

Neural Modeling and Computational Neuroscience

Claudio Gallicchio

Contact Information

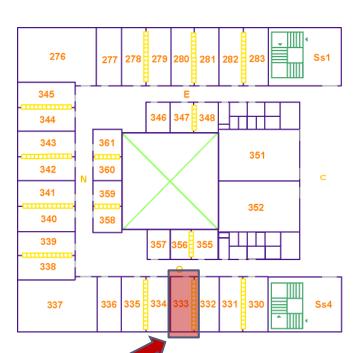
Claudio Gallicchio, Ph.D.
PostDoc Research Fellow
Computational Intelligence and Machine Learning Group
http://www.di.unipi.it/groups/ciml/

Dipartimento di Informatica - Universita' di Pisa Largo Bruno Pontecorvo 3, 56127 Pisa, Italy — <u>Polo Fibonacci</u>

web: www.di.unipi.it/~gallicch

email: gallicch@di.unipi.it

tel.:+390502213145



CNS mailing list

- Please, send asap to Prof. Alessio Micheli (micheli@di.unipi.it) an email:
 - ▶ **Subject:** [CNS-2017] student
 - Corpus (email text):
 - Name Surname
 - Master degree programme (Bionics eng. or Computer Science?)
 - Any note you find useful for us

Thank you.

Neuroscience modeling

- Introduction to basic aspects of brain computation
- Introduction to neurophysiology
- Neural modeling:
 - Elements of neuronal dynamics
 - Elementary neuron models
 - Neuronal Coding
 - Biologically detailed models:

the Hodgkin-Huxley Model

- Spiking neuron models, spiking neural networks
- Izhikevich Model
- Introduction to Reservoir Computing and Liquid State Machines
- Introduction to glia and astrocyte cells, the role of astrocytes in a computational brain, modeling neuron-astrocyte interaction, neuronastrocyte networks,
- The role of computational neuroscience in neuro-biology and robotics applications.

Neuroscience modeling

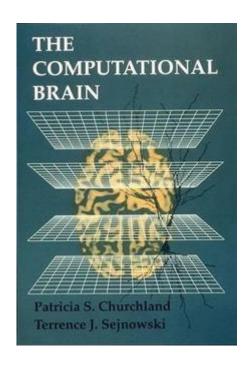
- Introduction to basic aspects of brain computation
- Introduction to neurophysiology
- Neural modeling:
 - Elements of neuronal dynamics
 - Elementary neuron models
 - Neuronal Coding
 - Biologically detailed models:

the Hodgkin-Huxley Model

- Spiking neuron models, spiking neural networks
- Izhikevich Model
- Introduction to Reservoir Computing and Liquid State Machines
- Introduction to glia and astrocyte cells, the role of astrocytes in a computational brain, modeling neuron-astrocyte interaction, neuronastrocyte networks,
- The role of computational neuroscience in neuro-biology and robotics applications.

References

P. Churchland, T.J. Sejnowski. The computational brain. MIT press, 1992.

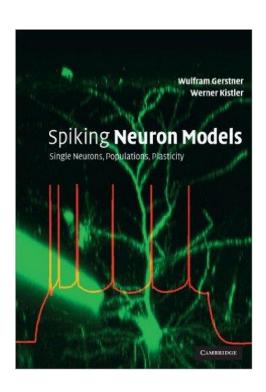


Chapters 1, 2

References

W. Gerstner and W.M. Kistler, Spiking Neuron Models: Single Neurons, Population, Plasticity. Cambridge Univ. Press, 2002

on-line at: http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html

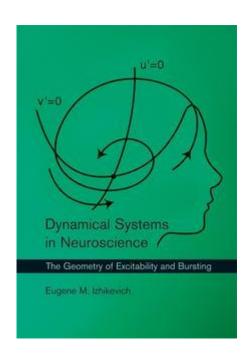


Chap. 1

Chap. 2 – Sect. 2.1

References

E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT press, 2007



Sections 1.1, 2.1

The Computational Brain and Neurophysiology

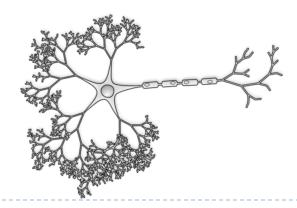
Computational Neuroscience

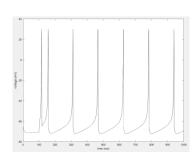
▶ Aim

- Discover and study the properties that characterize the mechanisms of data processing that take place in the brain.
- Study how networks of neurons can produce complex effects, such as vision, learning, memory,...

