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Central Nervous System (CNS) 
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Encephalon: Anatomical division 

  Telencephalon    Diencephalon   Mesencephalon    Metencephalon Mielencephalon 
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Superfice Mediale 

The Cerebral Cortex: Functional Division 

Brodmann Areas 
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The Cerebral Cortex (1) 

T h e c e r e b r a l c o r t e x i s 
responsible of many cognitive 
functions such as language, 
memory, emotional processing, 
etc.  Six layers of neurons 
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Modelling	Neural	Dynamics	
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Levels of Modeling 

Brain as a whole 

Specific brain systems (visual system,…) 

Large scale neural networks 

Small neural networks 

Neurons 

Ion channels and synapses 

Molecular processes 

 

Costruire modelli
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Neural Spiking 
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Neural Spiking 
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Particular Neural Dynamics 
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Classificazione di Hodgking
Hodgking classification of neural excitability 

e.g. in cortical pyramidal neurons  e.g. brainstem mesV 
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290 Simple Models
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Figure 8.8: Six most fundamental classes of firing patterns of neocortical neurons in
response to pulses of depolarizing dc-current. RS and IB are in vitro recordings of
pyramidal neurons of layer 5 of primary visual cortex of a rat, CH was recorded in vivo
in cat’s visual cortex (area 17, data provided by D. McCormick). FS was recorded in
vitro in rat’s primary visual cortex, LTS was recorded in vitro in layer 4 or 6 of rat’s
barrel cortex (data provided by B. Connors). LS was recorded in layer 1 of rat’s visual
cortex (data provided by S. Hestrin). All recordings are plotted on the same voltage and
time scale, and the data are available on the author’s webpage (www.izhikevich.com).

Six most fundamental classes of 
firing patterns of neocortical 

neurons in response to pulses of 
depolarizing dc-current. RS and IB 
are in vitro recordings of pyramidal 
neurons of layer 5 of primary visual 
cortex of a rat, CH was recorded in 
vivo in cat’s visual cortex. FS was 
recorded in vitro in rat’s primary 

visual cortex, LTS was recorded in 
vitro in layer 4 or 6 of rat’s barrel 

cortex. LS was recorded in layer 1 
of rat’s visual cortex. 

Particular Neural Dynamics in the Neocortex 
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Biologically-Inspired Single-Neuron Simulation 
Single-Neuron simulation 

Benefits 
 
• Can reproduce activity of 
single neurons 
• Can be used to model 
detailed changes (external 
currents or the effect of 
drugs) 

Disadvantages 
 
•  Needs neuron morphology 
(dendritic layout) 
•  Needs information about ion 
channels, synapse position, 
neurotransmitter type 
•  Is slow to calculate for large 
numbers of neurons 

=> Need for simplified neuron models 
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10 
The McCulloch-Pitts neuron (1943) 

Step-wise activation function 

Summation of input (no synaptic weights!) 

-> Birth of artificial neural network (ANN) research 

Modelling	Neural	Dynamics	
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The	first	ar*ficial	
neuron	
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Modelling	Neural	Dynamics	
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Mul3layered	
Percep3on	is	a	

universal	
approximator	
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Modelling	Neural	Dynamics	
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⎩
⎨
⎧

=
0
1

y
spike	occurrence	

spike	absence	

From	neurophysiology	point	of	
view,	y	is	existence	of	an	output	

spike	

=y Number	of	spikes	

Time	frame	

From	neurophysiology	point	of	
view,	y	is	firing	rate	

Spike	3ming	is	not	considered	at	all!	

Modelling	Neural	Dynamics	
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∫

Spiking	neuron	model	

Spiking	neural	networks	are		
			-	biologically	more	

plausible,	
			-	computa3onally	more	

powerful,	
			-	considerably	faster	

	than	networks	of	the	second	
genera3on	

Modelling	Neural	Dynamics	
Diagrammi di fase
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Hodgkin-Huxley (first biologically-
plausible neural model - 1952) 

Modelling	Neural	Dynamics	

38 Electrophysiology of Neurons

2.3.1 Hodgkin-Huxley equations

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model of the squid giant axon. Using pioneering experimental techniques of
that time, Hodgkin and Huxley (1952) determined that squid axon has three major
currents: voltage-gated persistent K+ current with four activation gates (resulting in
the term n4 in the equation below, where n is the activation variable for K+), voltage-
gated transient Na+ current with three activation gates and one inactivation gate (term
m3h below), and Ohmic leak current, IL, which is carried mostly by Cl° ions. The
complete set of space-clamped Hodgkin-Huxley equations is
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ḡKn4(V ° EK) °

