Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification

Laurent Marsan 1
1Institut Gaspard Monge
Université de Marne la Vallée
5, bd Descartes, Champs-sur-Marne
77454 - Marne-la-Vallée Cedex 2
marsan@univ-mlv.fr

Marie-France Sagot 12,*
2Institut Pasteur
Service d’Informatique Scientifique
28, rue du Dr. Roux
75724 - Paris Cedex 15
sagot@pasteur.fr
* corresponding author

Abstract
This paper introduces two exact algorithms for extracting conserved structured motifs from a set of DNA sequences. Structured motifs may be described as an ordered collection of \(p \geq 1 \) “boxes” (each box corresponding to one part of the structured motif), \(p \) substitution rates (one for each box) and \(p - 1 \) intervals of distance (one for each pair of successive boxes in the collection). The contents of the boxes – that is, the motifs themselves – are unknown at the start of the algorithm. This is precisely what the algorithms are meant to find. A suffix tree is used for finding such motifs. The algorithms are efficient enough to be able to infer site consens, such as, for instance, promoter sequences or regulatory sites, from a set of unaligned sequences corresponding to the non-coding regions upstream from all genes of a genome. In particular, both algorithms time complexity scales linearly with \(N^2 n \) where \(n \) is the average length of the sequences and \(N \) their number. An application to the identification of promoter and regulatory consensus sequences in bacterial genomes is shown.

key words: structured motif extraction, promoter and regulatory site, consensus, model, suffix tree

1 Introduction
DNA binding-site identification is an important problem in molecular biology, especially as we enter the era of large-scale genome sequencing. Besides being a major biological issue in itself, accurately identifying ribosome binding sites, promoter and other regulatory sequences, may thus greatly enhance our capacity to correctly predict genes and, in some cases, gene function.

There are two problems related to this identification. One is binding-site location prediction, the other binding-site consensus extraction. Location prediction algorithms often use the results produced by consensus extraction methods to establish precise site position. This paper addresses the second kind of problem: extracting consensus motifs for DNA binding sites.

The two problems are difficult. Consensus extraction in particular is hard both biologically and computationally. Current algorithms are limited in either the biological models upon which
they are built, or the quantity and type of data they may treat (see [Brazma et al., 1998a] for a general survey and [Vanet et al., 1999] for the more specific case of promoter consensus identification). Up to recently, consensi were therefore often derived from relatively small, well-established and clean datasets [Galas et al., 1985] [Lawrence and Reilly, 1990] [Stormo and Hartzell, 1989] [Queen et al., 1982]. Very few approaches (all of which either deal with exact, possibly degenerate motifs or are heuristics) have confronted the problem of extracting site consensi ab initio from a whole genome [Brazma et al., 1998b] [Tompa, 1999] [van Helden et al., 1998] or considered the fact that binding sites often come together in a well-ordered and regularly spaced manner [Fraenkel et al., 1995] [Cardon and Stormo, 1992] [Klingenhoff et al., 1999] [van Helden et al., 2000] [Wolfertstetter et al., 1996]. This latter characteristic may be because two sites are recognized by the same protein (as is, for instance, frequently the case of the RNA polymerase) [Lewin, 1997] or because the sites are recognized by different macromolecular complexes that then make contact with one another [Werner, 1999].

This paper presents two exact algorithms that are efficient enough to tackle site consensus extraction from big datasets (possibly concerning a whole genome). Furthermore, the algorithms take into consideration the fact that binding sites may be multiple and may present a constrained spatial structure along the DNA chain. Such algorithms should therefore enable to identify in genomic sequences what we shall call structured motifs. A structured motif may be described as an ordered collection of \(p \geq 1 \) "boxes" (each box corresponding to one part of the structured motif), \(p \) maximum error rates (one for each box) and \(p - 1 \) intervals of distance (one for each pair of successive boxes in the collection). The contents of the boxes - that is, the motifs themselves - are unknown at the start of the algorithm. This is precisely what the algorithms are meant to find. A suffix tree is used for finding such motifs. The second algorithm has a better time complexity than the first but needs more space. The first is easier to understand and implement. Both have a time complexity whose dominating terms are \(N^2 n \) and \(k_{\text{total}} e_{\text{global}} \), where \(n \) is the average length of the sequences, \(N \) their number, \(k_{\text{total}} \) the total maximum length of the motifs (spacers between parts excluded) and \(e_{\text{global}} \) a global maximum number of errors allowed.

Section 2 presents definitions and formally states the addressed problem. Section 3 is a reminder of the use of a suffix tree for single motif extraction [Sagot, 1998]. Section 4 introduces the new algorithms for structured motif extraction. To simplify exposition of the main ideas, the algorithms are described for the case of motifs composed of two parts of equal length, each having the same maximum rate of errors and separated by a distance. We then suggest how to extend this to the extraction of general structured motifs composed of \(p \geq 2 \) parts. In a first version, the value of the distance between parts belongs to a known interval. In a second version, it is just known to vary inside a restricted interval whose limits are unknown. We end by showing an application to promoter consensus identification from whole bacterial genomes.

2 Definitions and Statement of the Problem

2.1 Motifs as Models – A Reminder

Let us start by establishing some of the terms we are going to use. The term "motif" in particular will be replaced by the pair (model, occurrence). A motif has often been employed in the literature to denote both something that is in a sequence, i.e. a word, and the representative or representation of a set of such words (that possibly satisfy a certain property). We wish to keep both concepts separate. An occurrence shall be "something" in the sequence and a model
something that “represents” (“models”) a set of occurrences. Models will thus serve to locate, as well as describe DNA binding sites in a set of sequences. They may never be present in the sequences.

More formally, let Σ be the alphabet $\{A, C, G, T\}$ of nucleotides. An element $u \in \Sigma^+$ is said to be a word in a sequence $s \in \Sigma^+$ if $s = xyu$ for $x, y \in \Sigma^*$. An element $m \in \Sigma^+$, called a model, is said to have an e-occurrence (or simply an occurrence) in s for e a non negative integer if there is at least one word u in s such that the Hamming distance (i.e. minimum number of substitutions) between u and m is no more than e. Given N sequences $s_1, \ldots, s_N \in \Sigma^*$ and an integer $1 \leq q \leq N$, an element $m \in \Sigma^+$ is said to be a valid model if it has at least an occurrence in at least q distinct sequences of the set (q is called the quorum). More complex definitions of models (e.g. as elements of P^+ where P is the set of all subsets of Σ) and of distances between models and their occurrences may be used (e.g. a Levenshtein distance that represents the minimum number of substitutions, insertions and deletions between two objects of same type), but we shall not consider them here (see [Sagot and Viari, 1996] [Sagot et al., 1995] and [Sagot et al., 1997]).

2.2 From Single to Structured Models

Although the objects defined in the previous section can be reasonable, algorithmically tractable models for DNA binding sites, they do not incorporate any information concerning the relative positions of such sites when more than one participates in a biological process. It is common knowledge that these relative positions are often not random. For instance, the most frequently observed prokaryotic promoter sequences are in general composed of two parts, or “boxes”, that come approximately 10 and 35 bases respectively upstream from the start of transcription. The two boxes, whose core sequences are six bases long, are therefore frequently situated 15 to 19 bases apart. The reason for this strict distance is that the boxes are recognized by the same protein, the RNA polymerase, in fact, a factor of the polymerase, the σ^{70}. RNA polymerases may have attached to them other σ factors. Prokaryotic promoters recognized by these factors are, for the same reason, commonly composed of two boxes although the distance between them may be different [Gross et al., 1992]. There may also be other regulatory sites, whose distance from the promoter sequence is more variable but often not random. Activator binding sites are thus frequently located upstream from the promoter at a distance allowing for the activator to interact with the RNA polymerase. Repressor binding sites on the other hand may overlap the promoter sequences or come just downstream from it.

