by any motors. The two springs that are
attached to each of the legs (see figure 3.2b) can be seen as very simple
artificial muscles or muscle-tendon combinations, and because of their
intrinsic material properties less electronics are required: the springs
take over the task that would otherwise have to be explicitly controlled.
Springs are, of course, extremely simple, but they do capture some of the
key properties of natural muscle-tendon systems, such as the elastic
movement of the knee joint when the foot hits the ground. One of the
problems with springs, though, is that their spring constant (that is, how
stiff they are) does not change, whereas an important property of natural
muscles is that their spring constants, so to speak, can be changed on the
fly to meet the demands of the current situation. For example, on impact
it is important that the muscles controlling the knee joint have the right
stiffness. The higher an animal jumps, the more stiffness is required to
support the body on landing, but there still must be some elasticity to
soften the impact. But what exactly is the right stiffness for running or
for jumping? Note how our thinking has moved from controlling trajec-
tories of joints to controlling morphological properties; now we are
asking what the right material properties of Puppy’s springs should be.
It is just this focus on morphology that we want to stress in artificial intel-
ligence, because such considerations will benefit our design of robots
and, ultimately, our understanding of intelligence. This also relates back
to the idea of designing for emergence: if we get the material properties
right, the desired trajectories will emerge from the interaction with the
environment. Finding the proper stiffness for each situation, however, is
a hard problem and will requirc a lot of rescarch.

Artificial muscles are an emerging robot technology that now exist in
many variations, but the most popular kind so far has been the pneu-
matic actuator—a kind of rubber tube surrounded by a braided fabric—
that contracts when air pressure is applied. Because of the rubbery
material, there is intrinsic elasticity and passive compliance, meaning that
the muscle will yicld clastically if the agent in which it is embedded
encounters an object. And if we have robots interacting with humans, we
want them to yield elastically so they will not hurt anyone: this general
idea of yielding to external objects is known in robotics as compliance.
A number of other technologies for artificial muscles are beginning to
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be used by roboticists: polymers that work on the basis of charge dis-
placement; gels that contract depending on the chemical properties of
the solution they are immersed in; metals whose lengths vary depending
on the current that flows through them; and several others that are still
just being developed in research laboratories. Like any kind of technol-
ogy, cach variety of artificial muscle has its pros and cons. Some cannot
be bought off the shelf, some can extend quickly but only retract slowly;
another type may wear out quickly or be too slow, etc. Pneumatic actu-
ators are fast and robust and can be bought off the shelf in many varia-
tions. Their main disadvantage is that pressurized air is required for their
operation and that they have to be controlled by valves.

One desirable property that we get free from artificial muscles—in
contrast to servomotors—is that because of their springlike properties,
they act as energy stores: on impact, part of the kinetic energy from the
flight phasc is transformed into potential energy in the muscle (or rather
the muscle-tendon system), and some of it can be reused for the next
step. A hopping kangaroo, for instance, regains about 40% of the energy
absorbed in landing when it bounces up again (Vogel, 1998).

But back to Puppy. The right combination of material and morpho-
logical properties, i.e., the particular shape of the body and the limbs, is
what allows Puppy to run. The servo motors that move the legs back and
forth provide the energy supply and the basic rhythmic activation. The
springs, the elastic spine, and the specific morphology take care of the
harmonious distribution of the forces throughout Puppy’s body when it
interacts with the environment and make it adaptive to variations in its
environment. The slightly slippery materials of the feet provide the addi-
tional degrees of freedom required for self-stabilization, the robot’s
ability to stabilize its gait without explicit control. Note that because
Puppy is only a very simplified version of a dog, its dynamics is very dif-
ferent from that of an actual dog, but its movement is natural with
respect to its own construction. As a consequence, there is a definite
sense of aesthetics in Puppy’s movements. You can verify the naturalness
of Puppy’s movements by watching the video clip at the book’s Web

page.

The Brain Controlling the Body, or Vice Versa?

While for a robot there is a clear distinction between the controller—
which resides in the microprocessor—and the controlled—the actual
physical robot, this distinction is far less clear in natural systems. Ulti-
mately, the neural system of an animal or human is just as physically
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embodied as the rest of the body: it is not hidden away in a micro-
processor that operates more or less independently from the body. One
criterion that distinguishes the controller from the controlled in robots
is energy consumption: typically the energy consumption of the con-
troller is much less than that of the motors that are controlled by it.
However, as is well known, the energy consumption of the human brain
is very high, making up about 20% of the body’s total energy usage. But
the distinction gets even more fuzzy if we take into account that the body
itself—the morphology and the materials—and the system-environment
interaction also take over control tasks, i.e., perform morphological
computation.