I

Naz }| {
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ṅ = Æ
n

(V )(1° n)° Ø
n

(V )n
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These parameters, provided in the original Hodgkin and Huxley paper, correspond to
the membrane potential shifted by approximately 65 mV so that the resting potential
is at V º 0. Hodgkin and Huxley did that for the sake of convenience, but the shift
has led to a lot of confusion over the years. Shifted Nernst equilibrium potentials are

EK = °12 mV ENa = 120 mV , EL = 10.6 mV;

see also Ex. 1. Typical values of maximal conductances are

ḡK = 36 mS/cm2 ḡNa = 120 mS/cm2 , gL = 0.3 mS/cm2.
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Hodgkin-Huxley	model	
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K	conductance:	 	 	gK	 	=	36 
Na	conductance:	 	 	gNa		 	=	120	
Leak	conductance:		 	gleak	 	=	0.3	
Membrane	Capacitance: 	C  =	1	
K	equlibrium:	 	 	VK	 	=	12	
Na	equlibrium:	 	 	VNa	 	=	-115 
Leak	equlibrium:	 	 	Vleak	 	=	-10.6	
	
Ini3al	and	Rest	poten3al 	v0	 	=	0	
Ini3al	channel	ac3va3ons 	m0, n0, h0		=	0 

Sign	is	wrong	
in	the	paper	
from	1952!	
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What	does	a	neuron	do?	

Voltage	

Time	

Input	

Membrane	
Poten3al	

Voltage	

Time	

Simplest	idea	–	
an	Integrator	
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A	neuron	as	an	Integrator	

Voltage	

Time	

Input	current:	 	 	I 	 	Spike	threshold: 	 	Vthresh 
Membrane	Capacitance:	 	C 	 	Reset	voltage: 	 	Vreset 
	
	
Membrane	Voltage:	 	 	 	if	v >	Vthresh	

	 	 	 	 			→v =	Vreset	C
I

dt
dv

=

• 	Firing	rate	is	unlimited	
• 	Integra3on	is	“perfect”	

Neuron	response	is	linear	
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18!

One-Dimensional Reductions!
g Perfect Integrate and Fire Model!

! 

C dV (t)
dt

= I(t)

! 

V t( ) =VThr "Fire+reset 

linear 

threshold 

I(t) 

C 
! 

"(t # ti)$

tref 

V 

Whatʼs missing!
In this model!

compared to HH?!

18!

One-Dimensional Reductions!
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Whatʼs missing!
In this model!

compared to HH?!

A	neuron	as	an	Integrator	

20!

One dimensional reductions!
g The successive times, ti, of spike occurrence:!

!
g Firing rate vs. input current of the perfect 

integrator:!

!
g If you force a refractory period Tref following a 

spike, such that V = 0mV for Tref period 
following a spike, then:!

! 

I(t)dt = CVth
ti

ti+1

"

! 

f =
I

CVThr

! 

f =
I

CVThr + tref I
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Neural Modeling and Dynamics Diagrammi di fase

Neurons as dynamical systems: phase space 
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Neural Excitability  

  Excitability is the most fundamental property of neurons allowing communication via action 
potentials or spikes. 

  From mathematical point of view a system is excitable when small perturbations near a rest 
state can cause large excursions for the solution before it returns to the rest.  

  Systems are excitable because they are near bifurcations from rest to oscillatory dynamics.  
  The type of bifurcation determines excitable properties and hence neuro-computational 

features of the brain cells. Revealing these features is the most important goal of 
mathematical neuroscience. 

  The neuron produse spikes periodically when there is a large amplitude limit cycle attractor, 
which may coexist with the quiescent state. 
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Most of the bifurcations discussed here can be illustrated using a two-
dimensional (planar) system of the form 
 
 
 
 
   Much insight into the behavior of such systems can be gained by considering 
their nullclines. 
 the sets determined by the conditions f(x, y) = 0 or g(x, y) = 0.  
   When                nullclines are called fast and slow, respectively. Since the 
language of nullclines is universal in many areas of applied mathematics 
 

),('
),('

yxgy
yxfx

=

=⋅µ



Page § 27 27	

Bursters  

When neuron activity alternates between a quiescent state and repetitive spiking, the 
neuron activity is said to be bursting. It is usually caused by a slow voltage- or calcium-
dependent process that can modulate fast spiking activity. 

 There are two important bifurcations associated with bursting:   
Bifurcation of a quiescent state that leads to repetitive spiking.  

Bifurcation of a spiking attractor that leads to quiescence.  