The case of eukaryotic transcription regulation is more complicated [Werner, 1999]. Promoter sequences contain, as for prokaryotes, one or two boxes recognized by a same protein, but there may be more regulatory sites, appearing sometimes repeated, that are recognized by distinct proteins which interact with one another. The relative positions of these sites along a DNA sequence remains thus not always indifferent [Werner, 1999]. Finally, enhancer sequences are an important feature of eukaryotic gene regulation. Such sequences may be located at very long distances from the gene start.

There is therefore a need for defining promoter or regulatory site models as objects that take such characteristics into account. This has the biological motivation just mentioned but presents also interesting algorithmical aspects: exploiting such characteristics could lead to algorithms that are both more sensitive and more efficient. Models that incorporate such characteristics are called structured models.
Formally, a structured model is a pair (m, d) where:

- m is a p-tuple of single models (m_1, \ldots, m_p) (the p boxes);
- d is a $(p-1)$-tuple of triplets $((d_{\min_1}, d_{\max_1}, \delta_1), \ldots, (d_{\min_{p-1}}, d_{\max_{p-1}}, \delta_{p-1}))$ (the $p-1$ intervals of distance);

with p a positive integer, $m_i \in \Sigma^+$ and d_{\min_i}, d_{\max_i} ($d_{\max_i} \geq d_{\min_i}$), δ_i non negative integers. Given a set of N sequences s_1, \ldots, s_N and an integer $1 \leq q \leq N$, a model (m, d) is said to be valid if: for all $1 \leq i \leq (p-1)$ and for all occurrences u_i of m_i, there exist occurrences $u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_p$ of $m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_p$ such that:

- $u_1, \ldots, u_{i-1}, u_i, u_{i+1}, \ldots, u_p$ belong to the same sequence of the set;
- there exists d_i, with $d_{\min_i} + \delta_i \leq d_i \leq d_{\max_i} - \delta_i$, such that the distance between the end position of u_i and the start position of u_{i+1} in the sequence is equal to $d_i \pm \delta_i$;
- d_i is the same for p-tuples of occurrences present in at least q distinct sequences.

The term d_i represents a distance between the parts and $\pm \delta_i$ an allowed interval around that distance. When $\delta_i = (d_{\max_i} - d_{\min_i} + 1)/2$, δ_i is omitted and d in a structured model (m, d) is denoted by a pair (d_{\min}, d_{\max}). An example of a model with p equal to two is given in Figure 1.

2.3 Statement of the Problem

This paper proposes solutions to variants of increasing generality of a same basic problem. These variants may be stated as follows: given a set of N sequences s_1, \ldots, s_N, a non negative integer e and a positive integer $q \leq N$:

Problem 1 finds all models $((m_1, m_2), (d_{\min}, d_{\max}))$ that are valid;

Problem 2 finds all models $((m_1, \ldots, m_p), ((d_{\min_1}, d_{\max_1}), \ldots, (d_{\min_{p-1}}, d_{\max_{p-1}})))$ that are valid where $p \geq 2$;

Problem 3 finds all models $((m_1, m_2), (d_{\min}, d_{\max}, \delta_1))$ that are valid.

Problem 4 finds all models $((m_1, \ldots, m_p), ((d_{\min_1}, d_{\max_1}, \delta_1), \ldots, (d_{\min_{p-1}}, d_{\max_{p-1}}, \delta_{p-1})))$ that are valid where $p \geq 2$.

The last two problems represent situations where the exact intervals of distances separating the parts of a structured site are unknown, the only known fact being that these intervals cover a restricted range of values. How restricted is indicated by the δ_i parameters.

To simplify matters, we shall consider that, for $1 \leq i \leq p$, $m_i \in \Sigma^k$ where k is a positive integer, i.e. each single model m_i of a structured model (m, d) is of fixed, unique length k. In a likewise manner, we shall assume that each part m_i has the same substitution rate e and, when dealing with models composed of more than two boxes, that the d_{\min_i}, d_{\max_i} and, possibly, δ_i for $1 \leq i \leq (p-1)$ have identical values. We shall note d_{\min}, d_{\max} and δ these values. Problem 2 is then formulated as finding all models $((m_1, \ldots, m_p), (d_{\min}, d_{\max}, \delta))$ that are valid and Problem 4 as finding all valid models $((m_1, \ldots, m_p), (d_{\min}, d_{\max}, \delta))$.

4
Besides fixing a maximum substitution rate for each part in a structured model, one can also establish a maximum substitution rate for the whole model. Such a global error rate, noted e_{global}, allows to consider in a limited way possible correlations between boxes in a model.

A solution to Problem 1 is described in section 4.1, solutions to Problems 2 and 3 are given in sections 4.3 and 4.4 respectively. Solving Problem 4 implies simply putting together the solutions proposed for Problems 2 and 3. The complexity of such an operation is indicated in section 4.5. In section 4.6, we discuss how handling variable box lengths modify the previously described algorithms. Finally, section 4.7 introduces other kinds of constraints, either local or global such as, for instance, maximum substitution rate, which may be useful for some applications.

3 Single Model Extraction Using Suffix Trees – A Reminder

The algorithms for solving either of the problems stated in section 2.3 make use of a generalized suffix tree \mathcal{T} of the set of sequences s_1, \ldots, s_N given as input. This is the classical suffix tree introduced by McCreight [McCreight, 1976] and modified to consider $N \geq 1$ sequences [Bieganski et al., 1994] [Gusfield, 1997]. The modification consists in:

- placing at the end of each sequence in the set a symbol not in the alphabet and specific to that sequence;
- storing at each node v in the tree a boolean-array of size N indicating the sequences in the set to which belong the strings labeling the path to v from the root of \mathcal{T}. Following a same notation as in [Sagot, 1998], we denote such an array colors_v.

The suffix tree construction we adopt is that of Ukkonen [Ukkonen, 1995]. To facilitate the exposition of the main ideas, a suffix trie is considered instead of a tree, i.e. arcs are labelled by a single letter. We shall refer to it as a suffix tree since adapting the algorithm to deal with a compact tree is straightforward. The level of a node v in the suffix trie will therefore denote the number of nodes in the paths from the root to v. In either trie or tree, this corresponds also to the length of the word the path spells.

Given a maximum number e of substitutions allowed, it has been shown in [Sagot, 1998] that extracting all valid single models, that is, all models $m \in \Sigma^{k \geq 1}$ verifying a quorum q, can be done by simultaneously and recursively traversing (in a depth-first way) the (virtual) lexicographic trie \mathcal{M} of all possible models of length k (stopping the descent down an arc and pruning the subtree rooted at the end node of that arc as soon as the quorum is no longer verified) and the (actually built) suffix tree \mathcal{T} of the sequences. While traversing \mathcal{T}, up to e mispellings are allowed of the labels of the arcs in \mathcal{M} corresponding to potentially valid models. One may also see this operation as an application of a sparse dynamic programming technique to two trees instead of two sequences. Tree \mathcal{T} is another way of representing a sequence while tree \mathcal{M} explores all possible (valid) models.

