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Spelling approximate repeated or common Sagot, Marie-France
motifs using a suffix tree

Marie-France Sagot

Service d’Informatique Scientifique, Institut Pasteur
28, rue du Dr. Roux - Paris
and
Institut Gaspard Monge, Université de Marne la Vallée
2, rue de la Butte Verte - Noisy le Grand

Abstract. We present in this paper two algorithms. The first one ex-
tracts repeated motifs from a sequence defined over an alphabet Y. For
instance, ¥ may be equal to {A, C, G, T} and the sequence represents
an encoding of a DNA macromolecule. The motifs searched correspond
to words over the same alphabet which occur a minimum number ¢ of
times in the sequence with at most e mismatches each time (g is called
the quorum constraint). The second algorithm extracts common motifs
from a set of N > 2 sequences. In this case, the motifs must occur, again
with at most e mismatches, in 1 < ¢ < NN distinct sequences of the set.
In both cases, the words representing the motifs may never be present
exactly in the sequences. We therefore speak of the motifs, repeated in
a sequence or common to a set of them, as being “external” objects and
denote them by the expression “valid models” if they verify the quorum
constraint q. The approach we introduce here for finding all valid models
corresponding to either repeated or common motifs starts by building
a suffix tree of the sequence(s) and then, after some further preprocess-
ing, uses this tree to simply “spell” the models. Assuming an alphabet
of fixed size, the total time needed is O(nN>V(e, k)) using O(nN?/w)
space, where n is the (average) length of the sequence(s), k is the length
of the models sought or is the length of the longest possible valid models,
w is the size of a word machine and V(e, k) is the number of words of
length k& at a Hamming distance at most e from another k-length word.
V(e, k) may be majored by k°|X|°. This improves on an algorithm by
Waterman [23]. It is also a better time bound than our previous ap-
proach [15] for the common motifs problem whenever N < k|Y|, and a
better space bound when N/w < k. It is a better time and space bound
in absolute for the repeated motifs problem. The complexities obtained
in this second case are O(nV(e, k)) and O(n) respectively. Finally, we
suggest how to extend these algorithms to deal with gaps.

1 Introduction

We present in this paper two algorithms. The first one extracts repeated motifs
from a sequence, typically of DNA| that is, a sequence defined over ¥ = {A,
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C, G, T}. The motifs searched correspond to words over the same alphabet
which occur a minimum number ¢ of times in the sequence with at most e
mismatches each time. The second algorithm extracts common motifs from a set
of N > 2 sequences. In this last case, the motifs must occur, again with at most
e mismatches, in 1 < ¢ < N distinct sequences of the set.

In both cases, the words representing the motifs may never be present exactly
in the sequences. We therefore speak of the motifs, repeated in a sequence or
common to a set of them, as being “external” objects and denote them by the
term models. We also call ¢ the quorum constraint such models have to verify
to be considered valid.

Objects such as these were first introduced in the literature by Waterman
(under the name of consensus patterns) [7] [21] [22] [23] and later employed by
ourselves [15] with the aim of solving the common motifs problem.

The main inconvenient of Waterman’s approach is that it obtains the models
either by generating all words over X* for some k and then looking for them in
the sequences, or by looking only for those models, also of length k, that have a
chance of being valid but this requires more space. In the first case, the amount
of memory necessary is O(nN) where n is the average length of the sequences,
however the time complexity is O(nNk|X|*). In the second case, models of length
k which have a chance of being valid are those in the e-neighborhood [13] of
the words of same length present in the sequences of the set. A model m of
length k& is said to be in the e-neighborhood of a word w if the (in this case
Hamming) distance from m to w is no more than e (i.e. we need at most e
substitutions to obtain m from u). The e-neighborhood of a word u of length
k

k contains ) 5_ (|X] = 1)7 < k°|X|¢ elements - we denote this number
j=0 7

by V(e, k) (V for “Vicinity”). The time requirement for the second approach to
Waterman'’s algorithm can be reduced to O(nNkV(e, k)) but this requires now
O(nN|X|*) space (as given in [23] using a window of length n since they have
to remember which models have already been generated). In both cases, the
method is therefore limited to small values of k (typically 6). It is also suitable
for small alphabets only.