 

These bifurcations determine the type of burster and hence its neuro-computational features.   
An example of "fold/

homoclinic" (square-wave) bursting. 
When a slow variable changes, the 
quiescent state disappears via fold 

bifurcation and the periodic spiking 
attractor disappears via saddle 
homoclinic orbit bifurcation  
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DEL  
NEURONE  

Usually they are express in form of 

ODEs (Ordinary Differential Equations)  

Modelling	Neural	Dynamics	

Input Current Input Current 
Membrane Potential 

Reset Value 
5 for 1 ms 

if then 

10 for 1 ms 

Conductance 
Dirac 
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Modelling	Neural	Dynamics	

Threshold 
V Threshold 

Membrane Potential 

7 for 1 ms 

13 for 1 ms 

10 for 1 ms 

72 for 1 ms 

Reset Value 

Heaviside Function 
T-current function 

Recovery variable 
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Modelling	Neural	Dynamics	

120 for 1 ms 180 for 1 ms 

600 for 1 ms 1200 for 1 ms 
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13 for 1 ms 
Recovery 

Membrane Potential 

Then If 

Modelling	Neural	Dynamics	
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Izhikevich	Model	
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Spike trains 

The Neural Code 

Where is the Information? 

Frequency? 

Spikes? 

Inter/Intra spike interval? 
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13 
The firing rate hypothesis 

Edgar Adrian 
The Nobel Prize in Physiology or Medicine 1932 

Stimulus features are encoded through the neural firing rate  
(response curves).  
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For any  t > 0, each 
interval contains 0,1 spike. 
Then, r(t) averaged over 

trials is
the probability of any trial 

firing at time t. 
B: 100 ms bins
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14 
The firing rate hypothesis 

Receptive field: area in the outside/physical  
world for which a neuron is responsive. 
 
Feature preference 
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15 
The correlation code hypothesis 

From DeCharms and Merzenich 1996 

Stimulus features are 
encoded by neurons firing 
around the same time 



Page § 39 

Neurons	communicate	
via	exact	spike	*ming	

Firing	rate	alone	does	not	
carry	all	the	relevant	

informa*on	

The Neural Code 

Necessary conditions for optimal summation:
1) synapses have to be closely adjacent
2) pre-synaptic signals have to arrive simultaneously
3) resting potential and reversal potential(s) have to be very different.

EPSP  = EPSP  + EPSP
r e s A BmV

t

rest.
pot.

A
BA

B
The little “shoulder” shows that the
EPSPs were not truely simultaneous.

Spatial Summation

EPSP  <  EPSP  + EPSP
r e s A B

mV

t

rest.
pot.

AB

A

B

Soma

Dendrite

If the synapses are far from each other the amplitude will be
less at the first summing point. It will then further decay
until reaching the soma.

Consider 1:

simultaneous
inputs !

Summation
point

A

B

Consider 2: If the signals are not simultaneous then the sum will be smaller

mV

t

rest.
pot.

A B

The early signal (A) facilitates the later signal (B). Together the firing threshold
might be reached but not alone.

Temporal Summation

If the difference in arrival times is 
too large, temporal summation 
does not occur anymore !

mV

t

rest.
pot.

A B
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Edelman (Nobel laureate in Medicine) 
proposed the theory of neuronal 
group selection (TNGS), also known 
as Neural Darwinism, 

The Neural Code 

Edelman stated that DNA does not 
contain all information needed to code 
all brain connections. 
DNA provides basic species-related 
information exclusively. 

Living and dead cells are regulated 
by stochastic rules, therefore each 
brain is different from each other. Indeed, in the human brain there are 

1011 neurons, with 1015 synapses. 
DNA has 109 pairs of nucleotides 
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Neural Groups should be considered 
as the basic processing unit of the 
brain 

The Neural Code 

How to model Neural 
Groups in a Spiking Neural 
Network? 

Time must be taken into 
account 

Neural Groups are characterized by: 
 
-  Biological Selection (DNA) 
-  Experiential Selection 
-  Reentry 



Page § 42 

Spiking neural network 

The network consists of cortical spiking 
neurons with axonal conduction delays and 
spike timing-dependent plasticity (STDP). 

 

The network is sparse with 0.1 probability of 
connection between any two neurons. 

 

Neurons are connected to each other 
randomly 

Synaptic connections among neurons have 
fixed conduction delays, which are random 
integers between 1 ms and 20 ms. 
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STDP rule (spike-timing-dependent plasticity) 

Initially, all synaptic connections have equal weights. 

The magnitude of change of synaptic weight 

depends on the timing of spikes. 
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STDP rule (spike-timing-dependent plasticity) 

If the presynaptic spike arrives at the postsynaptic neuron before the 
postsynaptic neuron fires—for example, it causes the firing—the 
synapse is potentiated. 

 

If the presynaptic spike arrives at the postsynaptic neuron after it fired, that 
is, it brings the news late, the synapse is depressed.  
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delta waves (<4 Hz) 

Spiking neural network 
Inizialmente, tutte le connessioni hanno gli stessi pesi e la rete impiega diverso tempo 
per stabilizzarsi attraverso il potenziamento e la depressione dei pesi sinaptici. In un 
primo periodo quindi, la rete presenta un'attività ritmica di ampiezza elevata in un intorno 
di frequenza di circa 4Hz (onde delta). Questi ritmi somigliano ad uno dei quattro tipi di 
onde fondamentali del cervello chiamato onde di sonno profondo, perchè avvengono 
durante la fase del sonno senza sogni, nei neonati e in alcune malattie mentali. Queste 
tipologie di onde nei mammiferi derivano dal funzionamento del talamo che nel modello 
è simulato esclusivamente da un input regolare ogni millisecondo.