Focus on neurons

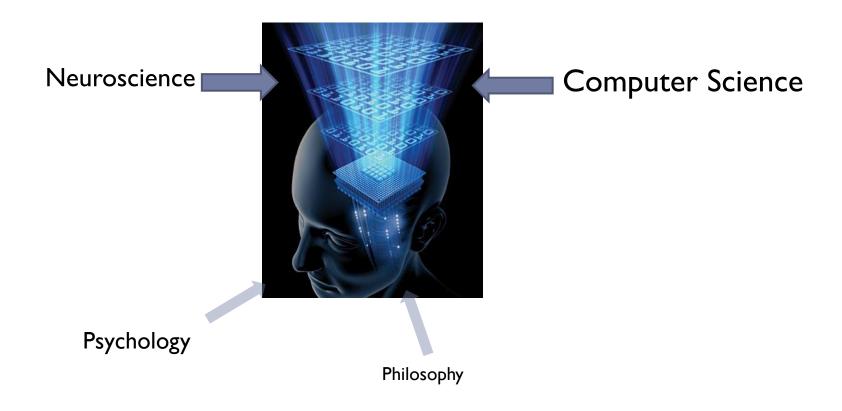
Brains are aggregations of neurons, cells with the peculiar ability to communicate by means of voltage propagation





Computational Neuroscience

Interdisciplinary subject



Design of Neural Networks/Interdisciplinarity

Neurobiological Analogy – Neural Networks

- From neurobiological point of view:
 - look at Artificial Neural Networks as a research tool to interpret neurobiological phenomena
- From a Machine Learning point of view:
 - look at neurobiology for new ideas to solve problems

Aim

Study biologically plausible mathematical models able to simulate neural dynamics

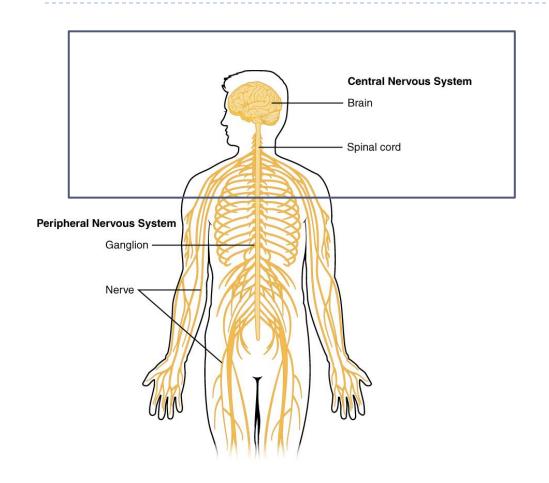
The Computational Brain

- ▶ The brain itself can be viewed as a computer
 - Organic constitution, complex, non-linear, parallel data processing
 - A collection of highly specialized interconnected computational sub-systems
 - Plasticity allows to adapt the nervous system to its environment
 - Not only a cognitive device: needs to cope with thermoregulation, growth, reproduction, respiration, regulation of hunger and thirst, sleep-awake control, etc.
 - Limitations and constraints: time (computation needs to be fast!), space, energy consumption, etc.

The Computational Brain

- ▶ The brain itself can be viewed as a computer
 - Properties of the proof that neural networks are
 - collection of highly speffectiventerconnected computational sub-systems
 - Plasticity allows to adapt the nervous system to its environment
 - Not only a cognitive device: needs to cope with thermoregulation, growth, reproduction, respiration, regulation of hunger and thirst, sleep-awake control, etc.
 - Limitations and constraints: time (computation needs to be fast!), space, energy consumption, etc.