Occurrences in the sequences of a model m that are identical are grouped (by their end-positions) into those whose spelling leads to a same node in \mathcal{T}. These occurrences correspond therefore to nodes in the tree. A node-occurrence of m is represented by a pair (v, e_v) where v is a node in \mathcal{T} and e_v is the number of errors accumulated between a model m and the label of the path from the root to v (at all times, $e_v \leq \varepsilon$). The main recurrence upon which the algorithm is based is given by the following Lemma where parent(v) denotes the parent of a node v in \mathcal{T}.
Lemma 3.1 [Sagot, 1998] A pair \((v, e_v)\) is a node-occurrence of \(m' = ma\) with \(m \in \Sigma^l\) for \(1 \leq l < k\) and \(\alpha \in \Sigma\) if, and only if, one of the following two conditions is verified:

(match) A pair \((\text{parent}(v), e_v)\) is a node-occurrence of \(m\) and the label of the arc from \(\text{parent}(v)\) to \(v\) is \(\alpha\);

(subst.) A pair \((\text{parent}(v), e_v - 1)\) is a node-occurrence of \(m\) and the label of the arc from \(\text{parent}(v)\) to \(v\) is \(\beta \neq \alpha\).

Further details may be found in [Sagot, 1998]; an illustration is also given in Figure 2.

Since suffix tree \(T\) is used as just another way of representing the sequences, observe that it is simply “read” (i.e. traversed) over and over again to extract all valid single models. Once it is built, no use is made of the suffix links in \(T\), tree arcs only are followed. This will not be the case of the suffix tree for inferring structured models in one of the algorithms given below.

In [Sagot, 1998], it was shown that this algorithm has an \(O(N^2 n \mathcal{V}(e, k))\) time complexity for finding models of length \(k\). The term \(\mathcal{V}(e, k)\) is called the \(e\)-neighbourhood of a \(k\)-long word \(m\): it is the number of distinct words \(u\) that are at a Hamming distance at most \(e\) from \(m\). We have:

\[
\mathcal{V}(e, k) = \sum_{i=0}^{e} \binom{k}{i} (|\Sigma| - 1)^i \leq k^e |\Sigma|^e
\]

Observe that the second \(N\) comes from the union operations that we need to do to the boolean arrays at each node to check whether the quorum is still satisfied at each step in the construction of models.

The space complexity is \(O(N^2 n)\). The term \(Nn\) comes from the suffix tree, the second \(N\) from the boolean arrays.

4 Structured Models Extraction

4.1 Algorithms for a Known Interval of Distance (Problem 1)

4.1.1 Naive Approach

A naive way of solving Problem 1 consists in extracting and storing all valid single models of length \(k\) (given \(q\) and \(e\)), and then, once this is finished, in verifying which pairs of such models could represent valid structured models (given an interval of distance \([d_{\text{min}}, d_{\text{max}}]\)).

One way of doing this verification profits from the simple observation that two single models \(m_1\) and \(m_2\) may form a structured one only if at least one occurrence of \(m_1\) is at the right distance of at least one occurrence of \(m_2\). Building an array of size \(nN\) where cell \(i\) contains the list of models having an occurrence starting at that position in \(s = s_1 \ldots s_N\) allows us to compare models in cell \(i\) to models in cells \(i + d_{\text{min}}, \ldots, i + d_{\text{max}}\) only. If the sets of occurrences of models are ordered, this comparison may be done in an efficient way (in time proportional to the size of the sets of node-occurrences, which is upper-bounded by \(nN\)).
4.1.2 Algorithm 1: Jumping in the Suffix Tree

A first non naive approach to solving the problem starts by extracting single models of length k. Since we are traversing the trie of models in depth-first fashion (also in lexicographic order), models are recursively extracted one by one. At any time, a single model m (and its prefixes) is being considered. Once a valid model m_1 of length k is obtained together with its set of T-node-occurrences V_1 (which are nodes located at level k in T), the extraction of all single models m_2 with which m_1 could form a structured model $((m_1, m_2), (d_{min}, d_{max}))$ starts. This is done with m_2 representing the empty word and having as node-occurrences the set V_2 given by:

$$V_2 = \{(w, e_w = e_v) \mid \exists v \in V_1 \text{ with } d_{min} \leq \text{ level}(w) - \text{ level}(v) \leq d_{max}\}$$

where level(v) indicates the level of node v in T. From a node-occurrence v in V_1, a jump is therefore made in T to all potential start node-occurrences w of m_2. These nodes are the d_{min}- to d_{max}-generation descendants of v in T. Exactly the same recurrence formula given in Lemma 3.1 may be applied to the nodes w in V_2 to extract all single models m_2 that, together with m_1 could form a structured model verifying the conditions of the problem, for all valid m_1. An illustration is given in Figure 3 and a pseudo code is presented below. The procedure ExtractModels is called with m the empty word having as sole node-occurrence the root of T and i equal to 1.

\begin{verbatim}
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if $i = 2$ then
3. put in PotentialStarts the children w of v at levels $k + d_{min}$ to $k + d_{max}$
4. else
5. put v (i.e the root) in PotentialStarts
6. for each model m_i (and its occurrences) obtained by doing a recursive depth-first traversal from the root of the virtual model tree M while simultaneously traversing T from the node-occurrences in PotentialStarts (Lemma 3.1 and quorum constraint) do
7. if $i = 1$ then
8. ExtractModels($m = m_1, i + 1$)
9. else
10. report the complete model $m = ((m_1, m_2), (d_{min}, d_{max}))$ as a valid one
\end{verbatim}

Since the minimum and maximum length of a structured model (m, d) that may be considered are, respectively, $2k + d_{min}$ and $2k + d_{max}$, we need only to build the tree of suffixes of length $2k + d_{min}$ or more, and for each such suffix to consider at most the first $2k + d_{max}$ symbols. To do this is not difficult. Eliminating suffixes of length less than d_{min} is immediate; during the construction of T (as described in Gusfield [Gusfield, 1997]), we just do not put such suffixes in T. Placing in T the prefixes of length at most d_{max} of the suffixes of $\{s_1, \ldots, s_N\}$ means that at each step j during the construction of the tree, nodes whose paths to the root spell a word of greater length need not be considered for extension. The extension process starts therefore with the node v whose path at the end of step $j - 1$ spelled a word of length d_{max}. The other nodes to be treated at step j are then obtained by following T's suffix links from v until the root is reached.
The observation made in the previous paragraph applies also to Algorithm 2 (section 4.1.3). Note that, in both cases, this implies \(n_i \leq n_{i+1} \leq Nn \) for all \(i \geq 1 \) where \(n_i \) is the number of nodes at depth \(i \) in \(\mathcal{T} \).