To illustrate: Imagine that you are running along a level jogging path
and then the path goes downhill a bit. You will start running a bit faster,
not because the brain “tells” the body to run faster, but because gravity
accelerates the body, which in turn makes the limbs move faster, which
in turn speeds up the brain’s oscillatory circuits! So, the body “controls”
the brain just as much as the brain controls the body. In other words, no
onc system is dominant over the other; the body and brain mutually
determine each other’s behavior. We will see more examples of this
mutual coupling throughout the book.

“Computation” by Sensor Morphology: The “Eyebot”

In about 1995 the theoretical physicist and Al researcher Lukas
Lichtensteiger, together with his colleague Peter Eggenberger, came up
with a brilliant idea inspired by insects. In insects, at least in some species,
the specific arrangement of the facets in their compound eye can be seen
to perform an important function, i.e., to compensate for motion paral-
lax. Facets are the small units that together make up an insect’s com-
pound eye. Motion parallax is just a fancy name for a phenomenon that
is very familiar to all of us. Assumc that you are sitting on a train looking
out the window in the direction in which the train is moving and, still far
away, you see a tree. As long as you are far away, this tree will move
slowly across your visual field. When you pass close by the tree it will
move much more quickly across your visual field, even though the train
is moving at constant speed. This is purely a geometric phenomenon and
holds for the human eye just as for the insect eye: objects nearby move
faster across the visual field than objects farther away. Even though the
insect eye is much more primitive than the human eye, it is nevertheless
extremely effective and suited for its task, i.e., for guiding the insect
during rapid flight.
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The prominent neuroscientist and robot enthusiast Nicolas Frances-
chini, working at the Centre National de Recherche Scientifique (CNRS)
in Marseille, France, found that in the housefly, the spacing of the facets
is not homogeneous: the density toward the front is higher than on the
side. What could be the advantage of this arrangement? First of all, it
makes sense to have high resolution in the direction where you arc going,
which is usually forward. But second, with this arrangement of facets, a
slow-moving point of light—from a distant object—will pass from one
facet to the next at the front of the eye roughly at the same rate as a fast-
moving point of light—from a close object—at the side of the eye. So the
eye, because of its morphology, effectively compensates for motion
parallax (scc figure 4.5).

Let us assume that an insect “wants” to fly past an obstacle at a certain
safe distance. One way of doing this is to maintain a fixed lateral distance
from the object during flight, as do the railway lines going past the tree.
Because of the facet distribution, all the insect needs to do is maintain a
constant optic flow; that is, it has to move such that the time interval
needed for a point of light to travel from one facet to the next remains
constant: this is cheap design indeed! If there were a homogeneous
arrangement of facets, because of motion parallax, computation would
be more complicated (differently tuned ncural circuits would have to
be used for different pairs of facets). This is another illustration of
morphological computation, or trading morphology for computation:
the computation is, so to speak, performed by the morphology of the
insect eye.

Inspired by these discoveries about the morphology of insect eyes,
Lichtensteiger and Eggenberger developed the “Eyebot,” a robot with a
linear array of “facets,” which are simply plastic tubes with a light sensor
inside each one (see figure 4.5). These “facets” can be moved individu-
ally by electrical motors, and the motors in turn can be controlled by a
program. Now, the ability to adapt one’s behavior is normally attributed
to plasticity of the brain. Lichtensteiger and Eggenberger were inter-
ested in the adaptive potential of morphology and asked the following
question. Assume that an agent has the task of moving in such a way that
its lateral distance to an obstacle remains constant: if we keep the brain
fixed for the duration of the experiment, but we allow the agent to
change its own morphology, will it be able to solve the task by adjusting
its morphology (in this case the arrangement of the facets)? They ran an
evolutionary algorithm (sce chapter 6) on the “Eyebot” to optimize the
angular position of the facets so that light would move past each facet
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(a)

Figure 4.5

Ecological balance: morphological computation through sensor morphology. (a) The
“Eyebot” has adjustable hollow tubes with light-sensitive cells at the base, thereby mim-
icking the facets of an insect eye. (b) If the facets are evenly spaced, a point of light,
depicted by the running lightbulb, moves slowly across the visual field if the lightbulb is in
front and far away, but moves fast as it passes by the side of the robot. This is the phe-
nomenon of motion parallax. (c) If, however, the facets are more dense toward the front
of the robot, a point of light will move at the same speed across all of the tubes, no matter
whether it is in front or to the side of the robot; the motion parallax is therefore compen-
sated away by this particular morphology.
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pair at the same rate. Indeed, after about five hours, the robot managed
to solve the problem: the resulting arrangement of the facets was similar
to the one found in biological insects, with most clustered near the front
and fewer arranged along the robot’s side.