Central Nervous System





Gray Matter

Neurons' body cells

White Matter

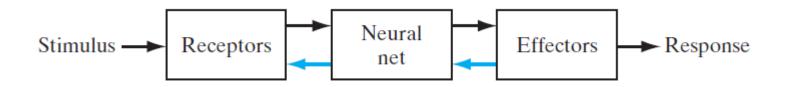
Neurons' axons

Cerebral cortex

Outer layer of the neural tissue in the brain

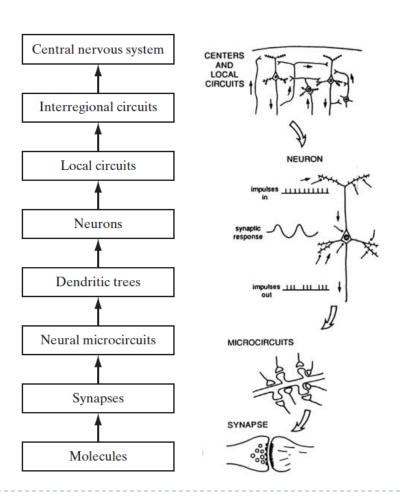
Model of the Central Nervous System

- Brain/CNS Neural Net
 - Continually receives and processes information
- ▶ PNS Receptors/Effectors
 - Converts external stimuli into electrical pulses
 - Convert electrical pulses into discernible responses



Feed-forward / Feedback transmission of the information

Hierarchical Organization



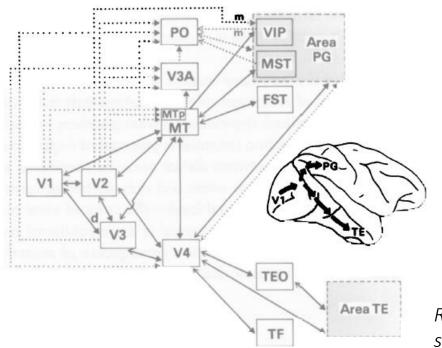
Exploit Geometric properties in the elaboration: spatial proximity allows to efficiently organize the elaboration of the information

Hierarchical Processing

- Layered Organization
- From an anatomical point of view:
 - The higher the distance from the sensorial input, the higher the abstract level of processing of information

Feedback connections

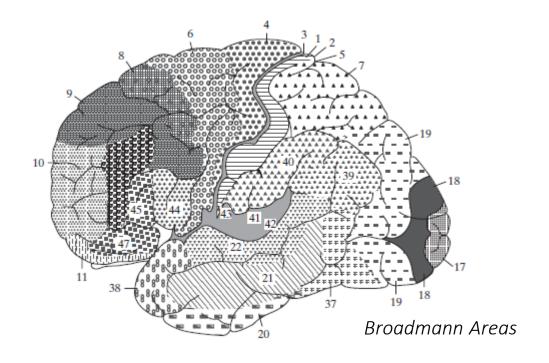
- Hierarchical processing with feedback
 - Reciprocal connections among different areas



Reciprocal connections among some of the visual cortex areas

Specialization of Functions

Different regions of the nervous system are specialized to different functions



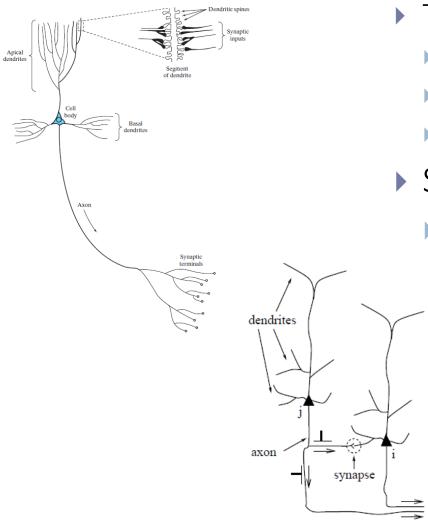
Numbers

- ▶ 10¹² neurons in a human nervous system
- ▶ 10¹⁵ synapses
- In a mm^3 of cortical tissue:
 - ▶ 10^5 neurons and 10^9 synapses (≈1 synapse/ μm^3)
- ► Each cortical neuron is connected to 3% of the neurons in