Addestramento: presenza di un ritmo di spiking

First Seconds of Simulation Polychronization 253
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Figure 5: Rhythmic activity of the spiking model is evident from the spike
raster. As synaptic weights are evolved according to STDP, initial delta fre-
quency oscillations (top, sec = 1) disappear, relatively uncorrelated Poissonian
activity (middle, sec = 100), and then gamma frequency oscillations (bottom,
sec = 3600) appear.
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Polychronization 253
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Spiking neural network 

First Minutes 
 of Simulation 

Caso di rete connessa casualmente:
pulse-coupled neural network (PCNN)

1000 neuroni:

800 eccitatori (RS e CH)
200 inibitori (FS)

I pesi delle connessioni 
sinaptiche fra i neuroni 

sono date da una matrice S 
cosicché il firing del j- esimo 

neurone viene pesato 
istantaneamente e 

selettivamente in ingresso 
ad ogni neurone 
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Polychronous Neural Group (PNG) 
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Characteristics of polychronous groups  

The groups have different  

Sizes 

Lengths 

Time spans 
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Representations of Memories and Experience 

Persistent stimulation of the network with two spatio-temporal patterns result in 
emergence of polychronous groups that represent the patterns. the groups activate 
whenever the patterns are present. 
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Simulation of Large-Scale Brain Models 

In 2005 Izhikevich finished simulation of a model that 
has the size of the human brain. The model has 

100,000,000,000 neurons (hundred billion or 10^11) 
and almost 1,000,000,000,000,000 (one quadrillion or 

10^15) synapses.  
It represents 300x300 mm^2 of mammalian thalamo-
cortical surface, specific, non-specific, and reticular 

thalamic nuclei, and spiking neurons with firing 
properties corresponding to those  recorded in the 

mammalian brain.  
 

The model exhibited alpha and gamma rhythms, 
moving clusters of neurons in up- and down-states, and 

other interesting phenomena 
  

One second of simulation took 50 days on a beowulf 
cluster of 27 processors (3GHz each). 
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A	stochas3ch	version	of	Izhichevich	Model	

If v>=30  
then {c -> v, u -> u+d  

Persistent Bursting Activity! 
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Cells in the Central Nervous Systems 

Neuron  
Electrical Activity 

Glia  
Biochemical Activity 

•  Astrocyte 
•  Oligodendrocytes 

•  Schwann Cell 
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Astrocytes……….most abundant glial cell type
Form anatomical link between neurons and arterioles

Radial astrocytes: surround ventricles
Protoplasmic astrocytes: in gray matter
Fibrous astrocytes: in white matter
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Function

Development Structural BBB

Metabolic support Homeostasis Signal



Page § 56 

(Before ~1990) Neurons are the only 
carriers of information in the brain. 

  
Glia cells exist only for metabolic support 

Synaptogenesis

For many years it was thought that process of synaptogenesis, maintenance,
and elimination of synaptic contacts was solely neural responsibility 



Page § 57 

Glutamate-dependent Astrocyte Modulation of Synaptic Transmission 
Between Cultured Hippocampal Neurons  

Parpura et al. introduced Bradykinin, an 
exogenous neuro-ligand, into the neuron-

astrocyte co-culture. This glutamate receptor 
agonist bound to metabotropic glutamate 

receptor sites on a distal Astrocyte. 
Intracellular [Ca++] rises, eventually 

propagating into a global wave.  

When [Ca++] rises in astrocytes adjacent to 
the co-cultured neurons, glutamate is 

released (through exocytosis) and binds to 
ionotropic glutamate receptors on the 

neural membrane. This opens Ca++ ion 
channels to, and extrasynaptic Ca++ flows 

into the neuron. 

Parpura measured neuronal [Ca++] after 
Bradykinin injection, and found that Ca++ waves in 
astrocytes induced a neural Ca++ rise. This leads 

to a greater potential for synaptic activity.  

