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Conductance-based Neuron Models 



Reversal Potential (Repetita) 

 The reversal potential of an ion is its Nernst potential 

 

 

 If Δ𝑢 <  𝐸[ion]  ions flow into the cell 

 If Δ𝑢 >  𝐸[ion]  ions flow out of the cell 
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 Ion channels: try to equilibrate 
the concentration of ions, i.e. try 
to meet the reversal potential 

 Ion pumps: active pumps that 
balance the flow of ions 

 



Equivalent Circuit (Repetita) 

 Electrical properties of neurons’ membranes depicted in terms 
of the electrical circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 



Equivalent Circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 

inward current 

outward current 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 

inward current 

outward current 
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Equivalent Circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 

 Applied current 𝐼 
 

Using Kirchhoff’s Current Law (KCL): 
 



Conductances 
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Ion channels: 

 Large transmembrane proteins with aqueous pores 

 Electrical conductance of individual channels is controlled by gates 
(gating particles) 

 Gates  can change the state of the channel: open/closed 

 Gates can be sensitive to the membrane potential (voltage-dependent 
conductances), intracellular agents, neurotransmitters, …. 
 

non-Ohmic currents 
(conductances are not constant) 



Persistent Conductances 

 a voltage sensor is connected to a 
swinging (activation) gate that can 
open or close the pore 

 gate opening: activation of the 
conductance 

 gate closing: de-activation of the 
conductance 

 results in a persistent (or non-
inactivating) conductance 

 Probability of the channel to be 
opened: 𝑝 = 𝑛𝑘 
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gating variable: the probability that  
one of the k sub-units of the gate is 
opened 

Voltage dependency: 

depolarization of the membrane 
leads to increasing 𝑛 



Transient Conductances 

 Two gates regulates the channel:  
1 activation gate & 1 inactivation gate 

 The activation gate is opened with 
probability 𝑚𝑘 

 The inactivation gate (the ball) does 
not block the channel with probability 
ℎ 

 The channel is opened with probability 
𝑚𝑘ℎ 

 The channel opens transiently while 
the membrane is depolarized 
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Voltage dependency: 

Depolarization: increasing 𝑚, decreasing ℎ 

Hyper-polarization: decreasing 𝑚, increasing ℎ 
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The Hodgkin-Huxley Model 



The Hodgkin-Huxley Model 

 One of the most important models in Computational 
Neuroscience 

 Based on studies by Hodgkin and Huxley (in the 50s) on 
the squid axon 

 The squid axon has 3 major currents: 

 Voltage-gated persistent K+ current with 4 activation gates 

 Voltage-gated transient Na+ current with 3 activation gates and 
1 inactivation gate 

 Ohmic leak current (all the other ions) 
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Hodgkin-Huxley Model 
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leak current 



Hodgkin-Huxley Model 
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leak current 

 𝑚, 𝑛, ℎ - gating variables 

 α, β – empirical functions 
            adjusted by Hodgkin and Huxley 

 



Hodgkin-Huxley Model 
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The  equations for the gating variables can be rewritten as 

where: 

 𝑛0 𝑡 ,𝑚0(𝑡), ℎ0 𝑡  
asymptotic values 

 τ𝑛 𝑡 , τ𝑚(𝑡), τℎ 𝑡  
time constants 



Hodgkin-Huxley Model – Dynamics 
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 Sodium (Na+) – inward current: 

 Activation increases for increasing membrane potential 

 Inactivation increases for increasing membrane potential 

 BUT: activation is faster than inactivation (transient current) 

 Potassium (K+) – outward current: 

 Activation increases for increasing membrane potential 

 BUT: activation is relatively slow (slower than activation of Na+) 

n → K+         m, h → Na+  

 

asymptotic values time constants 



Hodgkin-Huxley Model – Spike Generation 
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 An external input (e.g. an EPSP) leads to a depolarization (u increases) 

 Conductance of Na+ increases rapidly, Na+ ions flow in the cell and 𝑢 increases even further 

 If the feedback is strong enough the action potential is initiated 

 At high values of depolarization, the Na+ current is stopped by the inactivation gate (ℎ →0), 
conductance of K+ increases and K+ ions flow outside the cell 

 The membrane is re-polarized, with a negative overshoot (refractoriness)  

 

 Threshold behavior: if the stimulating input is below a certain amplitude the action potential 
is not initiated and the membrane is re-polarized 

 



The Hodgkin-Huxley Model - Summary 
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 Conductance-based neuron model 

 Processes that regulate the voltage-dependent K+ and Na+ conductances well described 

 Biophysical mechanisms responsible for action potentials explicitly included in the 
mathematical model 

 Accurate biological realism, BUT slow and difficult to analyze. 
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Formal Spiking Neuron Models 



Phenomenological Spiking Neuron 

 Neuron models can be simplified and simulations can be 
accelerated if the biophysical mechanisms of spike-
generation are not included explicitly in the model 

 Formal threshold models of neuronal firing: 

