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function m = TotalMass(j)

global uLINK

if j == 0

m = 0;

else

m = uLINK(j).m + TotalMass(uLINK(j).sister) + TotalMass(uLINK(j).child);

end

Fig. 2.18 TotalMass.m: Sum of Each Link’s Mass

2.5 Kinematics of a Humanoid Robot

2.5.1 Creating the Model

To explain the kinematics of a humanoid robot, we will use a 12 DoF model
shown in Fig. 2.19, which consists of two legs. The link names and their ID
numbers are indicated in Fig. 2.19(a). Splitting this model by the manner of
Fig. 2.14(a), each link will have just one joint to drive it except the BODY
link. Thus we can identify a link by joint name or its ID number. For example,
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Fig. 2.19 (a) Structure of a 12 degree of freedom biped robot. Numbers in brackets
refer to the ID number (b) Rotation matrix which describes attitude of each link.
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Fig. 2.20 (a) Joint Axis Vector aj (b) Relative Position Vector bj and the Origin
of Local Coordinates pj

by the ID number 5, we refer the joint RLEG J3 as well as the link of the
right lower leg.

First, we must define the local coordinates for each link. An origin of each
local coordinates can be set anywhere on its own joint axis. For each hip,
however, it is reasonable to assign the origins of the three frames at the same
point where the three joint axes intersect. In the same way, for each ankle,
we assign the origins of two ankle frames on the same point where the two
joint axes intersect.

Then, all rotation matrices which describe attitude of links are set to match
the world coordinates when the robot is in its initial state, standing upright
with fully stretched knees. Therefore we set thirteen matrices as,

R1 = R2 = . . . = R13 = E.

We show the local coordinates defined at this stage in Fig. 2.19(b).
Next we will define the joint axis vectors aj and the relative position vector

bj as indicated in Fig. 2.20. The joint axis vector is a unit vector which
defines the axis of the joint rotation in the parent link’s local coordinates.
The positive (+) joint rotation is defined as the way to tighten a right-hand
screw placed in the same direction with the joint axis vector. Using the knee
joints as an example, the joint axis vectors would be, a5,a11 = [0 1 0]T .
When we rotate this link in the + direction, a straight knee will flex in the
same direction as a human’s. The relative position vector bj is the vector
that indicates where the origin of a local coordinate lies in the parent link’s
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local coordinates. When they lie in the same place as it is in the case of the
ankle roll joint, b7, b13 = 014.

In the following section we will use the description above to calculate
Forward Kinematics, the Jacobian Matrix and Inverse Kinematics. To do
this we will need a lot more information such as the shape, joint angle, joint
velocity, etc. The full list of link parameters is shown in Table 2.1.

Table 2.1 Link Parameters

Link Parameter Symbol for Equation uLINK data field

Self ID j -
Sister ID None sister
Child ID None child
Parent ID i mother
Position in World Coordinates pj p
Attitude in World Coordinates Rj R
Linear Velocity in World Coordinates vj v
Angular Velocity in World Coordinates ωj w
Joint Angle qj q
Joint Velocity q̇j dq
Joint Acceleration q̈j ddq
Joint Axis Vector(Relative to Parent) aj a
Joint Relative Position(Relative to Parent) bj b
Shape(Vertex Information, Link Local) p̄j vertex
Shape(Vertice Information (Point Connections) None face
Mass mj m
Center of Mass(Link Local) c̄j c
Moment of Inertia(Link Local) Īj I

2.5.2 Forward Kinematics: Calculating the Position

of the Links from Joint Angles

Forward Kinematics is a calculation to obtain the position and attitude
of a certain link from a given robot structure and its joint angles. This is
required when you want to calculate the Center of Mass of the whole robot,
when you just want to display the current state of the robot, or when you
want to detect collisions of the robot with the environment. Thus forward
kinematics forms the basis of robotics simulation.

