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Objectives

Train computational neuroscience and machine learning
specialists capable of

understanding application challenges and choosing the
right neural-network-based solutions
designing computational models from biological memory
mechanisms
developing advanced applications using ML solutions
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Expected Outcome

Students completing the module are expected to
Gain in-depth knowledge of advanced hierarchical neural
network architectures
Learn state of the art unsupervised and representation
learning algorithms
Understand their theory and applications
Be able to individually read, understand and discuss
research works in the field

The course is targeted at
Students specializing in

Machine learning and computational intelligence
Data mining, data sciences and information retrieval
Robotics, bionics, bioengineering

Students seeking machine learning theses
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Topics

Synaptic plasticity, memory and learning
Associative learning, competitive learning and inhibition

Associative memory models
Hopfield networks
Boltzmann Machines
Adaptive Resonance Theory

Representation learning and hierarchical models
Biological inspiration: sparse coding, pooling and
information processing in the visual cortex
HMAX, CNN, Deep Learning
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Schedule

Lectures
1 Unsupervised and representation learning (3h)
2 Associative Memories I - Hopfield networks (2h)
3 Associative Memories II - Boltzmann Machines (2h)
4 Adaptive Resonance Theory (1h)
5 Representation and Deep learning (2h)

Laboratory activity
1 Hands-on Lab I (3h)
2 Hands-on Lab II (3h)
3 Hands-on Lab III (3h)

Need to accomodate 1 lesson out of calendar: Thursday 20/04
h. 10.30-13.30
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Homepage

Reference Webpage on Didawiki:

http://didawiki.di.unipi.it/doku.php/
bionics-engineering/

computational-neuroscience/start

Here you can find
Course information
Lecture slides
Articles and course materials

You can subscribe to get RSS feeds on page updates

http://didawiki.di.unipi.it/doku.php/bionics-engineering/computational-neuroscience/start
http://didawiki.di.unipi.it/doku.php/bionics-engineering/computational-neuroscience/start
http://didawiki.di.unipi.it/doku.php/bionics-engineering/computational-neuroscience/start
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Reference Books

A classical reference book for Computational Neuroscience
courses:

P. Dayan and L.F. Abbott, Theoretical Neuroscience, The MIT
press (2001)

An alternative book covering similar topics and freely available
online:

W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, Neuronal
Dynamics: From single neurons to networks and models of
cognition, Cambridge University Press (2014)
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The Big Picture

Learning to encode complex/noisy input information in the
activations of a neural network (representational learning)
Requires a mechanism to reconfigure the synaptic
response (plasticity)
A computational approach through bio-inspiration



Introduction
Models of Learning and Plasticity

Next Lecture

Overview
Synaptic Plasticity and Learning

Reference Model

A simple computational
neuron abstraction
Synaptic inputs uj are
integrated to determine
activation vi

Synaptic weights wij and
activation function F

Neural network
representing connected
assemblies of
computational neurons
Distributed representation
of stimuli
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Learning in the Brain

Introducing relatively permanent changes in neuron behavior
as a result of experience with stimuli

Many different learning flavours
Perceptual
Stimulus-response
Motor
Relational

Many adaptation mechanisms
Habituation
Sensitization
Priming
Conditioning

A common underlying aspect⇒ synaptic plasticity
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Synaptic Plasticity

Synapses are
characterized by their
weight wij

Determines the response
of a postsynaptic neuron i
to an action potential from
presynaptic neuron j
Assumed fixed so far

Electrophysiological experiments show that the response
(amplitude) is not fixed but can change over time
Changes of the synaptic strength are called synaptic
plasticity
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Models of Synaptic Plasticity

Synaptic plasticity depends on a variety
of factors

Different causes: co-activation,
repetition,...
Different effects: enhancement,
depression
Different timescales: short-term,
long-term,...

Hebbian - Plasticity depends on both
presynaptic and postsynaptic activity
How do we define synaptic activity?

Firing rates
Spikes (action potentials)
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Learning Paradigms

How synaptic plasticity is used as part of a training process to
change the neural response?