4.1.3 Algorithm 2: Modifying the Suffix Tree

Algorithm 2 initially proceeds like Algorithm 1: it starts by building single models of length \(k \), one at a time. For each node-occurrence \(v \) of a first part \(m_1 \) considered in turn, a jump is made in \(\mathcal{T} \) down to the descendants of \(v \) situated at lower levels. This time however, the algorithm just passes through the nodes at these lower levels, grabs some information the nodes contain and jumps back up to level \(k \) again (in a way that will be explained in a short while). The information grabbed in passing is used to temporarily and partially modify \(\mathcal{T} \) and start, from the root of \(\mathcal{T} \), the extraction of the second part \(m_2 \) of a potentially valid structured model \((m_1, m_2, (d_{\min}, d_{\max})) \). Once the operation of extracting all possible companions \(m_2 \) for \(m_1 \) has ended, that part of \(\mathcal{T} \) that was modified is restored to its previous state. The construction of another single model \(m_1 \) of a structured model \((m_1, m_2, (d_{\min}, d_{\max})) \) then follows, and the whole process unwinds in a recursive way until all structured models satisfying the initial conditions are extracted.

More precisely, the operation between the spelling of models \(m_1 \) and \(m_2 \) locally alters \(\mathcal{T} \) up to level \(k \) to a tree \(\mathcal{T}' \) that contains only the \(k \)-long prefixes of suffixes of \(\{s_1, \ldots, s_N\} \) starting at a position between \(d_{\min} \) and \(d_{\max} \) from the end position in \(s_i \) of an occurrence of \(m_1 \). Tree \(\mathcal{T}' \) is, in a sense, the union of all the subtrees \(t \) of depth at most \(k \) rooted at nodes that represent start occurrences of a potential companion \(m_2 \) for \(m_1 \).

For each model \(m_1 \) obtained, before spelling all possible companions \(m_2 \) for \(m_1 \), the content of \(\text{colors}_z \) for all nodes \(z \) at level \(k \) in \(\mathcal{T} \) are stored in an array \(L \) of dimension \(n_k \) (this is for later restoration of \(\mathcal{T} \)). Tree \(\mathcal{T}' \) is then obtained from \(\mathcal{T} \) by considering all nodes \(w \) in \(\mathcal{T} \) that may be reached on a descent of, this time, \(k + d_{\min} \) to \(k + d_{\max} \) arcs down from the node-occurrences \((v_i e_i) \) of \(m_1 \). These correspond to all end node-occurrences (instead of start as in Algorithm 1) of potentially valid models having \(m_1 \) as first part. The boolean arrays \(\text{colors}_w \) for all \(w \) indicate to which input strings these occurrences belong. This is the information we grab in passing and take along the only path of suffix-links in \(\mathcal{T} \) that leads back to a node \(z \) at level \(k \) in \(\mathcal{T} \). If it is the first time \(z \) is reached, \(\text{colors}_z \) is set equal to \(\text{colors}_w \), otherwise \(\text{colors}_w \) is added (boolean “or” operation) to \(\text{colors}_w \). Once all nodes \(v \) and \(w \) have been treated, the information contained in the nodes \(z \) that were reached during this operation are propagated up the tree from level \(k \) to the root (using normal tree arcs) in the following way: if \(z \) and \(\hat{z} \) have same parent \(z \), then \(\text{colors}_z = \text{colors}_w \cup \text{colors}_\hat{z} \). Any arc from the root that is not visited at least once in such a traversal up the tree is not part of \(\mathcal{T}' \), nor are the subtrees rooted at its end node.

The extraction of all second parts \(m_2 \) of a structured model \((m, d) \) follows as for single models in the initial algorithm (Lemma 3.1 in section 3).

Restoring the tree \(\mathcal{T} \) as it was before the operations described above requires restoring the value of \(\text{colors}_z \) preserved in \(L \) for all nodes \(z \) at level \(k \) and propagating the information (state of boolean arrays) from \(z \) up to the root.

Since nodes \(w \) at level between \(2k + d_{\min} \) to \(2k + d_{\max} \) will be solicited for the same operation over and over again, which consists in following the unique suffix-link path from \(w \) to a node \(z \) at level \(k \) in \(\mathcal{T} \); \(\mathcal{T} \) is pre-treated so that one single link has to be followed from \(z \). Going from
w to z takes then constant time.

An illustration is given in Figure 4. A pseudo code for the algorithm is as follows. The procedure ExtractModels is called, as for Algorithm 1, with m the empty word having as sole node-occurrence the root of T and with i equal to 1.

```
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence $v$ of $m$ do
2.     if $i = 2$ then
3.         put in PotentialEnds the children $w$ at levels $2k + d_{min}$ to $2k + d_{max}$
4.         for each node-occurrence $w$ in PotentialEnds do
5.             follow fast suffix-link to node $z$ at level $k$
6.             put $z$ in NextEnds
7.             if first time $z$ is reached then
8.                 initialize colors$_s_z$ with zero
9.                 put $z$ in NextEnds
10.                add colors$_s_v$ to colors$_s_z$
11. do a depth-first traversal of $T$ to update the boolean arrays from the root to all
12.                $z$ in NextEnds (let $T'$ be the $k$-deep tree obtained by such an operation)
13.     if $i = 1$ then
14.         Tree = $T$
15.     else
16.         Tree = $T'$
17. for each model $m_i$ (and its occurrences) obtained by doing a recursive depth-first
18.     traversal from the root of the virtual model tree $M$ while simultaneously
19.         traversing Tree from the root (Lemma 3.1 and quorum constraint) do
20.     if $i = 1$ then
21.         ExtractModels($m = m_1$, $i + 1$)
22.     else
23.         report the complete model $m = ((m_1, m_2), (d_{min}, d_{max}))$ as a valid one
24.     restore tree $T$ to its original state using $L$
```

Proposition 4.1 The following two facts are true:

- T' contains only the k-long prefixes of suffixes of $\{s_1, \ldots, s_N\}$ that start at a position
 between d_{min} and d_{max} of the end position in $\{s_1, \ldots, s_N\}$ of an occurrence of m_1;

- the above algorithm solves Problem 1.

Proof
The proof is straightforward. We start by observing that, at the end of line 3, PotentialEnds
indeed contains all end node-occurrences for a potential companion second box to the first one
just found. From each one of the nodes w in PotentialEnds, it is possible to go up the suffix
tree T and, by the definition of suffix links, this leads us to a node z such that the path from the
root to z spells a potential k-long occurrence of a second box. This path may represent words
in the sequences that are not occurrences of a second box (because they are not at the right
distance). However, these are “eliminated”, i.e. not counted for verifying the quorum, once
boolean arrays along the path are, first initialized, then modified with the boolean array in \(w \). Finally, no potential \(k \)-long occurrence of a second box is lost since all end node-occurrences \(w \) for a potential companion second box were considered. \(\square \)

4.2 Complexity

The naive approach to solving Problem 1 requires \(nN^2\mathcal{V}(e,k) \) time to find single models that could correspond to either part of a structured model (and \(nN\mathcal{V}(e,k) \) space to store all potential parts). If we denote by \(\Delta \) the value \(d_{\text{max}} - d_{\text{min}} + 1 \), finding which pair of single models may be put together to produce a structured model could then be done in time proportional to:

\[
\mathcal{V}(e,k) \Delta \mathcal{V}(e,k) nN nN
\]

where 1. is the maximum number of single models to which a position may belong, 2. is the maximum number of models to which a position at a distance between \(k + d_{\text{min}} \) and \(k + d_{\text{max}} \) from the first may belong, 3. is the maximum number of comparisons that must be done to check whether two single models may form a structured one and, finally, 4. is the number of starting positions to consider.