One could improve Waterman’s approach by using more efficient techniques
of pattern matching with e-mismatches against a text like those by Baeza-Yates
[1], Manber [24] [25] or Myers [14] that are based on bit-parallelism. This would
reduce the time complexity to O(nN|X|*) or O(nNV(e, k)) but one would then
still have to deal with a multiplicative factor of |X|* in the time or space com-
plexity of the algorithm that would make such approaches prohibitive for big
alphabets (if one dealt with proteins for instance instead of DNA sequences)
and/or big values of k (as happens with some DNA signals such as the CRP
binding site which is believed to be 22 bases long [10]).

Our own algorithm for the common motifs problem [15] generates the models
by increasing lengths by simulating the traversal of a lexicographic tree of all
possible objects over X7 where at each node z are preserved the occurrences
in s of the model m labeling the path from the root to . The traversal is kept
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efficient because the tree may be pruned at the branch leading to a model m
whenever m does not verify the quorum constraint anymore. Models m' having m
as prefix are thus never considered. The counterpart of this approach as against
Waterman'’s is that, since models are built by increasing lengths, a multiplicative
factor of k is introduced in the time and space complexities, where k is the
length of the models looked for. However, neither complexity depends anymore
on |¥|*. The search for all models of length k having occurrences at a Hamming
distance at most e in at least ¢ distinct sequences of the set of N takes then
O(nNE|X|V(e, k)) time and O(nNk) space as indicated in the paper. A more
space demanding version of the algorithm allows to perform the same search in
O(nNlogk|X|V(e, k)) time but with O(nNV(e, k)) space. Let us observe that,
in practice, (k|¥|)¢ is much lower than |X|* since e/k is approximately 10-15%.
Consider for instance the following not untypical values of £ = 16, ¢ = 2 and
|X| = 4. We then have (k|X|)¢/|X|* = 47'°. In both versions of the algorithm,
as the process of model construction is not based on the generation of all those
of a given length k, we have the further advantage of not having to fix the value
of k beforehand as is the case with Waterman. We may therefore look for valid
models of maximum length still verifying the quorum, or for all those between
lengths &y and ks for 1 < ky < ko < oo (using the first version) while remaining
within the same bounds.

When either Waterman’s algorithm or our own is applied to the repeated
motifs problem, both time and space complexities remain the same except NN is
now equal to 1.

The new approach we introduce here starts by building a suffix tree of the
sequences and then, after some further preprocessing, uses this tree to simply
“spell” the valid models. It is therefore this tree that is now traversed to obtain
such models.

Assuming an alphabet of fixed size, the tree can be constructed in O(nN)
time employing O(nN) space and the preprocessing takes time O(nN?/w), where
w is the size of a word machine, and space O(nN?/w). The time needed for the
model “spelling” operation itself is O(nN?V(e, k)) with O(nN) additional space
required. This is a better time bound for the common motifs problem whenever
N < k||, and also a better space bound when N/w < k. It is a better time and
space bound in absolute for the repeated motifs problem since the complexities
then become O(n)V (e, k)) and O(n) respectively.

Observe that, in this second case, if no errors are allowed, we obtain the
same time and space complexities, in O(n), of the best algorithms for identifying
repeated motifs [3] [5]. This is not true for the common motifs problem where
we have an O(nN?) time bound whereas Hui obtains an O(nN) bound [9]. His
approach should thus be preferred when e = 0. Since both algorithms share
similar structures, we show that only a minor modification to ours is needed so
as to be able to switch to Hui’s when e is zero (which seldom happens when one
is dealing with biological sequences).

Suffix trees for approximate searches (allowing mismatches and gaps) have
been used before, notably by Ukkonen [20] and Cobbs [4]. Although in both cases
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what is searched is known beforehand making of it a quite different problem (of
pattern matching as against pattern extracting), their approaches and ours share
some similarity, if only because the same basic data structure (a suffix tree) and
the same technique (a form of dynamic programming) are used. However, a much
simpler traversal of the tree is required here. This is obviously the case when
mismatches only are allowed, but is true also should gaps be permitted. Indeed,
we quickly sketch an extension of the algorithm for the repeated motifs problem
(the common motifs problem would be handled in a similar way) that deals with
gaps by following the same philosophy. The time complexity is then O(nN (e, k))
where A (e, k) is the number of models m at a (this time) Levenshtein distance
at most e from a word of length k. We therefore avoid introducing an additional
factor of k in the complexity as would be the case should we adopt Cobbs’
method, but may bring in instead a factor in, at most, 2e in relation to his
approach. Since in general we have 2e < k, we nevertheless obtain a better
bound besides presenting a simpler algorithm.