Morphological Computation, Cheap and Diverse Locomotion: Stumpy

At just about the start of the twenty-first century, Raja Dravid, a physi-
cist, engineer, and self-made man who runs an “inventor’s cooperative”
in Zurich—together with the engineers and computer scientists
Chandana Paul and Fumiya lida—had an ingenious idea: they developed
a very simple robot capable of many behaviors like walking, dancing,
hopping, and turning. But rather than building a robot with legs and
actuating them, they decided to actuate only the upper body.

Stumpy’s lower body is made up of an inverted T mounted on wide,
springy “feet.” The upper body is an upright T connected to the lower
body by a joint that can move back and forth, the “waist” joint: with this
joint, Stumpy can move the upper body left and right, but cannot turn it
(sce figure 4.6). This upper horizontal beam is connected to the vertical
beam by a second joint that can rotate left and right, providing an addi-
tional degree of freedom, the “shoulder” joint. So, Stumpy has two
degrees of freedom: it can move its upper body left and right, and it can
rotate its shoulder left and right, but it cannot bend forward and back. The
horizontal beam at the top of the robot has weights attached to the ends
in order to increase the effect of its movements. Since the first Stumpy, a
whole series of Stumpies with somewhat different designs, morphologies,
and materials have been built in order to explore the different ways in
which simple bodies can give rise to lots of different behaviors.

Although Stumpy has no real legs or feet, it can move around in many
ways: it can move forward in a straight or curved line, it has different gait
patterns, it can move sideways, and it can turn on the spot. Intcrestingly,
all this can be achieved by actuating only the two joints. In other words,
control is extremely simple—the robot is virtually “brainless.” The reason
this works is because the dynamics, determined by its morphology, its
materials (elastic, springlike materials, the surface properties of the feet),
and the way it is actuated, are exploited in clever ways. Stumpy’s many
appealing and entertaining ways of moving arise not just from actuation
of the two joints in particular ways, but because Stumpy is built in a spe-
cific manner (for more detail, see lida et al., 2002 and Paul et al., 2002);
if its morphology were different, it would exhibit less behavioral diver-
sity, as illustrated in figures 4.6a and b.
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Figure 4.6

Ecological balance: morphological computation through shape and materials. Three mor-
phologies are shown, two that do not work properly and one that achieves the desired
dancing behavior. (a) A robot without a heavy enough upper body cannot generate enough
momentum to get its feet off the ground. (b) A robot with no elasticity in its feet will not
move properly or will fall over because the forces are not adequately propagated through
the robot to the ground for locomotion. (¢) Stumpy has the right morphology (an upper
body) and the right materials (elastic feet) so that it can perform a large variety of inter-
esting behaviors. (d) The biological system that is modeled by Stumpy: we use our upper
body and the elasticity in our legs to move in interesting ways.
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Before moving on to the next principle, let us briefly summarize the
ideas concerning ecological balance, i.e., the interplay of morphology,
materials, interaction with the environment, and control. First, given a
particular task environment, the (physical) dynamics of the agent can be
exploited which leads not only to a natural behavior of the agent, but
also to greater energy cfficiency. Second, when the dynamics of the agent
is exploited, control can often be significantly simplified while a certain
level of behavioral diversity is maintained. Third, materials have intrin-
sic control properties (c.g., stiffness, clasticity, and damping). And fourth,
because ecological balance is exploited, agents like Stumpy can display
surprisingly diverse behavior. In this sense, Stumpy also illustrates diver-
sity-compliance: on the one hand, it exploits the physical dynamics in
interesting ways and on the other it displays high behavioral diversity.

4.9 Agent Design Principle 7: Parallel, Loosely Coupled Processes

The principle of parallel, loosely coupled processes states that intelligence
is emergent from a large number of parallel processes that are often coor-
dinated through embodiment, in particular via the embodied interaction
with the environment.