To obtain the complexity of Algorithm 1, we have to calculate the total number of visits we may do to nodes between level \(2k + d_{\text{max}} \) (the deeper level we ever reach) and the root. To count this, we need to consider, for each node between levels \(2k + d_{\text{min}} \) and \(2k + d_{\text{max}} \) in \(\mathcal{T} \), how many times it could represent the node-occurrence of a model composed of two boxes, each one having length \(k \) and separated by a spacer of length \(d_{\text{min}} \) to \(d_{\text{max}} \). This number is at most:

\[
\sum_{i=d_{\text{min}}}^{d_{\text{max}}} n_{2k+i} \mathcal{V}^2(e,k) \leq \min\{2,\Delta\} n_{2k+d_{\text{max}}} \mathcal{V}^2(e,k) \leq \min\{2,\Delta\} n_{2k+d_{\text{max}}} k^{2e}|\Sigma|^{2e}
\]

where \(\Delta \) denotes the value \(d_{\text{max}} - d_{\text{min}} + 1 \) and \(n_{2k+d_{\text{max}}} \) is the number of tree nodes at depth \(2k + d_{\text{max}} \). This last number is never more than \(nN \). The \(\min\{2,\Delta\} \) in the bound comes from the fact that the degree of any internal node of \(\mathcal{T} \) is at least 2.

Since each visit to a node requires at most \(O(N) \) operations, the time complexity of Algorithm 1 is \(O(\min\{2,\Delta\} N n_{2k+d_{\text{max}}} \mathcal{V}^2(e,k)) \), that is, \(O(N n_{2k+d_{\text{max}}} \mathcal{V}^2(e,k)) \). Space complexity is \(O(N^2 n) \) as for the extraction of single models.

In the case of Algorithm 2, we need to consider the number of operations necessary for building the two parts of each model using \(\mathcal{T} \) or \(\mathcal{T}' \), as well as the number of operations needed to obtain \(\mathcal{T}' \) from \(\mathcal{T} \) and then to restore back \(\mathcal{T} \).

The single models composing either two parts of a structured model may be built in at most \(N n_k \mathcal{V}^2(e,k) \) operations. The reason for this is that, when spelling either part of a model, we are working with nodes between the root and level \(k \) only (there are at most \(2n_k \) such nodes), and there are \(\mathcal{V}^2(e,k) \) ways of spelling two paths from a node at level \(k \) to the root (each path corresponding to one part of a structured model) allowing for up to \(e \) substitutions in each.

The total number of operations needed to modify the first \(k \) levels of the suffix tree \(\mathcal{T} \) to obtain \(\mathcal{T}' \) before the identification of a second part at a right distance of the first is upper-bounded by:

10
\[\sum_{i=d_{\text{min}}}^{d_{\text{max}}} (Nn_{2k+i}V(e,k)) + (Nn_kV(e,k)) \leq \min\{2,\Delta\}Nn_{2k+d_{\text{max}}}V(e,k). \]

visits to nodes \(z \) coming from \(w \) for all \(m_1 \)

Restoring \(\mathcal{T} \) to start the extraction of another structured model from a different first part takes \(O(Nn_kV(e,k)) \) operations for all \(m_2 \) using \(O(Nn_k) \) additional space (size of array \(L \), each cell possibly pointing to a node at level \(k \) in \(\mathcal{T} \) or to nil). The total time complexity of Algorithm 2 is therefore \(O(Nn_kV^2(e,k) + \min\{2,\Delta\}Nn_{2k+d_{\text{max}}}V(e,k) + Nn_kV(e,k)) \). This results in an \(O(Nn_kV^2(e,k) + Nn_{2k+d_{\text{max}}}V(e,k)) \) time complexity. Space complexity is slightly higher than for Algorithm 1: \(O(N^2n + Nn_k) \) where \(n_k \leq Nn \). The second term is for array \(L \).

In either case, the complexity obtained is better both in terms of time and space than the one given by a naive approach to Problem 1 (see above).

4.3 Extending the Algorithms to Extract Structured Models with \(p > 2 \) Parts (Problem 2)

4.3.1 Algorithm 1: Jumping in the Suffix Tree

Extending Algorithm 1 to extract structured models composed of \(p > 2 \) parts, that is solving Problem 2, is immediate. After extracting the first \(i \) parts of a structured model \(((m_1, \ldots, m_p), (d_{\text{min}}, d_{\text{max}})) \) for \(1 \leq i < (p-1) \), one jumps down in the tree \(\mathcal{T} \) (following normal tree arcs) to get to the \(d_{\text{min}} \)-to \(d_{\text{max}} \)-descendants of every node-occurrence of \(((m_1, \ldots, m_i), (d_{\text{min}}, d_{\text{max}})) \) then continues the extraction from there using Lemma 3.1.

A pseudo-code is given below.

```
procedure ExtractModels(Model m, Block i)
1.  for each node-occurrence \( v \) of \( m \) do
2.    if \( i > 1 \) then
3.      put in PotentialStarts the children \( w \) of \( v \) at levels \( (i-1)k + (i-1)d_{\text{min}} \) to \( (i-1)k + (i-1)d_{\text{max}} \)
4.    else
5.      put \( v \) (the root) in PotentialStarts
6.  for each model \( m_i \) (and its occurrences) obtained by doing a recursive depth-first traversal from the root of the virtual model tree \( \mathcal{M} \) while simultaneously traversing \( \mathcal{T} \) from the node-occurrences in PotentialStarts (Lemma 3.1 and quorum constraint) do
7.    if \( i < p \) then
8.      ExtractModels(\( m = m_1 \cdots m_i, i + 1 \))
9.    else
10.   report the complete model \( m = ((m_1, \cdots, m_p), (d_{\text{min}}, d_{\text{max}})) \) as a valid one
```

11
4.3.2 Algorithm 2: Modifying the Suffix Tree

Extending Algorithm 2 to solve Problem 2 is slightly more complex and thus calls for a few
remarks. The operations done to modify the tree between building m_{i-1} and m_i are almost
the same as those described in section 4.1.3 except for two facts. One is that up to $(p - 1)$
arrays L are now needed to restore the tree after each modification it undergoes. The second,
more important, difference is that we need to keep for each node v_k at level k reached from
an ascent up T’s suffix links a list, noted $Lptrv_k$, of pointers to the nodes at lower levels that
affected the contents of v_k. The reason for this is that tree T is modified up to level k only
(resulting in tree T') as these are the only levels concerned by the search for occurrences of
each box of a structured model. Lower levels of T remain unchanged, in particular the boolean
arrays at each node below level k. To obtain the correct information concerning the potential
end node-occurrences of boxes i for $i > 2$ (i.e. to which strings such occurrences belong), we
therefore cannot descend T from the ends of node-occurrences in T' of box $(i-1)$. If we did, we
would not miss any occurrence but we could get more, e.g. ones that did not have an occurrence
of a previous box in the model. We might thus overcount some strings and consider as valid a
model which, in fact, no longer satisfied the quorum. We have to go down T from the ends of
node-occurrences in T, that is from the original ends of node-occurrences in T' of the boxes built
so far. These are reached from the list of pointers $Lptrv_k$ for the nodes v_k that are identified as
occurrences of the box currently just treated. For models composed of p boxes, we need at most
$(p - 1)$ lists $Lptrv_k$ for each node v_k at level k.

