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Neuroscience modeling

}Introduction to basic aspects of brain computation
+Introduction to neurophysiology
} Neural modeling:

Elements of neuronal dynamics

Elementary neuron models

Neuronal Coding

Biologically detailed models:
the HodgkirHuxley Model

Spiking neuron models, spiking neural networks
|zhikevichModel
+Introduction to Reservoir Computing and Liquid State Machines

+ Introduction to glia and astrocyte cells, the role of astrocytes in a
computational brain, modeling neur@strocyte interaction, neuren
astrocyte networks,

+ The role of computational neuroscience in nebr@ogy and robotics
applications.



Neuroscience modeling

} Introduction to basic aspects of brain computation
+Introduction to neurophysiology
}  Neural modeling:

Elements of neuronal dynamics

Elementary neuron models

Neuronal Coding

Biologically detailed models:
the HodgkirHuxley Model

Spiking neuron models, spiking neural networks
|zhikevichModel
+Introduction to Reservoir Computing and Liquid State Machines

+ Introduction to glia and astrocyte cells, the role of astrocytes in a
computational brain, modeling neur@strocyte interaction, neuren
astrocyte networks,

+ The role of computational neuroscience in nebr@ogy and robotics
applications.



References
P.ChurchlandT.JSejnowskiThe computational brain. MIT pre$992.

THE Chapters 1, 2
COMPUTATIONAL



http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html
http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html

References

W. Gerstner and WM. Kistler Spiking Neuron Models Single Neurons,
PopulationPlasticityCambridgdJniv Press2002

on-line at:

Chap. 1

Wulfram Gerstner

B  Chap. Z; Sect. 2.1
Sp|k|ng Neuron Models

s, Populat



http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html
http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html
http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html

References

EM. Izhikevich Dynamical Systemsin Neuroscience The Geometry of
ExcitabilityandBursting TheMITpress 2007

Sections 1.1, 2.1



http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html
http://lcn.epfl.ch/~gerstner/SPNM/SPNM.html

The Computational Brain and Neurophysiology




Computational Neuroscience

1 Aim
Discoverlnd studythe properties that characterize the
mechanisms of data processing that take place in the brain.
Study how networks of neurons can produce complex effects,
adzOK | a GAaAZ2YyZ tSFENYyAy3az YS
} Focusn neurons

Brains are aggregations of neurons, cells with the peculiar
ability to communicate by means of voltage propagation

-
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Computational Neuroscience

Interdisciplinary subject

Neuroscience Computer Science

Psychology

Philosophy
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Design of Neural Networkisiterdisciplinarity

Neurobiological AnalogyNeural Networks

1 From neurobiological point of view:

look at Artificial Neural Networks as a research tool to
interpret neurobiological phenomena

} From a Machine Learning point of view:
look at neurobiology for new ideas to solve problems

1 Alm
Study biologically plausible mathematical models able to
simulate neural dynamics
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The Computational Brain

+ The brain itself can be viewed as a computer

14

Organic constitution, complex, ndinear, parallel data
processing

A collection of highly specialized interconnected computational
sub-systems

Plasticity allows to adapt the nervous system to its environmen

Not only a cognitive device:

needs to cope with thermoregulation, growth, reproduction,
respiration, regulation of hunger and thirst, sleepake
control, etc.

Limitations and constraints:
time (computation needs to be fast!), space, energy
consumption, etc.
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Central Nervous System

Central Nervous System

Brain

Spinal cord

Peripheral Nervous System r

Ganglion

Nerve

Gray Matter
bSdZN2PYyaQ o02Ré&

bSdzZNRPyaQ | E2ya
Cerebral cortex

Outer layer of the neural
tissue in the brain

6 White Matter
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Model of the Central Nervous System

1 Brain/CN% Neural Net

Continually receives and processes information

} PNS Receptors/Effectors
Converts external stimuli into electrical pulses
Convert electrical pulses into discernible responses

Stimulus —

Receptors

|

-h

Neural
net

e

-h

Effectors

—» Response

1 Feedforward / Feedback transmission of the information
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Basic Facts on the Brain