Forward kinematics can be calculated by using the chain rule of homo-
geneous transforms. First we will start off by calculating the homogeneous

14 There is a well known method you can use to describe the link structure of a robot
called the Denavit-Hartenberg (DH) method [18]. We also used this method at
first. However this method has a restriction which requires you to change the
orientation of the link coordinates with each link. We found the implementation
with this restriction to be rather error-prone, so we instead adopted the method
outlined above.
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transform of a single link as shown in Fig. 2.21. We need to set a local coor-
dinate system Σj which has it’s origin on the joint axis. The joint axis vector
seen from the parent coordinates is aj and the origin of Σj is bj . The joint
angle is qj and the attitude of the link when the joint angle is 0 is, E.

iΣ

jΣ

ja

jq

jb

Fig. 2.21 The Position, Attitude and Rotation of a single link aj , bj each specify
the joint axis vector and location of the origin viewed from the parent coordinate
system

The homogeneous transform relative to the parent link is:

iT j =

[

eâjqj bj
0 0 0 1

]

. (2.56)

Next let us assume there are two links as shown in Fig. 2.22. We will
assume that the absolute position and attitude of the parent link pi,Ri is
known. Therefore, the homogeneous transform to Σi becomes:

T i =

[

Ri pi

0 0 0 1

]

. (2.57)

From the chain rule of homogeneous transforms Σj is:

T j = T i
iT j . (2.58)

From (2.56), (2.57) and (2.58) the absolute position (pj) and
attitude (Rj) of Σj can be calculated as being,

pj = pi +Ribj (2.59)

Rj = Rie
âjqj (2.60)

Using this relationship and the recursive algorithm, the Forward Kinemat-
ics can be performed by an extremely simple script shown in Fig. 2.23. To
use this program, we first set the absolute position and attitude of the base
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Fig. 2.22 Relative Position of Two Links

function ForwardKinematics(j)

global uLINK

if j == 0 return; end

if j ~= 1

i = uLINK(j).mother;

uLINK(j).p = uLINK(i).R * uLINK(j).b + uLINK(i).p;

uLINK(j).R = uLINK(i).R * Rodrigues(uLINK(j).a, uLINK(j).q);

end

ForwardKinematics(uLINK(j).sister);

ForwardKinematics(uLINK(j).child);

Fig. 2.23 ForwardKinematics.m calculate forward kinematics for all joints

link (BODY) and all joint angles. Then by executing ForwardKinematics(1),
we can update the positions and attitudes of all links in the robot.

Figure 2.24 shows what the 12 degree of freedom biped robot looks like
when you give it random values for joint angles to all 12 joints. This should
help you to imagine how a simple mechanism embodies a large amount of
complexity.

2.5.3 Inverse Kinematics: Calculating the Joint

Angles from a Link’s Position and Attitude

Next we will discuss how to calculate joint angles when we have the position
and attitude of the body and the foot to realize. What we need to do in this
cases is Inverse Kinematics. For instance, suppose our robot is in the front
of stairs and we want to place one of the foot on the first step whose height
and depth are already known. We certainly need to determine the amount of
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Fig. 2.24 Random poses calculated using ForwardKimematics. The knees are lim-
ited to [0, π][rad], other joints are restricted to [−π

3
, π

3
][rad].

joint rotation for the hip, knee and the ankle. Inverse Kinematics is necessary
for such a case.

There exist both an analytical method and a numerical method of solving
Inverse Kinematics. First we will explain how to solve it analytically. Let’s
focus on the right leg of the model shown in Fig. 2.19. The position and
attitude of the body and right leg will be (p1,R1) and (p7,R7) respectively.
To simplify the equation we will define D, which is the distance between the
Body origin and the hip joint. The upper leg length is A, and the lower leg
length is B, as shown in Fig. 2.25(a). So therefore, the position of the hip
would be
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Fig. 2.25 Calculating Inverse Kinematics of the Legs

p2 = p1 +R1





0
D

0



 .