A pseudo-code for the algorithm is as follows:
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2.
3. if $i > 2$ then
4. put in PotentialEnds the children w at levels $ik + (i - 1)d_{min}$ to $ik + (i - 1)d_{max}$
5. for each node-occurrence w in PotentialEnds do
6. follow fast suffix-link to node z at level k
7. put z in $L(i)$
8. if first time z is reached then
9. initialize colors to zero
10. add colors to $colors_z$
11. do a depth-first traversal of T to update the boolean arrays from the root to all
12. z in NextEnds (let T' be the k-deep tree obtained by such an operation)
13. if $i = 1$ then
14. Tree $= T$
15. else
16. Tree $= T'$
17. for each model m_i (and its occurrences) obtained by doing a recursive depth-first
18. traversal from the root of the virtual model tree M while simultaneously
19. traversing Tree from the root (Lemma 3.1 and quorum constraint) do
20. if $i < p$ then
21. ExtractModels($m = m_1 \cdots m_i$, $i + 1$)
22. else
23. report the complete model $m = (m_1, \cdots, m_p, d_{min}, d_{max})$ as a valid one
24. if $i > 1$ then
25. restore tree T to its original state using $L(i)$

4.3.3 Complexity

Using a similar reasoning as before, it is now difficult to see that Algorithm 1 requires $O(Nv_{pk+(p-1)d_{max}} \forall(e,k))$ time, where $\forall(e,k) \leq k^p |\Sigma|^p$. The space complexity remains the same as for solving
Problem 1, that is $O(N^2 n)$.

In the case of Algorithm 2, the p single models composing a structured model may be built
in a number of operations upper bounded by $O(Nn_k \forall(e,k))$.

The total number of operations needed to modify the first k levels of the suffix tree T to
obtain T' before the identification of a box $(i + 1)$ for $i > 2$ at a right distance of box i is
upper-bounded by:

$$\sum_{j=d_{min}}^{d_{max}} Nn_{ik+(i-1)d_{j}} \forall^{j-1}(e,k) + (Nn_k \forall(e,k)) \leq \min\{2, \Delta\} Nn_{ik+(i-1)d_{max}} \forall^{i-1}(e,k)$$

Restoring T' as we back off to the preceding box takes, as before, $O(Nn_k \forall(e,k))$ operations
using $O(N(p-1)n_k)$ additional space (size of arrays $L(1)$ to $L(p)$).
The total time complexity of Algorithm 2 is therefore of $O(Nn_k\mathcal{V}(e,k) + N \max(nk\sum_{i=0}^{k-1}(e,k))$. The space complexity is $O(N^2n+N(p-1)n_k)$.

4.4 Extending the Algorithms to Handle Restricted Intervals of Unknown Limits (Problem 3)

4.4.1 Algorithm 1

In the case where the distances between the two parts m_1 and m_2 of a single model vary inside a restricted interval whose limits are unknown, Algorithm 1 is extended in the following way. Once a first part m_1 of a structured model $((m_1,m_2),(d_{\text{min}},d_{\text{max}},\delta))$ has been extracted, we jump as before to nodes w in V_2 given in section 4.1.2. To verify, as we now must, that:

- there exists d, with $d_{\text{min}}+\delta \leq d \leq d_{\text{max}}-\delta$, such that $\text{level}(w) - \text{level}(v)$ is equal to $d \pm \delta$;

- (more particularly) d is the same for pairs of occurrences (one occurrence for each part of the structured model) present in at least q distinct sequences;

we just need to keep at each node its distance from level k and to count the number of distinct sequences for each restricted interval $d \pm \delta$ separately.

4.4.2 Algorithm 2

In order to verify the same two points mentioned above in the case of Algorithm 2, we need this time to keep an additional information at the nodes z situated at level k that are reached from w by jumping back up the tree (following suffix links). This information is required because a node at level k may be reached from nodes w corresponding to different distances from occurrences of the previous box. We therefore need to have at each node z an array of dimension not N but $((d_{\text{max}}-d_{\text{min}}-(2*\delta)) \times N)$. The node-occurrences at each extension step of the second part of a model are added for each cell $i \in (d_{\text{max}}-d_{\text{min}}-(2*\delta))$ in turn. If for any i, this number is at least q, the model is valid and the second part may be further extended (if its length is still smaller than k).

We denote this boolean array Colors_z with a capital C to stress that it is now multi-dimensional. If it is the first time a node z is reached from w, the l cells of Colors_z for $l \in [\max\{d_{\text{min}}+\delta, \text{level}(w) - \text{level}(z) - \delta\}, \min\{d_{\text{max}}-\delta, \text{level}(w) - \text{level}(z) + \delta\}]$ are set equal to Colors_w and all the other cells are initialized to zero, otherwise Colors_w is added (boolean “or”) to the l cells of Colors_z. Once all nodes v and w have been treated, the information contained in the nodes z that were reached during this operation are propagated up the tree from level k to the root (using normal tree arcs) in the following way: if z and z' have same parent z, then, for all l such that $d_{\text{min}}+\delta \leq l \leq d_{\text{max}}-\delta$, $\text{Colors}_z[l] = \text{Colors}_{z'}[l] \cup \text{Colors}_z[l]$.

4.4.3 Complexity

The time complexity of Algorithm 1 for solving Problem 3 remains $O(Nn_{2k+d_{\text{max}}}\mathcal{V}(e,k))$ and the space complexity $O(nN^2)$.

The time complexity of Algorithm 2 for solving the same problem becomes $O(N\Delta' n_{k} \mathcal{V}(e,k)+N\Delta'(n_{2k+d_{\text{max}}} \mathcal{V}(e,k))$ where $\Delta' = d_{\text{max}}-d_{\text{min}}-(2*\delta)$. The space complexity is $O(N^2n+N\Delta'n_{k}$).
4.5 Extending the Algorithms to Extract Structured Models with $p > 2$ Parts and to Handle Restricted Intervals of Unknown Limits (Problem 4)

Few changes are required when one wishes to consider structured models that are composed of more than two boxes separated by intervals of distances of the type $d \pm \delta$ for some d and a fixed δ. The main ones concern Algorithm 2: the boolean arrays at each node in the suffix tree have now to be of dimension $N(p - 1)\Delta'$. The Δ' comes from having to handle restricted intervals of unknown limits as we saw in section 4.4. The $(p - 1)$ comes from the fact that d may be different for each pair of successive boxes in the structured model. The time and space complexity will therefore be further multiplied by a term of $(p - 1)$.

The time complexity of Algorithm 2 (the only one for which there is a change) for solving Problem 4 is $O(N\Delta'(p - 1)n_k)\vp(e, k) + N\Delta'(p - 1)n_{pk+(p-1)d_{max}}\vp^{-1}(e, k))$. The space complexity is $O(N^2n + N\Delta'(p - 1)n_k)$.

4.6 Handling Boxes of Variable Lengths

A straightforward way of handling boxes of variable length requires relatively few modifications. The main one comes from the fact that the operations of jumping (Algorithm 1) or modifying the tree (Algorithm 2) to find a box i once boxes 1 to $i - 1$ have been identified is done for all possible allowed lengths (between a minimum and a maximum) for the previous boxes.

4.7 Adding Local and Global Constraints

4.7.1 Global Substitution Rate

One important constraint one may wish to add to the model concerns introducing a global maximum substitution rate e_{global} (this is in addition to the maximum substitution rate e allowed for each box in the model).