 Spikes are stereotyped events that occur when the membrane 
potential crosses the threshold from below 

 

 

 

 Spikes are fully characterized by their firing time 

 Model only the sub-threshold dynamics 

25 



What does a neuron do? 
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Voltage 

Time 

Input 

Voltage 

Simplest Idea: an Integrator 

 



Integrate-and-Fire Model 

 The most simple case: all membrane conductances are 
ignored 

 The corresponding equivalent (simplified) circuit only 
contains a capacitor 
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 From the definition of the capacity: 

 KCL: 

 Spikes are formal events characterized by the firing time 

 

 After the spike the potential is reset to 𝑢𝑟 

 

 Absolute refractory period: after the spike, the integration 
is suspended for  

 



Integrate-and-Fire Model 

 Equations 

 

 

 

 
 

 Suppose a constant input current 𝐼0is applied (e.g. an EPSP), and the last 

spike occurred at time 𝑡(1): 
 
the time course of the membrane potential can be obtained by integration 

in the time interval 𝑡(1); 𝑡  
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𝑢𝑟 is often set to 0 



Leaky Integrate-and-Fire Model 

 The entire membrane conductance is modeled as a single 
leakage term 

 Assumption: the conductances are all constant 
(true for small fluctuations around the resting membrane 
potential) 

 Corresponding equivalent circuit: a capacitor in parallel 
with a resistor 
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Leaky Integrate-and-Fire Model 

 Time course of the membrane potential? 

 Suppose a constant input current 𝐼0is applied and the 

last spike occurred at time 𝑡(1)  

 𝑢(𝑡)??? 
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First-Order linear differential equation (with initial condition 𝑢(𝑡(1)) =  𝑢𝑟 = 0) 



Leaky Integrate-and-Fire Model 

 Time course of the membrane potential? 

 Suppose a constant input current 𝐼0is applied and the 

last spike occurred at time 𝑡(1)  

 𝑢(𝑡)??? 
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First-Order linear differential equation (with initial condition 𝑢(𝑡(1)) =  𝑢𝑟 = 0) 

(The membrane potential asymptotically approaches 𝑅𝐼0) 



Leaky Integrate-and-Fire Model 

 When will next spike occur? 
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Firing rate (with refractory period) 

without refractoriness 

with refractoriness 
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Izhikevich Model 



Simple Spiking Models 

 Modeling the dynamics of excitable neurons 

 Fast activation of Na+ channels 

 Slow inactivation of Na+/activation of K+ 

 Dynamical system with 2 variables 

 One variable for the fast voltage increase 

 One recovery variable for slow voltage decrease 

 In many cases the sub-threshold dynamics leading to the 
action potential are more important than the shape of the 
action potential itself 

 Izhikevich model 
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Neuron Models – Biological Plausibility vs Cost 
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Izhikevich Model 

 Two dimensional system of ordinary differential equations 
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 𝑢 is the membrane potential, 

  𝑟 is a recovery variable 
(Na+ inactivation/K+ activation) 
provides negative feedback to 𝑢 

 𝑎, 𝑏, 𝑐, 𝑑 are the parameters of the 
model 

 𝐼 is the applied current 

If 𝑢(𝑡)  ≥  30 mV 



Izhikevich Model 

 Two dimensional system of ordinary differential equations 
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If 𝑢(𝑡)  ≥  30 mV 

Often in literature: 

 v is the membrane potential 

 u is the recovery variable 



Neuronal Dynamics 

 The behavior of a neuron does not depends only on its 
electrophysiological properties 

 Two neurons with the same electrophysiological 
properties can respond differently to the same input 

 Neurons can be thought as dynamical systems 

 Dynamical properties of the neurons have a major role 
Especially bifurcation dynamics 
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A bifurcation occurs when a small 
change to the parameter values of 
a system results in a sudden 
qualitative change in its behavior 



Neuronal Dynamics 

 Neurons are excitable because they are near a transition 
(bifurcation) between resting and sustained spiking activity 
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The system is excitable because its equilibrium is near a bifurcation 



Neuronal Dynamics 

 Four generic bifurcations 
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 Monostable: the neuron does not 
exhibits the presence of resting and 
tonic spiking 

 Resonator: there exist small amplitude 
oscillations of membrane potential 



Neuronal Dynamics 

 Integrators vs Resonators 
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Firing Patterns 
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 The most fundamental classes of firing patterns are just 6 



Neuro-Computational Features 
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 20 Most prominent features of 
biological spiking neurons 

 The Izhikevich model can simulate 
all of them 

LAB 

 Izhikevich’s book – Chapter 8 

 Papers: 
E.M. Izhikevich, "Which model to use for cortical 
spiking neurons?." IEEE transactions on neural 
networks 15.5 (2004): 1063-1070. 
 
E.M. Izhikevich, "Simple model of spiking 
neurons." IEEE Transactions on neural networks 
14.6 (2003): 1569-1572. 

 web: 
http://izhikevich.org/publications/whichmod.htm 
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Which Model to Use for Cortical Spiking 
Neurons? 
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