Next, we calculate the position of the crotch viewed from the ankle coor-
dinate space

r = RT
7
(p2 − p7) ≡ [rx ry rz ]

T . (2.61)

From this we can calculate the distance between the ankle and the hip, which
we will define as

C =
√

r2x + r2y + r2z .

As shown in Fig. 2.25(b), if we consider the triangle ABC we get the angle
of the knee q5. From the cosine rule we get,

C2 = A2 +B2 − 2AB cos(π − q5).

So the angle of the knees will be,

q5 = − cos−1

(

A2 +B2 − C2

2AB

)

+ π.

If we define the angle at the lower end of the triangle as α, from the sine

rule we get,

C

sin(π − q5)
=

A

sinα
.
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So therefore,

α = sin−1

(

A sin(π − q5)

C

)

.

Next we will focus on the ankle local coordinates. As shown in Fig. 2.25(c),
from vector r you can calculate the ankle roll and pitch angles. So,

q7 = atan2(ry , rz)

q6 = −atan2
(

rx, sign(rz)
√

r2y + r2z

)

− α.

The function atan2(y, x) calculates the angle between vector (x, y) and the
x axis as it has already appeared in Section 2.2.7. It is built into Matlab and
is also available as a built-in function in most programming languages. Also
sign(x) is a function that returns +1 if x is a positive value and −1 if it is
negative.

What remains is the yaw, roll and pitch angles at the base of the leg. From
the equations that define each joint

R7 = R1Rz(q2)Rx(q3)Ry(q4)Ry(q5 + q6)Rx(q7),

we obtain

Rz(q2)Rx(q3)Ry(q4) = RT
1
R7Rx(−q7)Ry(−q5 − q6).

By expanding the left side of this equation and calculating the right hand
side we get the following





c2c4 − s2s3s4 −s2c3 c2s4 + s2s3c4
s2c4 + c2s3s4 c2c3 s2s4 − c2s3c4

−c3s4 s3 c3c4



 =





R11 R12 R13

R21 R22 R23

R31 R32 R33





where c2 ≡ cos q2, and s2 ≡ sin q2.
By looking carefully at the left hand side of this equation we get,

q2 = atan2(−R12, R22) (2.62)

q3 = atan2(R32,−R12s2 +R22c2) (2.63)

q4 = atan2(−R31, R33). (2.64)

An implementation of the above is shown in Fig. 2.2615. For the left leg,
we could invert the sign on D and apply the same program.

This implementation can only be applied to a robot which has the same
layout as the one in Fig. 2.19. If the robot does not have three joint axes
that intersect each other at one point, we need an entirely different algo-
rithm. There are many different algorithms outlined in the robot textbooks

15 As a practical implementation, our program covers the target position exceeding
the leg length and joint angle limits.
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function q = IK_leg(Body,D,A,B,Foot)

r = Foot.R’ * (Body.p + Body.R * [0 D 0]’- Foot.p); % crotch from ankle

C = norm(r);

c5 = (C^2-A^2-B^2)/(2.0*A*B);

if c5 >= 1

q5 = 0.0;

elseif c5 <= -1

q5 = pi;

else

q5 = acos(c5); % knee pitch

end

q6a = asin((A/C)*sin(pi-q5)); % ankle pitch sub

q7 = atan2(r(2),r(3)); % ankle roll -pi/2 < q(6) < pi/2

if q7 > pi/2, q7=q7-pi; elseif q7 < -pi/2, q7=q7+pi; end

q6 = -atan2(r(1),sign(r(3))*sqrt(r(2)^2+r(3)^2)) -q6a; % ankle pitch

R = Body.R’ * Foot.R * Rroll(-q7) * Rpitch(-q6-q5); %% hipZ*hipX*hipY

q2 = atan2(-R(1,2),R(2,2)); % hip yaw

cz = cos(q2); sz = sin(q2);

q3 = atan2(R(3,2),-R(1,2)*sz + R(2,2)*cz); % hip roll

q4 = atan2( -R(3,1), R(3,3)); % hip pitch

q = [q2 q3 q4 q5 q6 q7]’;

Fig. 2.26 IK leg.m Example implementation of an analytical solution to Inverse
Kinematics. CAUTION! When using this program on a real robot, you need to
continuously check whether the joint angles exceed their limits. In the worst case,
you could destroy your robot or otherwise cause major injury or death.