No substantial changes need to be done to Algorithm 1 to consider such a global constraint for solving Problem 1. The only difference is that a model has now two substitution counters, one for the current box being built and the other for the global rate.

Algorithm 2 on the other hand requires more important changes for solving the same problem. The main one is that each node v' in T' will have attached to it a boolean-array that needs this time to be of dimension $(e_{global} + 1) \times N$ instead of N. The reason is that in T' we are grouping nodes from T that may have accumulated a different number of substitutions against m_1. We denote this boolean array $Colors_{g'}$ with a capital C as before.

If it is the first time z is reached, the v cell of $Colors_z$ is set equal to $colors_{w}$, and the other cells are initialized to zero; otherwise $colors_{w}$ is added (boolean addition) to the v cell of $Colors_z$. Once all nodes v and w have been treated, the information contained in the nodes z that were reached during this operation are propagated up the tree from level k to the root (using normal tree arcs) in the following way: if z and w have same parent z, then, for $1 \leq j \leq e_{global}$,

$Colors_z[j] = Colors_z[j] \cup Colors_{g'}[j]$.

Observe that the substitution information concerning a node v' in T' is obtained from both $Colors_{g'}$ (global error) and $e_{g'}$ (this latter corresponds to the error for one box and is therefore initialized to zero). Apart from having to take into account the fact that T' groups at each node occurrences in $\{s_1, \ldots, s_N\}$ that may present a different number of substitutions against m_1,
the extraction of all second parts m_2 of a structured model (m, d) follows as for single models in the initial algorithm (Lemma 3.1 in section 3).

The time complexity of Algorithm 1 for solving Problem 1 becomes $O(Nn_{2k+d_{max}}V(e_{global}, 2k))$ if $e_{global} \leq e$. The space complexity does not change.

In Algorithm 2, the building of models takes now time $O(Nn_kV(e_{global}, 2k))$, again if $e_{global} \leq e$. Obtaining T' from T requires $O(Nn_{2k+d_{max}}V(e, k))$ time. This does not count initialization of the boolean arrays $Colors_2$ in T' which are done just once for each model m_1 identified and costs $O((e_{global} + 1)n_kV(e, k))$ operations overall.

Restoring T to start the extraction of another structured model from a different first part takes $O(Nn_kV(e, k))$ operations using $O(Nn_k)$ additional space (size of array L, each cell possibly pointing to a node at level k in T or to nil). The total time complexity of Algorithm 2 for solving Problem 1 is therefore $O(Nn_kV(e_{global}, 2k) + Nn_{2k+d_{max}}V(e, k) + (e_{global} + 1)n_kV(e, k) + Nn_kV(e, k))$. If we assume N is bigger than e, this results in an $O(Nn_kV(e_{global}, 2k) + Nn_{2k+d_{max}}V(e, k))$ time complexity. Space complexity is higher than for Algorithm 1: $O(N^2n + N(e_{global} + 1)n_k + Nn_k)$ where $n_k \leq Nn$. The second term comes from the fact that, in T', we group together nodes from T that, as occurrences of models, have accumulated a different number of errors. The third term is for array L.

Observe that, in either case, the complexity obtained improves even more in relation to the one given by a naive approach to Problem 1 which would be in $O(V(e_{global}, k)\Delta V(e_{global}, k)nNnN)$ for time and $O(nN\Delta V(e_{global}, k))$ for space.

4.7.2 Other Possible Local and Global Constraints

Another possible local and/or global constraint one may wish to consider for some applications concerns the composition of the boxes.

One may, for instance, determine that the frequency of one or more nucleotide in a box (or among all boxes) be below or above a certain threshold. For structured models composed of more than p boxes, one may also establish that a box i is palindromic in relation to a box j for $1 \leq i < j \leq p$.

In algorithmical terms, the two types of constraints just mentioned are not equivalent. The first type, box composition whether local or global, can in general be verified only a posteriori while the second type (palindromic boxes) will result in a, sometimes substantial, pruning of the virtual trie of models.

5 Application to Promoter Consensus Identification from Whole Bacterial Genomes

The aim of the present section is not to show a fully developed computer analysis of promoter sequences with the algorithms described in this paper (see [Vanet et al., 2000] for that) but to illustrate their use for inferring promoter models from a set of bacterial sequences extracted from a whole genome. We address here Problem 1. The algorithms are applied to the identification in *Bacillus subtilis*, *Helicobacter pylori* and *Escherichia coli* of promoter sequences recognized by the RNA polymerase σ^{70} factor (σ^{80} for *H. pylori*).
5.1 Data

The data consisted in three sets of non-coding regions located between two divergent genes, that is, between genes transcribed in divergent directions (one on each strand). Each non-coding region appears therefore twice in the set, once as a sequence read from the genomic one as publicly released, the other as the same sequence reversed and complemented. This data was extracted from the whole genomes of \textit{B. subtilis} (ftp://ncbi.nlm.nih.gov/genebank/ genomes/bacteria/ Bsub/), \textit{H. pylori} (ftp://ftp.tigr.org/ pub/data/h_pylori) and \textit{E. coli} (http://mol.genese.nig.ac.jp/ecoli/). The sequences in the three sets (called \textit{Gs}, \textit{Gp} and \textit{Gc} respectively, \textit{G} denoting “Genomic”) are therefore non-coding on both strands. Sequences having less than 40 bases were eliminated and only up to 330 nucleotides before the start of translation (as annotated) were initially kept. The first and last 15 bases were then discarded from the sequences in both sets. This eliminated the Shine-Dalgarno sequence as a potential motif. \textit{Gs} contains 1,062 sequences for a total of 196,736 nucleotides, \textit{Gc} 1,148 sequences and 226,928 nucleotides while \textit{Gp} contains 308 sequences and 52,100 nucleotides. The choice of data for this illustration was dictated by the desire to show an application to a whole genome while reducing the amount of noise (non-coding sequences containing no promoters). More extensive genomic studies are discussed in [Vanet \textit{et al.}, 2000] and [Vanet \textit{et al.}, 1999].

5.2 Measuring Statistical Significance

Once all structured models satisfying the initial constraints (number of boxes, maximum error rates, distances between boxes and quorum) have been extracted, they may be classified according to their statistical significance. No \textit{a priori} method of evaluating such significance is completely satisfactory for our purposes. This has two main reasons. One is that our models are composed of two parts. The second reason is that, as we allow errors between models and their occurrences, we need methods that are able to either deal with such errors, or handle multiple exact motifs statistics. Those currently available [Régnier and Szpankowski, 1997] [Reinert and Schbath, 1998] [Tompa, 1999] appear too computationally intensive for our purposes. A further complication comes from the fact that we are interested in assessing the statistical significance of the number of occurrences of a model per sequence, \textit{i.e.} of distinct sequences having at least one occurrence, and not of the total number of occurrences.

For these reasons, it seemed more appropriate for now to evaluate the significance of a structured model by using instead a data shuffling approach [Karlin \textit{et al.}, 1989].

Statistical pertinence of the models found was thus evaluated by performing a χ^2 (with one degree of freedom) on two contingency tables, one corresponding to what is observed, the other to what was expected under the null hypothesis [Press \textit{et al.}, 1993], and then determining the probability of getting the models observed given the null hypothesis. A hundred random shufflings preserving both the mono and di-nucleotide frequency distributions of the original sequences was performed to derive the values in the contingency table for the null hypothesis.