the surrounding mm^3

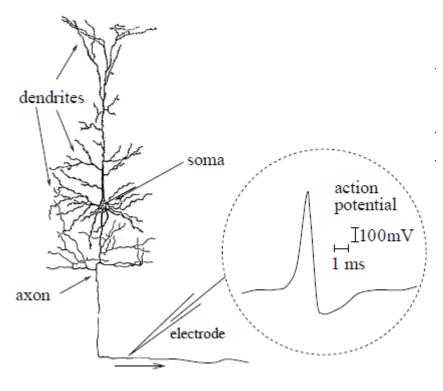
Neural Modeling: Basics

The Ideal Spiking Neuron



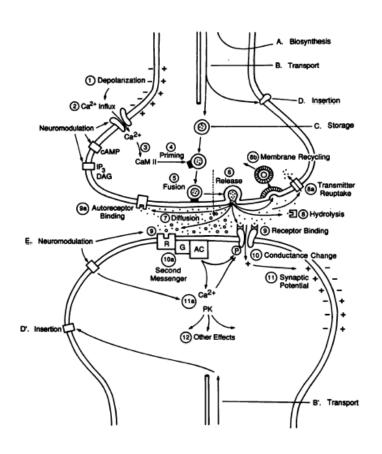
- Three functionally distinct parts:
 - **Dendrites**: input devices
 - **Soma**: central processing unit
 - Axon: output device
- Synapse
 - Junction betweena pre-synaptic neuron anda post-synaptic neuron

Action Potentials or Spikes



- Spikes: elementary units of neuronal signal transmission
- Electrical pulses:
 - ▶ 100 mV of amplitude
 - ▶ 1-2 ms of duration
- Spike train: chain of spikes emitted by a single neuron
- Absolute refractory period
 - Minimum distance between two spikes

Synapses



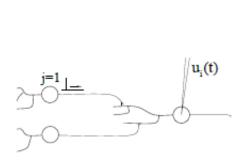
Contact axon – dendrite

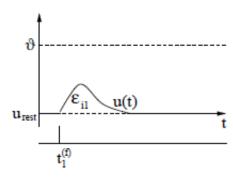
Chemical synapse:

- A presynaptic action potential triggers the release of neurotransmitters
- The neurotransmitters are detected by the postsynaptic cell membrane
- The permeability of the postsynaptic membrane to ions changes, leading to a change in membrane potential
- Post Synaptic Potential (PSP): the voltage response of the postsynaptic neuron to a presynaptic spike

Neuronal Dynamics

- ightharpoonup Membrane potential u(t)
 - Potential difference between the interior and the exterior of the cell
 - lacktriangle Constant value at rest: $u(t)=u_{rest}pprox -65mV$





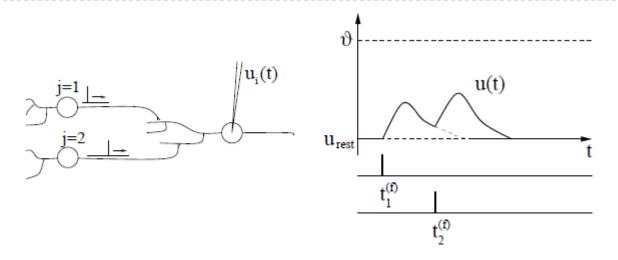
- At t = 0 neuron j fires
- PSP induced in neuron i

$$PSP_{ij} = \epsilon_{ij}(t) = u_i(t) - u_{rest}$$

> 0 Excitatory PSP (EPSP) depolarization

< 0 Inhibitory PSP (IPSP) hyperpolarization

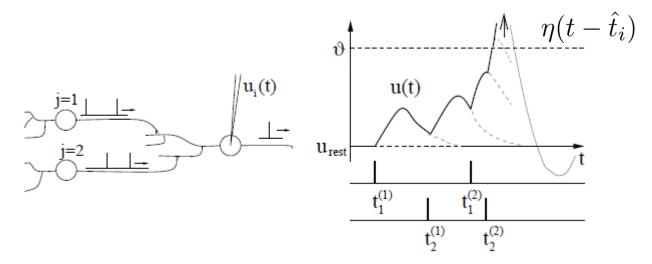
Firing Threshold and Action Potential



$$u_i(t) = \sum_j \sum_f \epsilon_{ij} (t - t_j^{(f)}) + u_{rest}$$

When there are only a few presynaptic spikes the membrane potential can be approximated by a linear combination of the individual PSP

Firing Threshold and Action Potential



When the membrane potential exceeds a threshold the dynamics changes:

