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Deterministic Networks

Consider the Hopfield network model introduced so far
Neuron output is a deterministic function of its inputs
Recurrent network of all visible units
Learns to encode a set of fixed training patterns
V = [v1 . . . vP]

What models do we obtain if we relax the deterministic
input-output mapping?
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Stochastic Networks

A network of units whose activation is determined by a
stochastic function

The state of a unit at a given timestep is sampled from a
given probability distribution
The network learns a probability distribution P(V) from the
training patterns

Network includes both
visible v and hidden h units
Network activity is a
sample from posterior
probability given inputs
(visible data)
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Neural Sampling Hypothesis

The activity of each neuron can be sampled from the network
distribution

No distinction between input and output
Natural way to deal with incomplete stimuli
Stochastic nature of activation is coherent with neural
response variability
Spontaneous neural activity can be explained in terms of
prior/marginal distributions
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Probability and Statistics Refresher

On the blackboard
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Stochastic Binary Neurons

Spiking point neuron with binary output sj
Typically discrete time model with time into small ∆t
intervals
At each time interval(t + 1 ≡ t + ∆t), the neuron can emit a
spike with probability p(t)

j

s(t)
j =

{
1, with probability p(t)

j

0, with probability 1− p(t)
j

The key is in the definition of the spiking probability (needs to
be a function of local potential)

p(t)
j ≈ σ(x (t)

j )
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General Sigmoidal Stochastic Binary Network

Network of N neurons with binary activation sj

Weight matrix M = [Mi j]i,j∈{1,...,N}
Bias vector b = [bj ]j∈{1,...,N}

Local neuron potential xj defined as usual

x (t+1)
j =

N∑
i=1

Mijs
(t)
i + bj

A chosen neuron fires with spiking probability

p(t+1)
j = P(s(t+1)

j = 1|st ) = σ(x (t+1)
j ) =

1

1 + e−x (t+1)
j

Formulation highlights Markovian dynamics
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Neurobiological Foundations

Variability in transmitter release in synaptic vescicles ≈
Gaussian Distribution (Katz 1954)
Assuming independent distributions and large number of
synaptic connections

⇒ Central limit theorem
⇒ Local (membrane) potential ≈ Gaussian

Distribution
Conditional probability of neuron spiking is a Gaussian
CDF ≈ scaled sigmoid
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Network Dynamics (I)

How does the network state (activation of all neurons) evolve in
time?

Assume neurons to be updated in parallel every ∆t (Parallel
dynamics)

P(s(t+1)|s(t)) =
N∏

j=1

P(s(t+1)
j |st ) = T (s(t+1)|s(t))

Yielding a Markov process for state update

P(s(t+1) = s′) =
∑

s

T (s′|s)P(s(t) = s)
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Network Dynamics (II)

Parallel dynamics assumes a synchronization clock exist
(biologically non plausible)
Alternatively, one neuron at random can be chosen for
update at each step (Glauber Dynamics)
No fixed-point guarantees for s but it has a stationary
distribution for the network at equilibrium state when its
connectivity is symmetric

Given Fj as state flip operator for j-th neuron s(t+1) = Fjs(t)

T (s(t+1)|s(t)) =
1
N

P(s(t+1)
j |st )

While if s(t+1) = s(t)

T (s(t+1)|s(t)) = 1− 1
N

∑
j

P(s(t+1)
j |st )
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The Boltzmann-Gibbs Distribution

Symmetric connectivity enforces detailed balance condition

P(s)T (s′|s) = P(s′)T (s|s′)

Ensures reversible transitions guaranteeing existence of
equilibrium (Boltzmann-Gibbs) distribution

P∞(s) =
e−E(s)

Z

where
E(s) is the energy function

Z =
∑

s

e−E(s) is the partition function
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Boltzmann Machines

A stochastic recurrent network
where binary unit states are also
random variables

visible v ∈ {0,1}
latent h ∈ {0,1}
s = [vh]

Boltzmann-Gibbs distribution having linear energy function

E(s) = −1
2

∑
ij

Mijsisj −
∑

j

bjsj = −1
2

sT Ms− bT s

with symmetric and no self-recurrent connectivity
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Learning

Ackley, Hinton and Sejnowski (1985)
Boltzmann machines can be trained so that the equilibrium
distribution tends towards any arbitrary distribution across
binary vectors given samples from that distribution

A couple of simplifications to start with
Bias b absorbed into weight matrix M
Consider only visible units s = v

Use probabilistic learning techniques to fit the parameters, i.e.
maximizing the log-likelihood

L(M) =
1
L

L∑
l=1

log P(vl |M)

given the P visible training patterns vl
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Gradient Approach

First, the gradient for a single pattern

∂P(v|M)

∂Mij
= −〈vivj〉+ vivj

with free expectations 〈vivj〉 =
∑

v

P(v)vivj

Then, the log-likelihood gradient

∂L
∂Mij

= −〈vivj〉+ 〈vivj〉c

with clamped expectations 〈vivj〉c =
1
L

p∑
l=1

v l
i v

l
j
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Something we have already seen..

It is Hebbian learning again!