This paper is organized as follows. We give in section 2 some basic definitions
and state the two problems we wish to solve. We then discuss in section 3 the
solution to the repeated motifs problem first. We start by recalling the suffix tree
data structure and introduce the further preprocessing of it we have to perform
before using the tree to obtain the models. We then show how to use the tree
to “spell” the models and discuss the time and space complexities obtained. In
section 4, we present the modifications we have to do to the previous algorithm
to treat the common motifs problem. These concern both the preprocessing of
the suffix tree before the spelling operation and the spelling itself. We end by
suggesting in section 5 how to extend the first of the two algorithms to be able
to deal with gaps as well as mismatches.

2 Basic Definitions and Statement of the Problems

In what follows, we denote by s a (unique) sequence where repeated motifs are
searched and by {s;, 1 <i < N for some N > 2} a set of sequences from which
we want to extract common motifs. In the case of DNA sequences, s and s; are
therefore elements of X* where X' = {A, C, G, T}. We call u a word in s, or s;,
if the sequence is equal to xuy with z,y € X*. The empty word is denoted by A.

A model m is also an element of X . Tt is said to occur (or to be present) in a
sequence s if there is at least one word u in s of same length as m and such that
Hamming(m,u) < e where Hamming(m,u) is the Hamming distance between
m and u (it is the minimum number of substitutions needed to transform m into
u) and e is a non negative integer.

The problems we wish to solve may then be stated as follows:

The Repeated Motifs Problem. Given a sequence s and two integers e > 0 and
g > 2, find all models m such that m is present at least ¢ times in s (some of
the occurrences of m may overlap);
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The Common Motifs Problem. Given a set of N sequences s; (for 1 < i < N)
and two integers e > 0 and 2 < ¢ < N, find all models m such that m is present
in at least ¢ distinct sequences of the set.

In both cases, models satisfying the above conditions are called valid. We
are therefore looking for all valid models that correspond either to repeated or
common motifs depending on the problem.

In [15], we proposed an algorithm for solving the common motifs problem
(actually, a little more than that since we also dealt with gaps). It is easy to
modify it so that it can handle the repeated motifs problem as well. However,
the approach described there did not try to take advantage of the sequence (or
sequences) structure in order to obtain the valid models as was done in [9] but
for identically repeated motifs only (no mismatches allowed) or in [11] but for
fixed-length motifs that had to appear at least once exactly in the sequence. In
the present paper, this underlying structure is exploited to obtain a new model
building algorithm dealing with a Hamming distance that has a better complex-
ity in absolute for the first problem stated above, and a better complexity over
some range of parameters we explicit later on in the case of the second problem.
We recall that the models need never be present exactly in the sequence(s). We
start by looking on this new way of solving the problem when repeated motifs
are sought.

3 Solving the Repeated Motifs Problem

3.1 Preprocessing

Constructing the Suffix Tree. We do not describe the suffix tree construc-
tion, this can be found in either [12], [19] or (for a review of this and other data
structures and text algorithms) [6] and [8]. We just recall here some of the basic
properties of such structures (these are taken from [12]).

Basic Properties of the Suffix Tree 7 of a Sequence s.

1. A branch of 7 may represent any nonempty substring of s;

2. Each node of 7 that is not a leaf, except for the root, must have at least two
offspring branches (compact version of the tree);

3. The strings represented by sibling branches of 7 must begin with different
symbols of Y.

Observe that property 2 means that a branch of 7 may be labeled by an
element of X% for k > 2 (for space considerations, each branch of T is in fact
labeled by a pair of numbers corresponding to the start and end positions in s
of the substring it represents, or its start position and length).

The key feature of a suffix tree is that for any leaf i, the concatenation of
the labels of the branches on the path from the root to leaf ¢ spells the suffix of
s starting at position i. Reciprocally, the path spelled by every suffix of s leads
to a distinct leaf if we assume that the last symbol of s appears nowhere else
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in s. To achieve this, we just need to concatenate at the end of s a symbol not
appearing in Y.