- spike or action potential: sudden depolarization (100 mV excursion) of the membrane potential
- spike-afterpotential: after the spike there is a phase of hyperpolarization below the resting value

$$\hat{t}_i = \max\{t_i^{(f)}|t>t_i^{(f)}\}$$
 time of last spike of neuron i

Spike Response Model

$$u_i(t) = \underline{\eta(t - \hat{t}_i)} + \underline{\sum_j \sum_f \epsilon_{ij} (t - t_j^{(f)})} + \underline{u_{rest}}$$

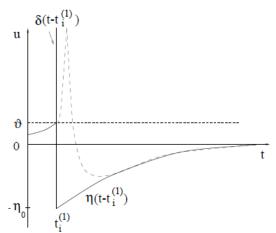
models the spike and the spike-afterpotential

PSPs

resting potential

If the membrane potential reaches the threshold from below then fire!

$$u_i(t) = \vartheta$$
 and $\frac{du_i(t)}{dt} > 0 \implies t_i^{(f)} = t$



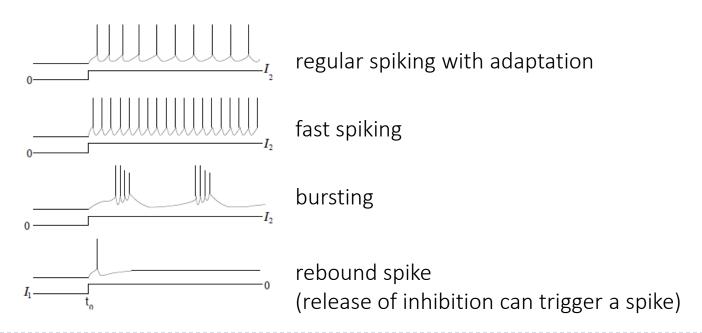
$$\frac{1}{\Delta t} \qquad \eta(t - t_i^{(f)}) = \begin{cases} 1/\Delta t & \text{for } 0 < t - t_i^{(f)} < \Delta t \\ -\eta_0 \exp\left(-\frac{t - t_i^{(f)}}{\tau}\right) & \text{for } \Delta t < t - t_i^{(f)} \end{cases}$$

for
$$0 < t - t_i^{(f)} < \Delta t$$

for $\Delta t < t - t_i^{(f)}$

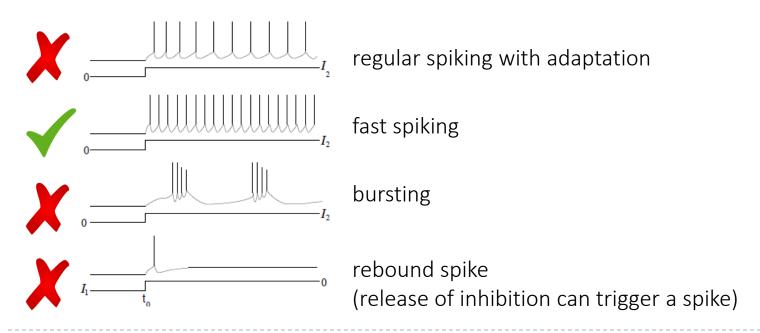
Limitations of the Spike Response Model

- Highly simplified model
 - PSP have always the same shape
 - Dynamics of the neuron depends only on the last firing time
- Not able to simulate many dynamical behaviors observed in biological neurons



Limitations of the Spike Response Model

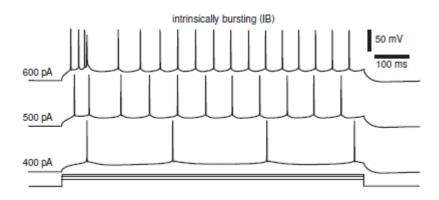
- Highly simplified model
 - PSP have always the same shape
 - Dynamics of the neuron depends only on the last firing time
- Not able to simulate many dynamical behaviors observed in biological neurons