Another type of statistics, based on a Z-score, was also tried. It produced a classification of the models that could be considered equivalent: very few permutations in the order obtained were observed.
5.3 Results

The results are presented in the graphics of Figure 5. These graphics plot the intervals of distance allowed between the two parts of a structured model (from 5±1 to 25±1 by increments of one) against the statistical value obtained by the most significant model found in Sets Gs (Fig. 5a), Gp (Fig. 5b) and Gc (Fig. 5c) with up to 1 substitution permitted and a quorum of 4% for B. subtilis, 6% for H. pylori and 2% for E. coli (these correspond to the highest, or close to the highest quorum at which significant models, or any models at all were found). The most significant model identified for each interval is shown above the curves. This is done only for the intervals located at or near a peak.

Figure 5a shows that the algorithm is able to detect the consensus given in the literature [Helmann, 1995] for the σ70 promoter sequence in B. subtilis, TTGACAx(17±1)TATAAT, with the highest peaks at the known distance (17±1 bases) between the site at -35 and the TATA-box. The model corresponding to the remaining peak in the curve, with a distance of 7±1 between the two parts, is of unknown function. It is interesting to note that this model is palindromic and that the distance between the two boxes is small. Palindromic motifs separated by such short distances have a chance of corresponding to the binding sites of a dimeric protein. An example of such a protein is the CRP (Cyclic-AMP Receptor Protein) of which we shall speak below when discussing the models found with the E. coli dataset.

This result increases our confidence that the models found for H. pylori are also biologically pertinent besides being statistically significant (Figure 5b). The models corresponding to the second peak in particular have been suggested in more detail in [Vanet et al., 2000] to represent the σ80 promoter sequence in the bacterium. The models related to the first peak are of unknown function.

Surprisingly, in Set Gc, the consensus given in the literature for the σ70 promoter sequence [Record et al., 1996] in E. coli (the same as for B. subtilis), TTGACAx(17±1)TATAAT, is not identified (Figure 5c). This does not seem to be due to a failure of the algorithms as one structured model is found significant (at an apparently optimal distance of 6±1 between the two parts of the model) that corresponds to a well-known palindromic motif, that of the CRP binding site (see above and [Berg and von Hippel, 1988] [Combrugge et al., 1984] [Lawrence and Reilly, 1990] [Schneider et al., 1986]).

Our feeling that the algorithms are not at fault concerning E. coli is reinforced by the fact that the classical consensus, TTGACAx(17±1)TATAAT, is found, although with a weaker conservation than in B. subtilis, when the algorithms are run on a set of well-established E. coli sequences containing an experimentally determined transcription start or, sometimes, promoter (Figure 5d). We call this set Ec, the E denoting “Experimental”. These sequences were obtained from Ozoline [Ozoline et al., 1998]. They are aligned on the predicted transcription start. Although this information is not used, nor needed, by our algorithms, it allows us to verify that the model identified as the most statistically significant at the highest peak (for interval 17±1) corresponds indeed to the promoter sequence although the model itself is slightly different (TTGACx(17±1)TAAAAT) when compared to the consensus given in the literature. The CRP binding site is not found in Set Ec simply because the sequences in Ec are much shorter than in Gc (their length varies between 60 and 80).

The results concerning the E. coli set of non-coding sequences between divergent genes are interesting. It has been observed [Mulder et al., 1997] that promoters of gram-positive organisms such as B. subtilis exhibit higher consensus requirements than those of E. coli. This may explain
why it seems much harder to extract a promoter consensus sequence for E. coli, indeed impossible with high enough confidence from the set of non coding sequences of the organism (considering all the non coding sequences instead of just those located between divergent genes as in this paper does not change the results), although E. coli is believed to have less promoter sequence families than B. subtilis (8 as opposed to 18 for B. subtilis). This may suggest not only that the 70 promoter family is more degenerate in E. coli, but also that it may contain more elements.

A deeper analysis of the algorithms biological interest (including current limitations) may be found in [Vanet et al., 2000] and [Vanet et al., 1999].

Acknowledgements

The authors were partly supported by a CAPES/COFECUB project (of type II, number 272/99) between the universities of Marne-la-Vallée and Rouen in France and of São Paulo and Campinas in Brazil, as well as by the REMAG project with the INRIA, France. They would like to thank O. N. Ozoline for having kindly made available to them Set Ec in ascii format, Anne Vanet from the Institut de Biologie Physico-Chimique, Paris, France, for having suggested and worked on the promoters problem with them, a work that showed the necessity of developing new algorithms, as well as Maxime Crochemore from the Institut Gaspard-Monge, University of Marne-la-Vallée, France, for a very careful reading of the manuscript. Last but not least, they wish to thank all referees of the RECOMB 2000 version of this paper for detailed and very helpful remarks that helped improve the work.

References

Figure 1: Example of a valid model with two boxes ($p = 2$).

L. Marsan

Legend Figure 1
No legend

L. Marsan

Legend Figure 2
Single models are extracted by simultaneously and recursively traversing (in a depth-first way) the (virtual) lexicographic trie M of all possible models of length k (stopping the descent down
Figure 2: Extracting single models with a suffix tree – An example.

an arc and pruning the subtree rooted at the end node of that arc as soon as the quorum is no longer verified) and the (actually built) suffix tree \mathcal{T} of the sequences. While traversing \mathcal{T}, up to e mispellings are allowed of the labels of the arcs in \mathcal{M} corresponding to potentially valid models. In the Figure, model ATA has been spelled. It has suffixes AGA, CTT, TCA and TTA as occurrences with up to two substitutions. It is valid since 2 occurrences belong to string 1 and 2 to the other string (the quorum is 2). To avoid cluttering the figure, boolean arrays at each node have not been drawn.

L. Marsan

Legend Figure 3
No legend

L. Marsan
Legend Figure 4
Fig. 4a corresponds to the extraction of the first single models m_1 of structure models (m,d); Fig. 4b to the jump of $k+d_{\min}$ to $k+d_{\max}$ down normal tree arcs to grab some information from
For each occurrence of m_1...

...do a jump of variable length...

...and look for occurrences of m_2

Figure 3: Extracting structured models (in the context of Problem 1) with a suffix tree – An illustration of Algorithm 1.

Figure 4: Extracting structured models (in the context of Problem 1) with a suffix tree – An illustration of Algorithm 2.
the ends of potential node-occurrences for a second box (to lighten the figure, we made here $d_{\text{min}} = d_{\text{max}} = d_m$); Fig. 4c shows the jump back up to level k following suffix links with the information grabbed in passing; Fig. 4d represents the propagation of the information received at level k up to the root; finally Fig. 4e illustrates the search for second single models m_2 of structure models (m, d) in tree \mathcal{T}.

L. Marsan

Legend Figure 5
The intervals of distance allowed between the two parts of a structured model are plotted.
against the statistical value obtained by the most significant model found in Sets Gs (Fig. 5a), Gp (Fig. 5b), Gc (Fig. 5c) and Ec (Fig. 5d) with up to 1 substitution permitted and a quorum of 4% for B. subtilis, 6% for H. pylori and 2% for the E. coli sets of sequences. For this, a χ^2 was calculated between the number of occurrences observed (allowing for the same maximum number of errors) in all sets against that observed on average in shuffled versions of each (100 simulations were performed). The most pertinent models identified for each interval at or near a peak is shown above the curves.