To confirm that the increase in neuronal 
Ca++ was due to an astrocytic-dependant 
pathway (in contrast to synaptic), Parpura 

introduced a mGluR antagonist, d-
glutamylglycine, into the cell co-culture. 
As expected, neuronal [Ca++] remained 

constant. 
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Physiology 1/2:

’Early’ roles indicated for astrocytes

Before 1990: Structural support for neurons

1990-2000: “housekeeping” cells with active support roles

¾ Buffering and siphoning of [K+]out and [Ca2+ ]out after excessive firing

¾ Uptake of neurotransmitters

• glutamate (Pellerin and Magistretti, 1994), GABA,  

¾ Release of gliotransmitters

• glutamate (Parpura et al., 1994), ATP, D-serine, GABA, growth factors,   , Ca2+-binding 

buffers (2013)

¾ Respond to synaptic activity by increasing [Ca2+]i

¾ Glutamate-mediated modulation of synaptic transmission

• Concept of tripartite synapse (Araque et al., 1999).

5



Page § 59 

Then…the other half of the brain 
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Physiology 2/2:

Increasing number of functions indicated for astrocytes

6

Stimulation and inhibition of 
synaptic transmission

Neurogenesis and synapse 
formation

Homeostasis and survival

Control of CNS blood circulation

Neuronal metabolism

Induction and maintenance 
of synaptic plasticity

e.g. LTP, LTD, STDP,  

Homo/heterosynaptic
plasticity

Neurological disorders 
and neurodegenerative 

diseases



Page § 61 

Signalling

Neurotransmitter-Astrocyte R-Signalling-GAP junctions-gliotransmitters 

Tripartate synapse
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Metabolism

Brain represents approx 2% of total body mass, but consumes 20% of total energy
-decreases by 40% during sleep
-increases by 12% under cognitive stress

Energy for transmembrane ion gradients
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Glutamate (the 
conjugate base of 
glutamic acid) is 

abundant in the human 
body, but particularly in 
the nervous system and 
especially prominent in 

the human brain. 
It is the brain's main 

excitatory 
neurotransmitter 

Glutamate 
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Glutamate binds with receptor mGluR 

Series of chemical reactions 

 
Production of IP3 (inositol 1,4,5-trisphosphate) 

 

 
IP3 diffusion through cell cytoplasm 

 

IP3  binds with its receptors in the  
endoplasmic reticulum 
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The tripartite synapse 
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  IP3 receptors  release Ca2+in the  

endoplasmic reticulum 
  
 

Ca2+ in the endoplasmic reticulum  
create a gradient of Ca2+ concentration between the  

endoplasmic reticulum and the cell cytoplasm 

IP3 receptors are then re-activated and release 
Ca2+ in the cell cytoplasm 

An auto-catalytic process starts 
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The tripartite synapse 
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Over a certain threshold, [Ca2+] in the cell  
cytoplasm activates pumps bringing Ca2+  

in the endoplasmic reticulum and  
outside cells. 

INTRAcellular waves INTERcellular waves 
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The tripartite synapse 
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The tripartite synapse 
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Neuron-to-astrocyte signaling is central to the dynamic  
control of brain microcirculation 

Zonta et al., 2003 

Neural Activity 

Ca++ propagation throughout 
astrocytic syncytium 

[Ca++] at endfeet attached  
to endothelial cells 

Vesicular release of prostanoids  

Relaxation of capillary walls;  
decrease in vascular tone 

Bloodflow 
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Structural

 Calcium waves propagate through the syncytium GAP JUNCTIONS, a
non-synaptic means of communication within the brain 

 Waves can be induced by mechanical stimulation and by glutamate 

 Influx of calcium leads to calcium-sensitive release and uptake of
ions and neuromodulators 

Astrocytes and calcium
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Ca2+ Waves 
(Cornell-Bell et al., M. Sanderson, A. Charles) 

Speed: ~20µm/s 

Range: a few hundred µm 

Time scale: seconds to minutes 
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Ca2+ waves 
have been  
observed 

in the  
hippocampus 
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Relative ratios of astrocytes to neurons 

Morphology:

Number of astrocytes and connectivity

See, e.g., Bushong et al. 2002, Oberheim et al. 2006, Verkhratsky et al. 2011, Molofsky et al. 2012, Kanski et al. 2013.

Human cortical astrocyte
(Bruno Pascal)

Cortical neuron

4

Human

3 : 1

Cat

1 : 1

Lower animals

<1 : 1

Human

3 : 1

Cat

1 : 1

Lower animals

<1 : 1

A single astrocyte can cover 20 000 – 100 000 synapses in rodents...
 and possibly up to 2 million in primates and humans.

A single astrocyte can cover 20 000 – 100 000 synapses in rodents...
 and possibly up to 2 million in primates and humans.



Page § 76 

Astrocytes and Epileptic Seizures 
 

Epileptic discharges through local paroxysmal depolarization shift (PDS) driving 
groups pf neurons into synchronous bursting activity. 