The way we like to view ourselves, and the way we usually conceptu-
alize intelligence, is in terms of hierarchical organizations: there is the
“I” that perceives an cvent in the outside world and maps the cvent onto
an internal representation (e.g., a coffee cup standing on my desk), uses
this representation to plan an action (drinking from the cup), and finally
exccutes the action (reaching for the cup, grasping it, and drinking from
it). This way of viewing behavior, also called the sense-think-act model,
has proved inappropriate in the real world because (1) it is a one-way
modcl, assuming that sensory stimulation comes first and leads to inter-
nal representation, and (2) because of real-time constraints, this way of
functioning would simply not be fast enough. Recall our discussions of
sensory-motor coordination and running (for additional arguments, sce
for example Pfeifer and Scheier, 1999). In reaction to this kind of think-
ing, in the mid-1980s Rodney Brooks of MIT suggested an alternative
way of viewing intclligence, namely as a collection of parallel, asynchro-
nous processes that are only loosely coupled. In this view intelligent
behavior is, in essence, emergent from a large number of such processes.
As discussed earlier, it was really Brooks who finally triggered the
embodied turn in artificial intelligence. In a paper with the innocuous
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title “A Robust Layered Control System for a Mobile Robot,” published
in 1986, Brooks presented a radical alternative to designing control
systems, the famous subsumption architecture (Brooks, 1986). The prin-
ciple of parallel, loosely coupled processes is, in essence, a general way
of interpreting the subsumption architecture. As outlined in chapter 2,
the original publication was complemented later by the more provoca-
tively titled papers “Intelligence Without Reason” and “Intelligence
Without Representation.” The debate on whether such architectures are
suitable to achieve high-level intelligence is still open. We will return to
this point later.

The term loosely coupled is used in contrast to hierarchically coupled
processcs. In the latter there is a control program (the “I”) that calls the
subroutines (e.g., for perception), and the calling program then has to
wait for the subroutine (the perceptual act) to complete its task before
it can continue (and go on to the action planning phasc and then the
action phase). This hierarchical control corresponds to very strong cou-
pling; there is a very tight control regime between the calling and the
called routines. But of course, in a complete agent there is strong cou-
pling between processes simply because the system is embodied: for
instance two joints such as the shoulder and the elbow, connected by a
physical link (the upper arm), are very strongly coupled.

“Loosely coupled” also refers to the coupling of subsystems of an
agent through its interaction with the environment, as we have seen in
our discussion of leg coordination in inscct walking, where the individ-
ual leg controllers were coupled through the interaction with the envi-
ronment via the angle sensors in the joints of the legs. The coupling is
called “loose” because the global coordination is achieved indirectly—
through the environment—and not directly through the neural system.
In grasping a coffee cup, the movement of the head, the eyes, the arms,
and the fingers are also coupled through the interaction with the envi-
ronment, so sensory-motor coordination always implies this kind of
organization. Put another way, there is loose coupling between parallel
processes, which in this case are the different sensory and motor
processes involved in the grasping task: foveation—looking at the
object—reaching, touching, and finally grasping. Note that in order to
coordinate these processes, little internal neural processing is required:
the coordination comes about through the environment.

Parallel, loosely coupled processes also play a role in social interac-
tion. The social interaction robot Kismet, with gremlin-like features,
which the robotics researcher Cynthia Breazeal developed while at the
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Artificial Intelligence Laboratory at MIT, is another beautiful illustra-
tion of this design principle. Kismet is in fact simply a head, but by actu-
ating various parts of its head—turning its head, focusing its eyes, or
uttering sounds—it can engage an observer in seemingly complex social
interactions. Rather than getting into the details of how Kismet func-
tions, here we ask what we can learn from Breazeal’s experiments, and
provide our take on the question.

When watching Kismet interact with a person, one cannot help but
attribute high social competence to this robot. It is essentially controlled
by a collection of relatively simple reflexes that work in parallel. One
reflex focuses on salient objects, i.e., objects that attract the robot’s atten-
tion. A salient object might be one that has just appeared in the visual
field, is moving rapidly, or is very bright. The object-tracking reflex causes
the robot to follow slowly moving objects with its head and eyes, and a
third reflex performs sound localization, turning the head in the direc-
tion of loud noises. There is also a habituation reflex, meaning that if the
robot has been engaged in the same activity for some time it will get
“bored,” and look for something clsc to do. Notc the anthropomorphic
vocabulary that we are using, and remember to keep the frame of ref-
erence in mind: Kismet does not actually get bored (or does it?), but an
observer may attribute boredom to Kismet based on its interactions with
the environment. Despite the sophistication of Kismet, what matters for
our discussion is that there are processes that work more or less inde-
pendently of cach other but are loosely coupled, i.c., they are coordi-
nated through the interaction with the environment. Also, our simple
description does not do justice to Kismet; for example, there is in fact a
sophisticated model of emotion underlying Kismet’s facial expressions
that we will not discuss here (for more detail, see Breazeal, 2002).