Hierarchical Organization | | o
Exploit Geometric properties in the

elaboration: spatial proximity allows

Central nervous system e e . oo . .
I - i to efficiently organize the elaboration
Interregional circuits ' ’ 4 *1 Of the InfOI'mathn
L 1“- , % Hierarchical Processing
f Ty Layered Organization
Neurons synaptic ~ . -
& MY~} From an anatomical point
Dendri‘tlic trees imises L1111 \ Of VieW:
Neural microcircuits MICROCIRCUITS J The hlg her the dlStance
f S from the sensorial input,
Sy s /‘5325 the higher the abstract level
— o o of processing of information
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Basic Facts on the Brain

Feedback connections

1 Hierarchical processingth feedback
Reciprocal connections among different areas

PO m Al VIP
VAL Area
3 P PG
4 MST
V3A A
a /', 2
~ FST| /
PMTD L«
» MT
3 ol
V1 e V2 |
d " .“—
Y v3 v
® V4 =

™ AreaTE

Reciprocal connections among
some of the visual cortex areas
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Basic Facts on the Brain

Specialization of Functions

} Different regions of the nervous system are specialized to
different functions
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Basic Facts on the Brain

Numbers
} P TT neurons in a human nervoggstem
} P TU Synapses
1 Inad & of cortical tissue:
p Ttneuronsanp mMa &yl LJaASa poFm &aeé vyl L
1 Each cortical neuron is connected to 3% of the neurons Ir
the surrounding & in S ﬂj ’-
A T

|

\ g b.’

1
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Neural Modeling: Basics




The Ideal Spiking Neuron

+ Three functionally distinct parts:
Dendrites input devices
Soma central processing unit
Axon output device

1 Synapse
Junction between

a pre-synapticneuron and
a postsynapticneuron

/

dendrites
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Action Potentials or Spikes
} Spikeselementary units of

neuronal signal transmission

+ Electrical pulses:
100 mV of amplitude

| 1-2 msof duration
} Spike train: chain of spikes emitte

dendrites
i

\ _

soma )
4 i action .
| potential

| Il T100mV .
- by a single neuron

: ! | l -
& ::_ / || 1 ms ;
axon 4 I| — .
| / .~/ 1 Absolute refractory period
electrode .. .
_t T Minimum distance between two
spikes

I
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Synapses

25

Contact axorg dendrite

Chemical synapse

} A presynaptic action potential triggers
the release of neurotransmitters

+ The neurotransmitters are detected by
the postsynaptic cell membrane

} The permeability of the postsynaptic
membrane to ions changes, leading to a
change irmembrane potential

} Post Synaptic Potential (PSP):
the voltage response of the postsynaptic
neuron to a presynaptic spike



Neuronal Dynamics

} Membrane potentialu(t)

Potential difference between the interior and the exterior of the cell
Constant value at resti(t) = Upest = —65mMV

)

_ u,(t)
_ ,Jr_h= _ﬁ i~ u(t)

} Att=0 neuron | fires
} PSP induced in neuron / > 0 Excitatory PSP (EPSP)

depolarization
PSPij = €;; (t) = Uz(t) — Urest P

N\ < 0 Inhibitory PSP (IPSP)
hyperpolarization
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Firing Threshold and Action Potential

]
e
I ]
i (t
=1 i (0 u(t)
P _'—__ I|
/_‘l_'\_,»-' N | ]1
=2 g O— L -
S -\f. —_— — | i
L

Whenthere are only a few presynapticspikesthe membranepotential
canbe approximatedoy a linearcombinationof the individualPSP
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Firing Threshold and Action Potential

O
t? tl

Whenthe membranepotentialexceeds thresholdthe dynamicshanges

} spikeor action potential:
sudden depolarization (100 mV excursion) of the membrane potential

} spikeafterpotential
after the spike there is a phase of hyperpolarization below the resting value

t; = max{tz(.f) it > tgf)} time of lastspikeof neuroni
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Spike Response Model

wi(t) = nt—1) + 5,3 et — t9)) + tyess

\%—’ T T
v \ !
models the spike and the spikéterpotential PSPs resting potential

If the membrane potential reaches the threshold from below then fire!

u;(t) =19 and du%() > 0 ét(f) t

s(t-t{")
u Vo

-

| 1/At for 0 <t—t9) < At
— (f)
) —Ty €Xp (_r—: ) for At <t — fi‘”

=
e

!
et
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Limitations of the Spike Response Model
+ Highly simplified model

PSP have always the same shape
Dynamics of the neuron depends only on the last firing time