- - Ca2+ increased in Astrocyte 
  

– PDS - like epileptiform responses 
   in neighboring neurons 

 
– PDS in nearby neurons in in-vitro 

   epilepsy models with blocked 
   synaptic transmission 

 
– Anti-epileptics reduced Ca2+ 

   signal in astrocyte 

Tian et al.:An astrocytic basis of epilepsy (Nature Medicine, 11 (2005) 
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Modelling neuron-astrocyte interactions 

where [IP3]* is the equilibrium 
concentration. τ is the IP3 degradation 
time constant and r is the production 
rate of IP3 in response to an action 
potential 

Wang S.S.H., Alousi A.A. and Thompson S.H. The life time of inositol 1,4,5-triphosphate 
in single cells. J. Gen. Physiol., 105:149-171, 1995 

The intracellular IP3 production can be modelled by: 
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Modelling astrocyte-astrocyte interactions 

Where i indicate the ith astrocyte, k is 
the diffusion coupling coefficient 
through the gap-junction and <j> is 
the contribution of the neighbouring 
astrocytes 

Robb-Gaspers L.D. and Thomas A.P. Coordination of calcium signaling by 
intercellular propagation of calcium waves in the intact liver. J. Biol. Chem., 270, 
8102-8107, 1995. 
 
Ullah G., Jung P. and Cornell-Bell A.H.  Anti-phase calcium oscillations in astrocytes 
via initosl (1, 4, 5)-triphosphate regeneration. Cell Calcium, 39, 197-208, 2006 

The flux of IP3 can be modelled by: 
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The Li-Rinzel model of Astrocyte  
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Experimental model for astrocyte-neuron interaction 

Experimental data can be useful to model the correlation of the Ca2+ 
concentration into the astrocyte environment with the weak additional 
synaptic currents coming from the neighbouring astrocytes 

Nadkarni S. and Jung P., Spontaneous oscillations of dressed neurons: a 
new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101(4), 2003 

Iastro ! 2:11!"lny# lny; y! $Ca2%&=nM'196:69 (9)

with the Heaviside function !"x#. The recorded total
current (measured in pA) was converted to a current
density measured in !A=cm2 by assuming a spherical
neuron with 50 !m diameter.

We characterize the prediction of our dressed neuron
model by the time course of the relevant observables, the
neuronal membrane potential v, the calcium concentra-
tion in the astrocytic environment [Ca2%] and the IP3
concentration [IP3]. We stimulate the neuron by a dc
current, Iext ! 10 !A=cm2. In response to this current
the neuron exhibits a periodic spike train. The concen-
tration of IP3 is initially at its experimentally determined
resting value of 0:16 !M. In Fig. 2, top panel, we show
the time course of the variables with an IP3 production
rate of rIP3 ! 0:2 !M=s#. While the neuron is stimulated
(40 s), the concentration of IP3 builds but does not be-
come large enough to induce Ca2% oscillations. After
40 s, the dc stimulation of the neuron is turned off. As a
consequence the concentration of IP3 and Ca2% decreases
and the neuron stops firing. At larger values of the IP3
production rate, Ca2% oscillations can be induced and
there is a delay between the end of the dc stimulus and
the termination of neuronal firing since the neuron stops
firing only when the concentration of Ca2% falls below
a threshold. In Fig. 3, top panel, we show the bifurcation
diagram for rIP3 ! 0:2 !M=s which resembles the bifur-
cation diagram of the isolated HH-neuron. Periodically
repetitive action potentials coexist with a steady-
state membrane potential for ( 6:2 !A=cm2 < Iext <
9:66:2 !A=cm2. For Iext > 9:66:2 !A=cm2 the steady
state becomes unstable. What is interesting is that the
coexistence regime of the steady state and the limit cycle
extends to smaller values of the injected current. This
means that the dressed neuron is more likely to sponta-
neously oscillate with smaller stimuli. If the generation

rate of of IP3, rIP3 , is larger than 0:8 !M=s, the neuron can
oscillate spontaneously without external stimulus. In
Fig. 2, bottom panel, we show the time course of the
concentrations of IP3 and Ca2% for rIP3 ! 0:8 !M=s and
the neuronal membrane potential.We stimulate the neuron
for 10 s starting at rest. As the concentration of IP3 builds
up, the Ca2% concentration in the astrocytes starts to
oscillate. The concentration of IP3, however, increases
beyond the second Hopf bifurcation of the Ca2% dynam-
ics described by the Li-Rinzel model and the oscillations
cease. When the dc stimulation of the neuron is termi-
nated, the feedback from the astrocyte to the neuron is
strong enough to maintain the neuronal oscillations in-
definitely. In the bifurcation diagram (see Fig. 3, bottom
panel), the coexistence of the limit cycle (spiking neuron)
extends now to vanishing external current and beyond.
The dressed neuron can spike spontaneously turned on by
perturbations or even noise.

It has been reported [12–14] that mGluRs are overex-
pressed in astrocytes from epileptic foci of humans suf-
fering from temporal lobe epilepsy. Overexpressed
mGluRs are associated with more glutamate binding

FIG. 1. Simultaneus recordings (data from Fig. 5B of [2]) of
astrocytic calcium and total inward current in the neuron are
shown by open circles while the fit by Eq. (9) is shown as a solid
curve.