An example of a suffix tree 7 for s = AACCACG is given in Fig. 1. This is
adapted from [6].

Fig. 1. Compact suffix tree for s = AACCACG

We shall assume we have adopted the McCreight’s compact suffix tree con-
struction. However, we need some more information to be added to our tree.
This is described next.

Adding Information to the Nodes of the Tree. In the case of the first
problem concerning us (finding repeated motifs in a sequence), the further pre-
processing of the tree that we need to do is easy to realize.

Indeed, in order to be able to spell the models present at least ¢ times in
s, all that remains for us to know is, for each node z of 7, how many leaves
are contained in the subtree of 7 having = as root. Let us denote Leaves, this
number for each node z. This information can be added to the tree by a simple
traversal of it.

3.2 Spelling the Models

Let us consider first the case where e = 0, that is, no mismatches are allowed.
Valid models verify two properties.

1. All their prefixes are also valid;
2. Spelling these models (which is the same as spelling any of their occurrences)
leads to a node z in T for which Leaves, is at least gq.

Once errors are allowed, the first property is still verified but spelling all the
occurrences of a valid model may now lead to more than one node of the tree.
However, the values of Leaves, for all such nodes  sums up to at least ¢ also.
The second property above is thus replaced by:
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2. Spelling all the occurrences of a model m leads to nodes zy,... ,z; in T for
which 22:1 Leaves(z;) is at least g.

As a matter of fact, it is not occurrences we shall spell, but instead the models
that will be read off the tree.

The main difference with our previous approach is therefore that, in the
present case, we extract models from the suffix tree of s whereas in [15] we
constructed them by a simulated traversal (within bounds) of the lexicographic
tree of all possible models, i.e. of all possible elements of X*. This means in
particular that occurrences are now grouped into classes and “real” ones, that is
occurrences considered as individual words in s, are never directly manipulated.
Present case occurrences of a model are thus in fact nodes of the suffix tree
(we denote them by the term “node-occurrences”) and are extended in the tree
instead of in the sequence as in [15]. Once the process of model spelling has ended,
the start positions of the “real” occurrences of the valid models may be recovered
by traversing the subtrees of the nodes reached so far and reading the labels of
their leaves. As in [15], the suffix tree need not be entirely traversed, although
this time the tree itself must be fully constructed. There are two reasons that
may lead to stop the spelling of a model: we have reached the length required
for models, the model may not be further extended while remaining valid. For
any model, we may also stop the descent down a path in the tree as soon as too
many mismatches have been accumulated along it.

The algorithm is a development of the recurrence formula given in the lemma
below where x denotes a node of the tree, father(x) its father and err the number
of misspellings between the label of the path going from the root to x as against
a model m.

Lemma 1. (z,err) is a node-occurrence of m' = ma withm € X* and a € ¥
if, and only if, one of the following two conditions is verified:

(match) (father(z), err) is a node-occurrence of m and the label of the branch
from father(z) to x is «;

(subst.) (father(z), err—1) is a node-occurrence of m and the label of the branch
from father(z) to xz is B # a. O

A sketch of the procedure to follow is shown in Fig. 2 for the case where
models of a given length k£ are sought.

In order to do this model spelling operation, we have to make use of the
following;:

— a set Ext,, of symbols by which a model may be extended at the next step
(implemented as a bit-vector);

— aset Occy, of node-occurrences of a model m. We recall that these correspond
in fact to classes of occurrences. Each node-occurrence z is represented by
a pair (z, Tepr) where Z o is the number of mismatches between m and the
label of the path leading from the root to = in the tree;

— a variable nbocc that counts the number of “real” occurrences of the model
we are currently trying to extend;
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— a function KeepModel(m) that either stores all information concerning a
valid model of the required length for printing later, or immediately prints
this information.

The function SpellModels is called with arguments:

(0, A, Ocey = {(root,0)}, Exty), where

Futs — X ife>0
= labely for branches b leaving the root otherwise

Where valid models of maximum length are sought, we just need to change
lines 1 and 2 into the code given in Fig. 3. Variable &, is initialized to 0 before
first entering function SpellModels.

For the sake of simplicity, the code shown here assumes we are dealing with
an uncompact version of the tree (that is, with a trie). Using a compact version
affects the operations done in lines 9, 10, 12, 14, 15 and 17. Indeed, we need in
that case to know at any given step whether we are:

— at a node z, or
— inside a branch b between nodes x and z’

and, if we can travel down 7 with a symbol «, whether that:

— gets us to a new node z', or
— keeps us inside branch b.