〈vivj〉c︸ ︷︷ ︸
wake

−〈vivj〉︸ ︷︷ ︸
dream

wake part is the usual Hebb rule applied to the empirical
distribution of data that the machine sees coming in from
the outside world
dream part is an anti-hebbian term concerning correlation
between units when generated by the internal dynamics of
the machine

Can only capture quadratic correlation!
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Learning with Hidden Units

To efficiently capture higher-order correlations we need to
introduce hidden units h
Again log-likelihood gradient ascent (s = [vh])

∂P(v|M)

∂Mij
=

∑
h

sisjP(h|v)−
∑

s

sisjP(s)

= 〈sisj〉c − 〈sisj〉

Expectations generally become intractable due to the
partition function Z (exponential complexity)
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Restricted Boltzmann Machines (RBM)

A special Boltzmann machine
Bipartite graph
Connections only between
hidden and visible units

Energy function, highlighting bipartition in hidden (h) and
visible (v) units

E(v,h) = −vT Mh− bT v− cT h

Learning (and inference) becomes tractable due to graph
bipartition which factorizes distribution
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The RBM Catch

Hidden units are conditionally independent given visible units,
and viceversa

P(hj |v) = σ(
∑

i

Mijvi + cj)

P(vi |h) = σ(
∑

j

Mijhj + bi)

They can be updated in batch!
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Training Restricted Boltzmann Machines

Again by likelihood maximization, yields

∂L
∂Mij

= 〈vihj〉c︸ ︷︷ ︸
data

−〈vihj〉︸ ︷︷ ︸
model

A Gibbs sampling approach

Wake
Clamp data on v
Sample vihj for all pairs of
connected units
Repeat for all elements of
dataset

Dream
Don’t clamp units
Let network reach
equilibrium
Sample vihj for all pairs of
connected units
Repeat many times to get
a good estimate
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Gibbs-Sampling RBM

∂L
∂Mij

= 〈vihj〉c︸ ︷︷ ︸
data

−〈vihj〉︸ ︷︷ ︸
model

It is difficult to obtain an unbiased sample of the second term
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Gibbs-Sampling RBM
Plugging-in Data

1 Start with a training vector on the visible units
2 Alternate between updating all the hidden units in parallel

and updating all the visible units in parallel (iterate)

∂L
∂Mij

= 〈vihj〉0︸ ︷︷ ︸
data

−〈vihj〉∞︸ ︷︷ ︸
model
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Contrastive-Divergence Learning

Gibbs sampling can be painfully slow to converge

1 Clamp a training vector vl

on visible units
2 Update all hidden units in

parallel
3 Update the all visible units

in parallel to get a
reconstruction

4 Update the hidden units
again

〈vihj〉0︸ ︷︷ ︸
data

− 〈vihj〉1︸ ︷︷ ︸
reconstruction
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RBM-CD Algorithm

(Ne = 0) Given input data X ∈ [0,1]D×NI and random initial
weights M in [0,1]
Repeat

1 (Ne = Ne + 1) Set ∆M = 0
2 for n = 1 to D

1 Draw v0 = X(n, :) > randvec(NI) and then compute
P(h0|v0)

2 Draw h0 = P(h0|v0) > randvec(NH)
3 Draw v1 = P(v1|h0) > randvec(NI)
4 Draw h1 = P(h1|v1) > randvec(NH)
5 ∆M = ∆M + 〈vT

0 h0〉 − 〈vT
1 h1〉

3 Update weights M = M + ε∆M
Until |E(Ne)− E(Ne − 1)| ≈ 0 or Ne ≥ maxEp
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What does Contrastive Divergence Learn?

A very crude approximation of the gradient of the
log-likelihood

It does not even follow the gradient closely
More closely approximating the gradient of a objective
function called the Contrastive Divergence

It ignores one tricky term in this objective function so it is
not even following that gradient

Sutskever and Tieleman (2010) have shown that it is not
following the gradient of any function
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So Why Using it?

Because He says so!

It works well enough in many significant applications
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Character Recognition

Learning good features for reconstructing images of number 2
handwriting

Slide credit goes to G. Hinton
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Weight Learning
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Final Weights
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Digit Reconstruction
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Digit Reconstruction (II)

What would happen if we supply the RBM with a test digit that it
is not a 2?

It will try anyway to see a 2 in whatever we supply!
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One Last Final Reason for Introducing RBM

Deep Belief Network

The fundamental building
block for one of the most
popular deep learning
architectures

A network of stacked
RBM trained layer-wise
by Contrastive
Divergence plus a
supervised read-out layer



Stochastic Networks and Neurons
Boltzmann Machine

Conclusions

Applications
Summary

Take Home Messages

Stochastic networks as a paradigm that can explain neural
variability and spontaneous activity in terms of distributions
Boltzmann Machines

Hidden neurons required to explain high-order correlations
Training is a mix of Hebbian and anti-Hebbian
Multifaceted nature (recurrent network, undirected
graphical model and energy-based network)

Restricted Boltzmann Machines
Tractable model thanks to bipartite connectivity
Trained by a very short Gibbs sampling (contrastive
divergence)
Can be very powerful if stacked (deep learning)
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Next Lecture

Hands-on Lab
Complete implementation of Hopfield Networks
Try implementing Restricted Boltzmann Machines

I suggest you have a good look at reference [1] on the
course wiki (pages 3− 6)
There will be time to finish the assignment on the lab of the
03rd of May
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