FIG. 2. The time course of the IP3 and Ca2% concentrations
(in nM) in the astrocyte are compared with the neuronal
membrane potential v (in mV). Top panel: rIP3 ! 0:2 !M=s,
the neuron is stimulated with a dc current, Iext ! 10 !A=cm2

for 40 s. Bottom panel: rIP3 ! 0:8 !M=s. The neuron is stimu-
lated with a dc current, Iext ! 10 !A=cm2 for 10 s. The arrow
indicates the end of the stimulation period. The inset describes
a small time segment of the neuronal firing.

P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2003VOLUME 91, NUMBER 26

268101-3 268101-3
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NEURO-ASTROCYTE 

MODELS   
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Neuro-Astrocyte 
using 

Hodgkin  
Huxley 
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A modified Izhikevich neuronal model 
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Dressed Neuron 
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Nadkarni and Jung 
Phys. Rev. Letters 2003 

Neural  
Firing 

[IP3] increases 
 

[Ca2+] quite 
stationary 

 
Iastro=0 
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10 sec exogenous  
Current to neuron 

 

[IP3] increases 

 

Ca2+ oscillations start 
 

  

Nadkarni and Jung 
Phys. Rev. Letters 2003 

Astrocyte feedback self-sustains Neural activity! 
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Nadkarni and Jung 
Phys. Rev. Letters 2003 
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Neuron-Astrocyte interaction 

rIP3 
 
 

Ineuron 
variables 

Valenza & De Rossi et al. 
Neural Networks 2011 
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Fig. 3. Three Iastro(t) behaviors with In(t) and rIP3 in Zone 0, Zone 1 and Zone 2.

Fig. 4. rIP3 � Iastro characteristics for various values of In .

In order to assess hsyn(t), a fitting procedure for Iastro(t) time
course data obtained by Nadkarni and Jung and LR equations was
carried out. The most suitable equations were the following:

hsyn(t) =

8
>>><

>>>:

0 if In(t)  Ith1
⇥(t � D1) · A1 · sin(H) if Ith1 < In(t)  Ith2

⇥(t � D2) · I⇤astro + A2 · e� t
⌧ · sin(2⇡ f · t)
In

if In(t) > Ith2

(14)

where time t is expressed in milliseconds and ⇥ is the Heaviside
function.

In Zone 1, we calculated the following fitting relations:
8
>>>><

>>>>:

A1 = k3(In � Ith1)
k4

In
k3=a00 + a01rIP3 + a02r2IP3 + a03r3IP3 + a04r4IP3
k4 = a10 + a11rIP3 + a12r2IP3 + a13r3IP3 + a14r4IP3
D1 = a20 + a21A1 + a22A2

1 + a23A3
1 + a24A4

1.

(15)

The function H is the following triangular periodic waveform:

H =
( ⇡

L · T · t if t  T1
0 if t > T2

(16)

where the triangular waveform period is T = T1 + T2 and:
⇢
T = a30 + a31A1 + a32A2

1
L = a40 + a41A1 + a42A2

1.
(17)
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Our model: toward a transistor-based approach 
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where s1 and s2 are the threshold for the zone 0,1,2 

Valenza & De Rossi et al. 
Neural Networks 2011 

Novel Spiking Neuron-Astrocyte Networks based on Nonlinear

Transistor-like Models of Tripartite Synapses

Gaetano Valenza⇤, Member, IEEE, Luciano Tedesco, Antonio Lanatà, Member, IEEE,
Danilo De Rossi, and Enzo Pasquale Scilingo, Member, IEEE

Abstract— In this paper a novel and efficient computa-

tional implementation of a Spiking Neuron-Astrocyte Network

(SNAN) is reported. Neurons are modeled according to the

Izhikevich formulation and the neuron-astrocyte interactions

are intended as tripartite synapsis and modeled with the previ-

ously proposed nonlinear transistor-like model. Concerning the

learning rules, the original spike-timing dependent plasticity

is used for the neural part of the SNAN whereas an ad-hoc

rule is proposed for the astrocyte part. SNAN performances

are compared with a standard spiking neural network (SNN)

and evaluated using the polychronization concept, i.e., number

of co-existing groups that spontaneously generate patterns

of polychronous activity. The astrocyte-neuron ratio is the

biologically inspired value of 1.5. The proposed SNAN shows

higher number of polychronous groups than SNN, remarkably

achieved for the whole duration of simulation (24 hours).