This means that additional information has to be kept relative to each node-
occurrence, and, consequently, extending such an occurrence implies more work.
This however increases the algorithm’s time and space complexity by a constant
factor only.

3.3 Complexity

Assuming an alphabet of fixed size, a compact suffix tree 7 may be constructed
in O(n) time where n is the length of sequence s and occupies O(n) space [12]
[19].

Adding information to the nodes of the tree as described in section 3.1 takes
time O(n) and requires O(1) space per node of 7.

Concerning the spelling operation, we have that:

Lemma 2. Spelling all valid models for the Repeated Motifs Problem given T
requires O(nY (e, k)) time where k is either the length of the models sought or is
a mazximum length.

Proof. Let us consider valid models of length k are searched for. Spelling them
requires descending down the tree of at most k levels (we may sometimes not
reach that level if a given model stops verifying the quorum constraint ¢ at
an earlier stage). At level k, there are p < n nodes (since there are exactly
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SpellModels(l, m, Occm, Exty)

1. f(I=k)
2 KeepModel(m)
3. elseif (I < k)
4 for each symbol « in Ext,,
5. nbocc = 0
6 Eztma =0
7 Occrna =0
8 for each pair (z, Zer) in Ocem
9 if there is a branch b leaving node & with a label starting with a
10. add to Occme the pair (z', zerr) where x' is the node reached by
following branch b from x
11. nbocc = nbocc + Leaves
1 Bt — { Extma Ulabely for b’ leaving 2’ if zepr =e
X otherwise
13. if zerr < e
14, for each branch b leaving x except the one labeled by « if it exists
15. add to Occma the pair (z', Terr + 1) where 2’ is the node reached
by following branch b from =
16. nbocc = nbocc + Leaves
17 ot = { BEttia Ulabely for b leaving 2’ if oo = e — 1
X otherwise
18. if nbocc > q
19. SpellModels(l + 1, ma, Oce ma, Ext ma)

Fig. 2. Sketch of the procedure for spelling models corresponding to repeated motifs

1. if (I > kmax)

2 if (1> ko)

3. throw away all preceding kept models
4 kmaz =1

5 KeepModel(m)

Fig. 3. Modification to apply to the code of Fig. 2 in order to generate valid models
of maximum length - the lines given here replace lines 1 and 2
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n leaves in T and the number of leaves is greater than the number of nodes
at any particular level k above that of the lowest leaf). From these p nodes,
there are p paths up to the root of T (note that in our algorithm, we in fact
go down the paths, not up) and V(e, k) ways of misspelling their labels, that is
spelling the labels with at most e mismatches. This corresponds also to an upper
bound to the total number of visits that may have to be done to the branches
of T (or, equivalently, its nodes) in order to obtain the requested models. Since
each visit to a branch costs us constant time (basically, we need to increment a
counter, add a node-occurrence to one set and a list of symbols to another set
- a constant time operation if the list is implemented as a boolean array), then
the total number of operations needed to spell all the valid models given T is
bounded over by pV(e, k), that is, by O(nV(e, k)). |

Lemma 3. Spelling all valid models for the Repeated Motifs Problem given T
requires O(n) space.

Proof. The space required is that of the tree plus that of the auxiliary structures
Occ,, and FEat,,. We need to keep such structures for the model m currently being
treated and for all its prefixes (we are traversing the tree recursively). However,
the sets Occy, are all disjoint between them so that )" prefiz of m Occpyr < m.
Since 30,0 e pic of m B¥tm < k|X|/w, the total space complexity is O(n +n +
k| X|/w) = O(n) it we assume a fixed length alphabet. O

Note that if e = 0, then V(e, k) = 1. Let us point out also that V(e, k) is an
upper bound for the number of models that corresponds to the maximum size
of the output and is seldom observed.