Imagine now that I am talking to the robot so that it focuses on my
face. If a door to the side opens with a noise and a person enters the
room, the robot will turn its head toward the door (sound localization),
it will track the human who has entered the room for a bit (following
slowly moving objects), then it will get bored (habituation), and if I talk
to Kismet again it will turn its head back toward me (sound localization)
and continue our interaction. This kind of behavior is precisely what you
would expect from a socially competent individual: someone new enters
the room; you turn your head, perhaps briefly follow the person, and then
turn back to your previous activity. One of the amazing things about
Kismet is that it demonstrates that sophisticated algorithms or complex
reasoning are not necessary to achieve this behavior. This leaves us with
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a deep philosophical question about human nature: perhaps we are much
more driven by low-level reflexes rather than by our high-level rational
thoughts. For some people, this idea is decidedly disconcerting, especially
those with a Cartesian attitude: that is, people who believe there is a clear
distinction between body and abstract thought, and that we can ration-
ally decide what we want to do. Others might be relieved, because if our
social abilities are indeed to a high degree controlled by reflexes and
these reflexes are automatic, we do not have to think or worry about
them: they take care of themselves. The latter is more related to the
“Zen” attitude to being in the world. We surmise that this is why Rodney
Brooks’s term “the Zen of robot programming” has become a catch-
phrasc among artificial intelligence rescarchers intercsted in cmbodiment.

4.10 Agent Design Principle 8: Value

The value principle states that intelligent agents are equipped with a value
system which constitutes a basic set of assumptions about what is good for
the agent.

The value principle is on the one hand very important because it deals
with the fundamental issue of what is good for the agent, which then
leads to the question of what the agent will or should do in a particular
situation. On the other, the value principle is also extremely vague, and
there is no consensus in the vast literature about how to approach it,
neither in biology and psychology, nor in robotics and artificial intelli-
gence. So, we cannot provide a satisfactory answer. All we can do, in con-
trast to the other design principles, is raise a number of issues for
discussion. The question of value is certainly one of the open questions
in intelligence research. We will start in this chapter and follow some of
the points up in chapters 5 and 6.

Let us first talk about value in the context of designing and building
artificial systems. The value principle states that intelligent agents are to
be equipped with a value system which constitutes a basic set of assump-
tions about what is good for the agent. And once these assumptions have
been made, they are no longer questioned—at least for a certain period
of time, typically the lifetime of the agent. When designing, for instance,
a companion robot (see chapter 11), the assumption is that anything that
enables and helps the robot to perform its tasks—entertaining humans,
serving coffee, mowing the lawn, performing housechold chores, looking
after the kids, shopping—constitutes value. Thus, the set of design
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decisions make up the value system: cameras, microphones, wireless
LAN, legs, arms and hands, mechanisms for walking, for manipulating
objects, and for deciding what to do in a particular situation, etc. The
more fully the agent conforms to the design principles outlined earlier,
the more value it will be able to get from its setup (for example, it may
be able to run more quickly if it exploits the elasticity in the artificial
muscles). But we have to mind the frame-of-reference problem here: To
the designer, these decisions are explicit, but once they are implemented
on the robot, its behavior is emergent from a combination of all the com-
ponents and mechanisms. So, the value is in the head of the designer
rather than the head of the robot.

Let us now turn to a more specific question: given a particular agent,
how does it decide what to do in a particular situation? This is especially
important if the agents are to be autonomous and self-sufficient like the
Fungus Eaters, which always have to achieve a number of tasks in order
to keep functioning. Often, so-called action selection schemes are used:
given a particular situation—e.g., the children have come home from
school, there is no ice crcam in the fridge, and the vacuum cleaner is
broken—there are a number of actions the robot can take: buy cookies,
take the vacuum cleaner to the repair shop, play with the children, etc.
From these alternatives one is chosen based on an analysis of the current
circumstances and an evaluation of the alternatives. This kind of
approach is often employed in real-world applications where the objec-
tive is to build a working robot. But how much can we learn about intel-
ligent behavior from this approach, which essentially implements how
we as designers feel decision making is best done? We can learn about
how well robots programmed in this way can function in dynamic
complex environments such as people’s homes, but this may in fact bear
little relation to how “decisions” are taken in biological systems such as
humans.