I. INTRODUCTION

Human brain information processing is a complex phe-
nomenon in which neurons and astrocyte are thought to be
the mostly involved cells. In particular, considering a tripar-
tite view of synapses, the fundamental brain activity involves
two neurons (pre- and post-synaptic) whose signaling is
modulated by astrocytes. The pre-synaptic neurotransmitters
in the synaptic cleft, in fact, stimulate specific inositol 1,4,5-
trisphosphate (IP3) production in the astrocyte leading intra-
and extra cellular calcium oscillations [1], [2]. Consequently,
the post-synaptic neural activity is modulated in amplitude
and frequency [3]. Several biophysical models have been
proposed in the literature to mathematically describe these
dynamics along with others biochemical events (e.g. cas-
cade of Glutammate, etc.) [1]–[7], especially focusing on
the evoked calcium responses in astrocytes [1], [5] and
its coupling with the synaptic transmission [2], [3]. The
vessel contribution has been also taken into account [8].
Concerning computational models, simple minimal networks
of two coupled units, a neuron and an astrocyte (the so-called
dressed neuron), have been recently investigated [4], [6].
However, none of the mentioned models have been applied to
implement more complex artificial spiking neuron-astrocyte
network (SNAN), although the role of astrocytes has been
already proven to improve the traditional neural network
performances [9], [10]. Therefore, this study aims at the
implementation of a novel SNAN based on the nonlinear
Transistor-Like Model (TLM) of dressed neuron. This choice

* Corresponding Author.
G. Valenza, A. Lanatà, E.P. Scilingo, and D. De Rossi are with the

Research Center E. Piaggio and also with the Department of Information
Engineering, University of Pisa, Pisa, Italy (e-mail: g.valenza@ieee.org;
{a.lanata, e.scilingo, d.derossi}@centropiaggio.unipi.it).

is justified by the fact that TLM has been proven to be
computational efficient and its output is similar to the more
biologically inspired Li-Rinzel model [6]. TLM assumes
the dressed neuron dynamics similar to the nonlinear input-
output characteristics of a bipolar junction transistor in which
the pre-synaptic current and the IP3 production rate charac-
terize the astrocyte current. The proposed SNAN considers
both Regular Spiking (RS) and Fast Spiking (FS) behavior of
neurons. RS and FS, in fact, are the major class of excitatory
and inhibitory neurons in the neocortex, respectively. In
the SNAN implementation, both neurons are mathematically
described using the Izhikevich equations [11]. A pure spiking
neural network (SNN) was considered as gold standard for
comparison reasons. More specifically, SNN is constituted
by RS and FS neurons with axonal conduction delays and
spike-timing-dependent plasticity (STDP) learning rule [12].
It has been demonstrated that such a network is able to
polychronize, i.e., neurons spontaneously self-organize into
groups and generate patterns of stereotypical polychronous
activity [12]. Accordingly, the SNAN and SNN performances
were evaluated in terms of number of polychronous groups
generated by the network.

Starting from the TLM vision of dressed neuron, section
II reports on the implementation of the spiking neuron-
astrocyte network. Experimental results are reported in sec-
tion III pointing out that the inclusion of astrocyte sig-
nificantly improves the network performances in terms of
number of polychronous groups.

Fig. 1. Graphical representation of the dressed neuron as a nonlinear
bipolar junction transistor [6]

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013
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The Neuron-Astrocyte IS a non-linear transistor 

Ineuron 
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The role of Astrocytes:

In summary as input-output model: 

Neurotransmitters 

Inositol 1,4,5-trisphosphate (IP3) 
 rate of production (rIP3) 

Calcium 
Oscillation 

Pre-synaptic Neuron 

Post-synaptic 
Neuron 
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Develop a novel and efficient computational 
implementation of a Spiking Neuron-Astrocyte 
Network (SNAN) 

Are SNAN possible? 

http://www.unn.ru/neuro/eng/research-eng/project-neuro-glia-modeling.html 



Page § 97 

Policronization in SNN 

Edelman Theory of neuronal group selection 
(TNGS, Neural Darwinism) 

I z h i k e v i c h 
Network Axonal Conduction 

Delays 
Spike-Timing-Dependent 
Plasticity (STDP) 

Policronization 
Izhikevich 2006 
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Biologically Inspired Astrocyte-Neuron ratio of 1.5 

Neural weight are updated according to the 
Spike-Timing-Dependent Plasticity (STDP). 

rIP3 values are updated according to the 
following rule: 

Two learning rules: 
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Inizialization of neurons 

Neural activity only (30s) 

Inizialization of astrocytes 

Simultaneous Activity of Neurons 
and Astrocytes 



Page § 100 

24h simulation 3h 

6h 

12h 

18h 

24h 

Network dimension 
Neurons 1000 

Astrocytes 1500 

Evaluations after 
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SNAN with 1000 
Neurons and 1500 

Astrocytes 

SNN with 1000 neurons 
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Comparison, in terms of number of polychronous groups, of the 
network implementations.  

SNN 

SNAN 