} Not able to simulate many dynamical behaviors observed In
biological neurons

— -, regular spiking with adaptation

—

H ‘ . ‘ / ‘ ‘ I ‘ II ‘ fast spiking
o— k

| ‘ “ HH bursting
0 — L

I , rebound spike
L |

8 (release of inhibition can trigger a spike)
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Particular Neural Dynamics in the Neocortex

} Only 6 fundamentals classes of firing patterns

) inhibitory
tatory fast spiking (FS) low threshold spiking (LTS)  ggq s late spiking (LS)

regular spiking {RS) chattering (CH)

500 pA 400 pA

150 pA
man_/L«L M ‘m”’“/ud——~ f""/LL
e [ [ f

2

8 3 8
L R 1

[1:]

8

5k}

[=]

intrinsically bursting (1)




Neural Coding

1 How do neurons communicate?

+ What is the information contained irspatictemporal
pattern of spikes?

11 '
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Rate Codes

Code expressed by meandiohg rate
} Rate as a spike counaverage over time

nsp(T)
T

L/ =

Frequency Current (FC) curve
} Relation between the frequency of firing and the applied (input) current

Vi Cons:

}  Unlikely that neurons can wait to perform a
/ temporal average

,L/ Pros:

v \ L }  Spikes are a convenient way to transmit a re:
v =g(Ip) value: just two spikes at & interval would
transfer function of the neuron ~ Suffice to encode the value
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Rate Codes

} Rate as apike density average over K runs

1 ﬂ;{(fif T :ﬂ‘-.f)
At K

p(t) =

} Rate as aopulation activity¢ average over N neurons

1 naee(t;t + At)
At N

Alt) =

1 ldealized/not realistic (population of N identical neurons)
}  May vary rapidly and reflect sudden changes in the stimulus conditions
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Spike Codes

Neurobiological evidences say that spiking time has a role
+ Time to first spike

N The information Is encoded in
N the temporal distance of the
YV SdzZNRP Yy Q& NB & LJ2
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Spike Codes
1 Phase

5 The information is encoded in
T N the phase of the spiking time
| N with respect to a background
i oscillation

background oscillation
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Spike Codes
1 Synchrony

| | | The information is encoded In

| | the pattern of firing synchrony

| | within a population of neurons
| | in response to a stimulus
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Spike Codes

} Reverse Correlation
Reconstruct the time course of the input stimulus that led to a
postsynaptic spike
Average the input under condition of an identical response
spiketriggered average

stumulus

N L N N N
- —_— \‘-\.r}:. - ""__.--_J'_U [

Fo”

T & # =

T 5 = -
- o - o=
- Y oz -
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Detailed Neuron Models




Action Potential and lon currents

} From a biophysical perspective changes imikeibrane

potentiald0 0 are due to currents of ions that passes
through the membrane

1 Main ions that take part into this process
Sodium N Potassium ¥ Calcium C& Chloride CJ

Outside

Na™ (145 mM)

T o dlom The difference of ions concentration

v between inside and outside the cell
IS responsible for the generation of

an electrical potential

Na*t (5-15 mM)
K* (140 mM)
Cl™ (4 mM)

Ca™(0.1pM)
AT (147 mM)

41
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Nernst Potential

+ The probability that a molecule takes a state of en€rgpy
proportional to e~ 77

1 Given a positive ion with chargeits energy in positiomis
E(z) = qu(z)

1 The ions density in a region with potentiato , € w is then
proportional to

gu(z)

n(x) oc e” kT } The lower the potential, the higher
/ IS the density of positive ions

_
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Nernst Potential

n , (1nside) |

Au

I , (outside)
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Nernst Potential

n, (inside) ‘

) Au

1, (outside)

} The ratio between the ions density at two points Is

ny ?’L(ﬂ?l) B e_qu(ml)k}uwﬂ _ e_q%

ny  n(xg)
} Thus, the concentration difference implies a voltage, calle

Nernst potential

Ay = EL p Rz
q ni
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Reversal Potential
} Thereversal potentiadf an ion is its Nernst potential

— ET Nout
E[ion] — In ~eut

dlion] Nin

1 If30 'O + ions flow into the cell

» If30 'O  + ions flow out of the cell

+ lon channels try to equilibrate
the concentrationof ions,i.e. try
to meetthe reversabotential

+ lon pumps active pumps that
balancethe flow of ions
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