Unsupervised learning
Network responds to a series of inputs during training
solely on the basis of intrinsic connections and dynamics
principal component analysis, density estimation,
representation learning

Supervised learning
A desired set of input-output relationship is imposed on the
network by a teacher
Regression, classification, imitation learning

Reinforcement learning
Network response is adjusted through a reward/punishment
signal assessing performance on the task
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Hebbian Learning

The Organization of Behavior, 1949 (Donald Hebb)

When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

Neurons that fire
together, wire together

Self-organization of neuron
assemblies



Introduction
Models of Learning and Plasticity

Next Lecture

Hebbian Learning
Unsupervised learning
Time Dependent Plasticity

Hebb, Pavlov and his Dog

What happens now everytime a bell is rung?
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Hebb, Pavlov and his Dog
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Long Term Potentiation (LTP)

A enhancement of the synaptic response whose effect are
long-lasting (e.g. at least 10 minutes)



Introduction
Models of Learning and Plasticity

Next Lecture

Hebbian Learning
Unsupervised learning
Time Dependent Plasticity

Firing Rate Neuron (Refresher)

Relax the
constraint of
positive firing rates

Models the steady-state output firing
rate as

v∞ = F (w · u)

With a time-dependent input current,
the firing-rate dynamics is

τr
dv
dt

= −v + F (w · u)

Refer to the simple linear model

τr
dv
dt

= −v +
Nu∑
j=1

wjuj

at steady-state v = w · u.
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Hebb Rule

The basic Hebb rule

τw
dw
dt

= vu

where τw is the learning rate.
In general, an averaged version would be preferred

τw
dw
dt

= 〈vu〉

where 〈·〉 averages on input patterns
Inserting the linear firing-rate yields to the correlation rule

τw
dw
dt

= Qw s.t. Q = 〈uu〉
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Implementing Hebbian Learning

Consider to have
A N ×M data matrix U
An M-dimensional synaptic weight vector w

Hebb Learning Algorithm
Randomly initialize w in [0,1], set ne = 0;
do

1 ne = ne + 1;
2 wold = w;
3 Shuffle input data U;
4 for i = 1 to N do

1 v = w · U(i, ·)T ;
2 w = w + η · v · U(i, ·);

while ‖w−wold‖ > ε and ne < maxEp
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Hebb Rule and Postsynaptic Depression

Basic Hebbian learning does not account for Long Term
Depression (LTD)
Synapse strength depresses if presynaptic activity is
paired with low postsynaptic activation

τw
dw
dt

= (v − θv )u postsynaptic

τw
dw
dt

= v(u− θu) presynaptic

where θv , θu switch LTD to LTP, e.g. θv = 〈v〉
When averaged both equivalent to the covariance rule

τw
dw
dt

= Cw s.t. C = 〈(u− 〈u〉)(u− 〈u〉)〉
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Basic Hebbian Learning is Unstable

Positive feedback loop where
activity and weights mutually
reinforce

Learning is unstable
Uncontrolled weight growth
Solution: Weight saturation constraints

Synapses are updated independently
Poor selectivity to different inputs
Solution: Synaptic competition
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Stabilization Strategies

(1) Synaptic normalization

(2) Nonlinear learning rules

Both strategies prevent unbounded
weight growth as well as introduce
synaptic competition
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Synaptic normalization

Key Idea
Add terms to the Hebb rules that depend explicitly on
weights
Assume a neuron can support only a fixed total amount of
synaptic weights

Question: What machine learning practice does this recall?

Normalization constraint can be imposed
Rigidly: at every time step
Dynamically: satisfied only asymptotically at the end of
training

Different normalization constraint and strategies can lead
to (consistently) different training outcomes
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Oja Rule (a.k.a. Multiplicative Normalization)

Sum-of-squares normalization term

τw
dw
dt

= vu− αv2w s.t. α ≥ 0

Stability is given since the length of the weight vector ‖w‖22 will
relax over time to 1/α, since

τw
d‖w‖22

dt
= 2v2(1− α‖w‖22)

Note that it also introduces synaptic competition (Why?)