(for instance [96, 127]), but in general it requires a large amount of heavy
calculation, so it is more common to use the numerical solution which we will
go over in the next section.

2.5.4 Numerical Solution to Inverse Kinematics

Compared to solving the inverse kinematics analytically, forward kinematics
calculation is simple (Section 2.5.2). So it isn’t all that far fetched to think of
a trial and error method of solving the inverse kinematics by using forward
kinematics, as shown in Fig. 2.27. A sample algorithm could be,

Step 1. Prepare the position and attitude (pref ,Rref ) of the base link
Step 2. Prepare the position and attitude (pref ,Rref ) of the target link
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Step 3. Define vector q which holds the joint angles from the base link to
the target link

Step 4. Use forward kinematics to calculate the position and attitude (p,R)
of the target link

Step 5. Calculate the difference in position and attitude (∆p, ∆R) =
(pref − p,RTRref )

Step 6. If (∆p, ∆R) are small enough stop the calculation
Step 7. If (∆p, ∆R) are not small enough calculate ∆q which would reduce

the error
Step 8. Update joint angles by q := q +∆q and return to Step 4

q

q +

+

,p R,
ref ref
p R

Repeat

Get errors
Calculate

adjustment
Forward 

Kinematics

Current

configuration

Initial joint 

angles
Desired

configuration

Fig. 2.27 Basic Concept Behind Numerical Approach to Inverse Kinematics: Use
forward kinematics to and adjust the joint angles to narrow the difference.

To actually implement this you first need to surmount the next two hurdles.

1. What do we really mean by the position and attitude errors (∆p, ∆R)
being small enough? (Step 6)

2. How do we actually go about calculating ∆q, to narrow the gap?
(Step 7)

The first problem can be solved relatively easily. Zero position error and
zero attitude error can be described with the following equations

∆p = 0

∆R = E.

An example function which returns positive scalar depending on the error
magnitude is the following16

16 A more general function would be err(∆p,∆R) = α‖∆p‖2 + β‖∆θ‖2. Here α

and β are some positive number with the direction requiring more precision being
larger.
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err(∆p, ∆R) = ‖∆p‖2 + ‖∆θ‖2, (2.65)

∆θ ≡ (ln∆R)∨. (2.66)

This function becomes zero only at both position and attitude error is
zero. You can say the position and attitude errors are small enough when
err(∆p, ∆R) becomes smaller than predefined value, for example 1× 10−6.

How about the second problem? All we really need to do is come up with
a set of joint angles ∆q which lowers err(∆p, ∆R). One idea would be to
use random numbers each time. If we are able to lower err(∆p, ∆R) by even
a small amount, we will use it for the joint angles and start over. The robot
uses trial and error to search for the joint angles itself so we have the illusion
of intelligence17.

Although it is an enticing idea, none of the robots today would use this
method. The reason is that there is a method which is much faster and far
more precise. In this method which is called the Newton-Raphson method
we first start off by considering what happens to the position and attitude
(δp, δθ) when you change the joint angles using a minute value of δq

δp = Xp(q, δq) (2.67)

δθ = Xθ(q, δq). (2.68)

Here, Xp and Xθ are unknown, but when δq is small let us say that we
can describe it simply with addition and multiplication. If we use a matrix
we get,

[

δp

δθ

]