Particular Neural Dynamics in the Neocortex

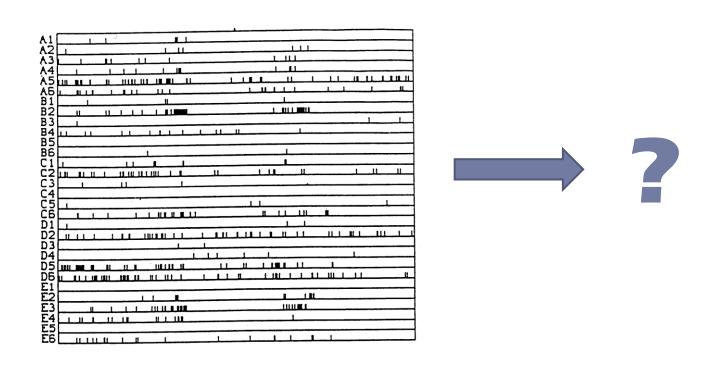
Only 6 fundamentals classes of firing patterns





Neural Coding

- ▶ How do neurons communicate?
- What is the information contained in a spatio-temporal pattern of spikes?



Rate Codes

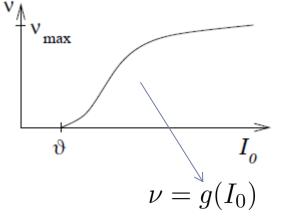
Code expressed by means of firing rate

▶ Rate as a spike count – average over time

$$\nu = \frac{n_{sp}(T)}{T}$$

Frequency – Current (FC) curve

Relation between the frequency of firing and the applied (input) current



transfer function of the neuron

Cons:

 Unlikely that neurons can wait to perform a temporal average

Pros:

Spikes are a convenient way to transmit a real value: just two spikes at 1/ v interval would suffice to encode the value v

Rate Codes

Rate as a spike density – average over K runs

$$\rho(t) = \frac{1}{\Delta t} \frac{n_K(t; t + \Delta t)}{K}$$

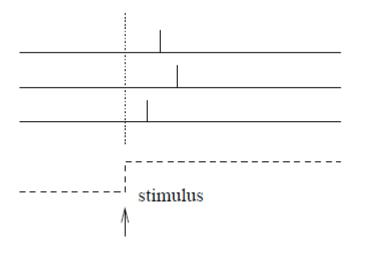
Rate as a population activity – average over N neurons

$$A(t) = \frac{1}{\Delta t} \frac{n_{\text{act}}(t; t + \Delta t)}{N}$$

- Idealized/not realistic (population of N identical neurons)
- May vary rapidly and reflect sudden changes in the stimulus conditions

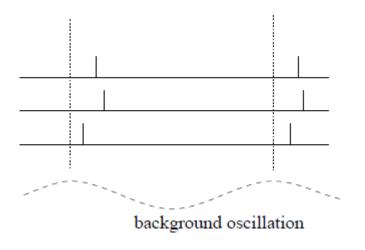
Neurobiological evidences say that spiking time has a role

Time to first spike



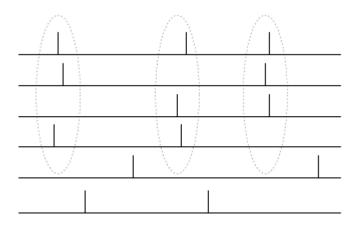
The information is encoded in the temporal distance of the neuron's response to the input

Phase



The information is encoded in the phase of the spiking time with respect to a background oscillation

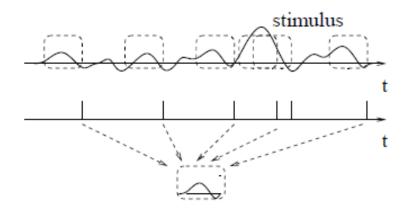
Synchrony



The information is encoded in the pattern of firing synchrony within a population of neurons in response to a stimulus

Reverse Correlation

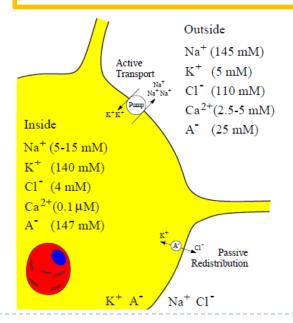
- Reconstruct the time course of the input stimulus that led to a postsynaptic spike
- Average the input under condition of an identical response spike-triggered average



Detailed Neuron Models

Action Potential and Ion currents

- From a biophysical perspective changes in the membrane potential u(t) are due to currents of ions that passes through the membrane
- Main ions that take part into this process
 - ▶ Sodium Na⁺, Potassium K⁺, Calcium Ca²⁺, Chloride Cl⁻