Let us briefly illustrate this point here with an example from psychol-
ogy, the famous “A not B error,” originally studied by Piaget. Imagine an
experimenter at a table across from a baby sitting on his mother’s lap.
There are two holes in the table, A and B, each covered with a lid. The
experimenter takes a toy, shakes it in front of the baby to attract his
attention and puts the toy into hole A, and repeats this procedure a few
times. It turns out that in most cases the baby will reach for hole A and
take off that lid. Then, again in front of the eyes of the baby after shaking
the toy back and forth, the experimenter puts it into hole B. Surprisingly,
the baby will reach for lid A. This effect, called the “A not B error” has
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been shown to occur in babies aged seven to twelve months. Most of the
literature tries to explain this phenomenon in terms of the cognitive
processcs of the babies. By contrast, Thelen and colleagues (2001)
hypothesized that, rather than being the result of cognitive processes, this
behavior might be emergent from a dynamical system. And indeed, if the
physical dynamics of the system (the reaching system of the baby) is
changed, the baby no longer makes the error. For example, when, after
the training phase, the position of the baby is changed from sitting to
upright, or when weights are attached to the baby’s arms—both meas-
ures that change the physical dynamics of the reaching system—the baby
no longer makes the error. The explanation is that through the various
trials in the experiment, the babies, viewed as dynamical systems, get
“stuck” in a particular attractor state from which they cannot escape
unless the dynamics of the system is changed. At a later age, the exter-
nal stimulus of the experimenter who puts the toy into hole B is suffi-
cient to change attractors, and the babies do not make the error any
more. Thus, something that looks very much like action selection, or a
cognitive decision process, might in fact be emergent from a dynamical
system.

This relates to the general issue of how to conceptualize the behavior
of biological agents in complex situations when trying to explain their
motivation, which is, in essence, the question of value. Without going into
the details—there is a substantial literature on this issue—we have a
strong tendency to attribute goals and decision processes to other humans
(and even to animals and robots), which is in line with a Cartesian mind-
set: we have a goal, and then we plan and execute our actions to achieve
the goal. Alas, it seems that goals are more like post hoc rationalizations,
attributed to give the behavior the flavor of coherence, than the actual
causes of behavior (for a review of these issues, see McFarland and
Bosser, 1993; Pfeifer and Scheier, 1999; or the collection of articles in
Montefiore and Noble, 1989). One of the key insights from the embodied
approach has been that often much simpler explanations can be given and
that there is no need to attribute sophisticated goal hierarchies or deci-
sion processes to the agent. An instructive example is Kismet, whose
behavior, in essence, is emergent from a number of reflexes. And in the
“A not B” experiment, the apparcnt decision behavior is emergent from
a dynamical system, the baby’s reaching system. These insights might
provide valuable intuitions for the design of artificial agents.

To conclude our (admittedly somewhat superficial) discussion of the
value principle, let us briefly discuss the time frames. What we have been
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saying so far applies mostly to the “here-and-now” perspective, where
the designer decides what will be of value for the robot to achieve its
tasks. In chapter 5, we will provide the details on value from a develop-
mental perspective. One of the deep and largely unresolved questions
there is why an agent should learn anything in the first place. In other
words, how is learning related to value? Why continue to acquire more
and more sophisticated skills and not be happy with what you have?
Chapter 6 will discuss the evolutionary perspective on value, which raises
the conundrum of why organisms become more complex during the
process of evolution—that is, of how increased complexity is linked to
value.

4.11 Summary and Conclusions

In this chapter we have outlined a set of principles that, on the one hand,
characterize biological systems and on the other can be employed as
heuristics for designing and building artificial ones. Although we are con-
vinced that these principles are essential and capture the major insights
into the intricacies of how intelligent behavior comes about, they con-
stitute a preliminary set that will eventually need to be extended and
revised. The basic set outlined in this chapter will be complemented in
the subsequent three chapters by a number of additional principles for
development, evolution, and collective intelligence. We have tried our
best to boil down the principles to the bare minimum while maintaining
comprehensibility: for a more detailed, but perhaps somewhat less up-
to-date elaboration, see Pfeifer and Scheier (1999). A summary of all the
design principles from chapters 4, 5, 6, and 7 will be given in the con-
cluding chapter of the book.