=

















J11 J12 J13 J14 J15 J16
J21 J22 J23 J24 J25 J26
J31 J32 J33 J34 J35 J36
J41 J42 J43 J44 J45 J46
J51 J52 J53 J54 J55 J56
J61 J62 J63 J64 J65 J66

















δq. (2.69)

Here Jij , (i, j = 1 . . . 6) are constants which are defined by the current
position and attitude of the robots links. There are 6 because of the number
of links in the leg. It is too much to write all the components each time so
we will simplify it by

[

δp

δθ

]

= J δq. (2.70)

17 This idea is something anyone would think of, but for some reason a lot of people
tend to think that they are the only ones to think of it. Actually the author
happened to be one of them :-).
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The matrix J is called the Jacobian18. Once we have (2.70) we can cal-
culate the required adjustment by simply taking the inverse of this matrix

δq = λ J−1

[

δp

δθ

]

. (2.71)

This is the equation to calculate the adjustments of the joint angles based
on the errors in position and attitude. The value λ ∈ (0 1] is a coefficient
used to stabilize the numeric calculation. Figure 2.28 shows a sample imple-
mentation of the inverse kinematics algorithm written in Matlab. On the 7th
line you will see the function CalcJacobian which is used to calculate the Ja-
cobian. We will go over this in more detail in the next section. The 10th line
is the actual implementation of (2.71). The operator \ “backslash” efficiently
solves the linear equations without doing explicit matrix inversion.

function InverseKinematics(to, Target)

global uLINK

lambda = 0.5;

ForwardKinematics(1);

idx = FindRoute(to);

for n = 1:10

J = CalcJacobian(idx);

err = CalcVWerr(Target, uLINK(to));

if norm(err) < 1E-6 return, end;

dq = lambda * (J \ err);

for nn=1:length(idx)

j = idx(nn);

uLINK(j).q = uLINK(j).q + dq(nn);

end

ForwardKinematics(1);

end

Fig. 2.28 InvserseKinematics.m Numerical Solution to Inverse Kinematics

The function FindRoute returns the links that you need to go through
to get to the target link from the base link. CalcVWerr is a function which
calculates the difference in position and attitude. You can find implemented
versions of these functions in the appendix at the end of this chapter.

18 From the German mathematician Carl Gustav Jacobi (1804-1851). When math-
ematicians refer to the Jacobian it means the determinant of this matrix, but
when roboticists talk about the Jacobian they usually mean the matrix itself.
Some people think that this is a mistake but this is not something that is local
to Japan, it is done the world over.
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We show an example use of Inverse Kinematics as Matlab command input
in Fig. 2.29. Here we use SetupBipedRobot to set robot data, GoHalfSitting
to get non-singular posture, and DrawAllJoints() to display the biped robot.
The function rpy2rot() is a implementation of (2.13). They can be obtained
from the download material.

>> SetupBipedRobot; % Set robot parameters

>> GoHalfSitting; % Set knee bending posture

>> Rfoot.p = [-0.3, -0.1, 0]’;

>> Rfoot.R = rpy2rot(0, ToRad*20.0,0);

>> InverseKinematics(RLEG_J5, Rfoot);

>> Lfoot.p = [ 0.3, 0.1, 0]’;

>> Lfoot.R = rpy2rot(0, -ToRad*30.0,0);

>> InverseKinematics(LLEG_J5, Lfoot);

>> DrawAllJoints(1); % Show the robot
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Fig. 2.29 Sample using InverseKinematics and Results of Calculation

2.5.5 Jacobian

In the previous section we introduced the Jacobian which gives you the re-
lationship between small joint movements and spatial motion. Through the
Jacobian we can also calculate the torque requirements of the joints in or-
der to generate external forces through the hands and feet. As this is used
extensively in robot control, papers on robotics that do not have a Jacobian
somewhere in them are a rare thing indeed19.

19 We can find out how the Jacobian is used in robotics by reading Dr Yoshikawa’s
textbook [144].