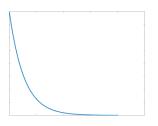


The difference of ions concentration between inside and outside the cell is responsible for the generation of an electrical potential

Nernst Potential

- > The probability that a molecule takes a state of energy E is proportional to $e^{-\frac{E}{kT}}$
- Given a positive ion with charge q, its energy in position x is E(x) = qu(x)
- The ions density in a region with potential u(x), n(x) is then proportional to

$$n(x) \propto e^{-\frac{qu(x)}{kT}}$$



The lower the potential, the higher is the density of positive ions

Nernst Potential

Nernst Potential

The ratio between the ions density at two points is

$$\frac{n_1}{n_2} = \frac{n(x_1)}{n(x_2)} = e^{-q\frac{u(x_1) - u(x_2)}{kT}} = e^{-q\frac{\Delta u}{kT}}$$

Thus, the concentration difference implies a voltage, called Nernst potential

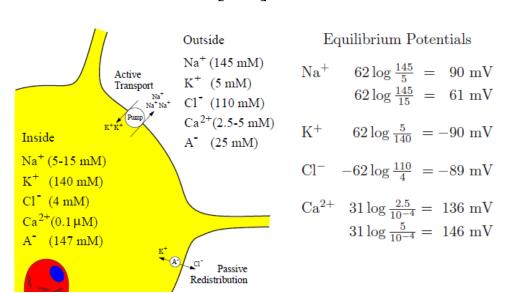
$$\Delta u = \frac{kT}{q} \ln \frac{n_2}{n_1}$$

Reversal Potential

The reversal potential of an ion is its Nernst potential

$$E_{[ion]} = \frac{kT}{q_{[ion]}} \ln \frac{n_{out}}{n_{in}}$$

- ▶ If $\Delta u < E_{[ion]} \Rightarrow$ ions flow into the cell
- ▶ If $\Delta u > E_{[ion]} \Rightarrow$ ions flow out of the cell

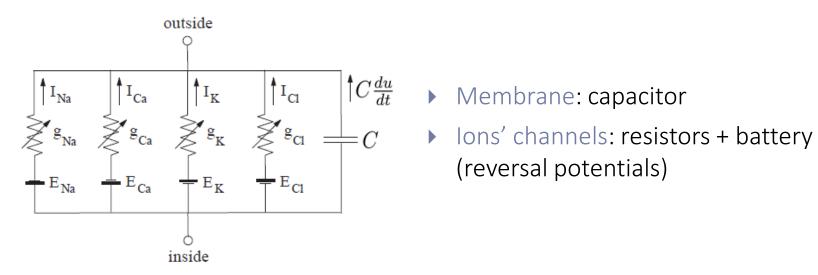


$$E_K < E_{Cl} < u_{rest} < E_{Na} < E_{Ca}$$

- Ion channels: try to equilibrate the concentration of ions, i.e. try to meet the reversal potential
- **lon pumps**: active pumps that balance the flow of ions

Equivalent Circuit

Electrical properties of neurons' membranes depicted in terms of the electrical circuit



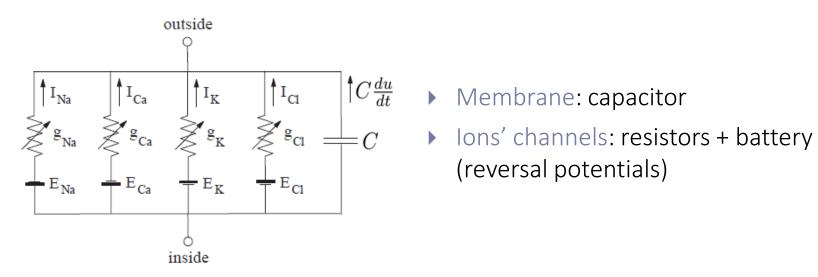
- (reversal potentials)

$$I_{[ion]} = g_{[ion]}(u - E_{[ion]})$$

What happens if a current I is applied?

Equivalent Circuit

Electrical properties of neurons' membranes depicted in terms of the electrical circuit



- (reversal potentials)

$$I_{[ion]} = g_{[ion]}(u - E_{[ion]})$$

TD BE CDNTINUED

...see you on Wednesday