Oja rule is local, dynamic but not biologically plausible
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The BMC Rule
Bienenstock, Cooper and Munro (1982)

A more biologically plausible synaptic update

τw
dw
dt

= vu(v − θv )

A non-linear learning rule introducing a sliding threshold

τθ
dθv

dt
= v2 − θv

No unbounded weight growth Competition among stimuli
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Unsupervised Learning

A computational view of the effects of Hebbian synaptic
plasticity in artificial neural networks
Focus on training without a teacher signal

Learning to encode stimuli
Cortical maps

Assess the effect of
Synaptic competition
Neuron competition
Inhibition
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What does Oja Rule Learn?

When considering a linear neuron the Oja rule is

dw
dt

= ν(uv − v2w) = ν(uuT w−wT uuT ww)

The expected value of dw (averaged on inputs) is

d〈w〉
dt

= ν〈(uuT w−wT uuT ww)〉 = ν(Qw− (wT Qw)w)

At convergence

d〈w〉
dt

= 0 = ν(Qw− (wT Qw)w)

⇔ Qw = (wT Qw)w = λw

The eigenvalue problem⇒ Eigenvectors of Q are potential
solutions
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Hebb, Oja and the PCA

The fixed point of Oja rule (but also Hebb) is the largest
eigenvector of Q

Hebbian learning rotates weight vector to align with the
principal eigenvector of input correlation/covariance matrix
The weigh vector in Hebb rule has unbounded norm, while
Oja rule learns a normalized weight vector
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Competitive Learning
Synaptic Competition

Synaptic competition favours selectivity
Hebbian rule with constraints preventing unconstrained
growth explains orientation selectivity in primary visual
cortex
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Competitive Learning
Principal Component Analysis

Hebbian learning orient the weight vector so that the
neuron is responsive to information in the principal
component of data covariance/correlation
Can we identify other principal components? How?

Introduce competition
between neurons
Different neurons encode
different stimuli
Selectivity and diversity
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Competitive Learning with Multiple Neurons

Recurrent connections serve neuron differentiation
Output activity

τv
dv
dt

= −v + Wu + Mv

Stable fixed point with steady-state output (ρ(M) < 1)

v = Wu + Mv,v = KWu and K = (I−M)−1
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Competitive Hebbian Learning

A two step-process
1 Long-range competition (feedforward)

zi =

(∑
j Wijuj

)δ
∑

k

(∑
j Wkjuj

)δ
2 Short-range cooperation between neighbors (recurrent)

vi =
∑

k∈Ne(i)

Mikzk

Purely linear units produce little differentiation among neurons
(added nonlinearity δ)
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Modeling Causality in Learning

Let’s review Hebb’s hypothesis

When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

The interpretation of taking part is the key
Relative timing between pre-synaptic and post-synaptic
activity plays a critical role
Proved experimentally and is also at the root of Hebb’s
original interpretation
Spike-timing dependence in synaptic plasticity (STDP)

Approximate firing-rate model (in place of spiking neuron
model)
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STDP Reprise

LTP when post-synaptic
occurs within 50msec from
pre-synaptic spike
LTD when pre-synaptic
spike occurs within
50msec from post-synaptic
action potential

H(τ)⇒ Rate of synaptic modification when post-synaptic
activity is separated from pre-synaptic by τmsec

τw
dw
dt

=

∫ ∞
0

(H(τ)v(t)u(t − τ)︸ ︷︷ ︸
LTP

+H(−τ)v(t − τ)u(t)︸ ︷︷ ︸
LTD

)dτ
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Take Home Messages

Synaptic plasticity is the mechanism underlying all learning
scheme
Hebbian learning

Promotes synapses between co-activated neurons (LTP)
Depresses synapses responsible for asynchronous
activations (LTD)
Leads to principal component analysis, self-organizing
maps, visual filters, ...

Competition is essential to ensure
Selectivity and stability at synaptic level
Diversity between neurons

Hebbian time-dependent plasticity allows learning
sequential patterns
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Things We Haven’t Seen

Anti-Hebbian Learning
Reducing synaptic strength as result of co-activation

Timing-based plasticity and the spiking model
Supervised Hebbian learning

Perceptron
Delta-rule
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Associative memories
Red hammers and priming
Learning and recalling associations between
stimuli/concepts

Hopfield networks
An associative memory
A recurrent neural network
An energy-based model
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