4 Solving the Common Motifs Problem

4.1 Generalized Suffix Trees

Trees for representing all the suffixes of a set of sequences {s;, 1 < i < N for
some N > 2} are called generalized suffix trees and are constructed in a way
very similar to the construction of the suffix tree for a single sequence [2] [9]. We
denote these generalized trees by G7. They share all the properties of a suffix
tree given in section 3.1 with, in property 1, sequence s substituted by sequences
S1y---,58N-

In particular, a generalized suffix tree G7 verifies the fact that every suffix
of every sequence s; in the set leads to a distinct leaf. When p > 2 sequences
have a same suffix, the generalized tree has therefore p leaves corresponding to
this suffix, each associated with a different sequence. To achieve this property
during construction, we just need to concatenate to each sequence s; of the set
a symbol that is not in X and is specific to that sequence.
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4.2 Adding Information to the Nodes of the Tree

If the construction of a GT for a set {s;} of sequences is similar to that of a suffix
tree T for a single sequence s, it is not enough anymore to know the values of
Leaves,, for each node z in GT in order to be able to solve the Common Motifs
Problem.

We could then modify our preprocessing of the tree so that we calculate, for
each node z, no longer the number of leaves in the subtree of GT having z as
root, but the number of different sequences those leaves refer to. Computing this
number is what is called the “Color Size Problem” by Hui [9]. The color set size
of a node x is precisely the number of different leaf colors in the subtree rooted
at x, where a leaf is assigned color i if it represents a suffix of s;. Let us call this
new number CSS, as in [9].

Knowing CSS, for all nodes z is however all that is required only in the case
where e = 0 (in this case, a model has only one node-occurrence). When e > 0,
we also have to be able to tell which colors are common to 2 or more nodes of
the tree.

In order to do that, we need to associate to each node z in the GT of a set
{si} an array, denoted Colors,, of dimension N that is defined by:

1 if at least one leaf in the subtree
Colors,[i] = rooted at z represents a suffix of s; (1<i<N).
0 otherwise

Colors, may be implemented as a bit vector, or as N/w bit-vectors if N > w
where w is the size of a word machine.

The array Colors, for all x may be obtained by a simple traversal of the
tree with each visit to a node taking O(N/w) time (for adding N/w bit-vectors).
The additional space required is O(N/w) per node. We shall also use the infor-
mation provided by CSS, which Hui showed can be obtained in O(nN) time
and uses O(1) space per node. Considering CSS, is not strictly necessary but
may be useful in practice as is suggested when we analyze the complexity of this
algorithm later on.

4.3 Spelling the Models

For ease of presentation, we assume here once more that we are looking for all
valid models of a fixed length k, and that we are working with an uncompact
version of the G7. A sketch of the algorithm for solving the Common Motifs
Problem is given in Fig. 4. We use the same auxiliary structures Occ,, and
Ezt,, as in the previous algorithm, to which we add the following:

— a variable CSS, as defined in the previous section;

— a boolean array Colors, (possibly N/w arrays if N > w) as defined in the
previous section ;

— a variable minseq that indicates the minimum of CSS, for all node-occur-
rences x of the extended model,;
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— a variable mazseq that indicates the sum of CSS, for all node-occurrences
x of the extended model;
— a boolean array Color,, (possibly N/w arrays if N > w) defined by:

1 if m occurs in s;
0 otherwise

Colorsm|i] = {

Observe that, in all cases, we have:

minseq < (number of distinct sequences the model is present in) < mazseq.

4.4 Complexity

What produces an increase in the complexity of the algorithm of Fig. 4 in relation
to that of Fig. 2 concerns simply the data structure Colors, : the time needed
to create and manipulate it, and the space required to store it.

The space requirement of Colors,, is O(N/w) per node if it is implemented as
a bit-vector having same size w as a word machine. The total space requirement
of the algorithm is therefore now bounded over by O(nN?/w). This is smaller
than our previously obtained bound [15] of O(nNk) when N/w < k.

Creating Colors, for every node z of the tree takes time O(nN?/w), however
manipulating it, in particular performing the operation indicated in line 31,
requires O(N) time per model. Since there can be O(nNV(e, k)) valid models in
the worst case, the algorithm’s time complexity becomes O(nN?V(e, k)). This is
a better bound than the one given in [15] for N < k| X|.

The tests of lines 26 and 29 should improve the algorithm’s behaviour on
average. Observe that the test of line 29 has more chance of being true at the
beginning of the algorithm (where models match almost everything) while that
of line 26 has a better chance of being verified the longer the model is (because
the number of its occurrences will then be quite close to q).

As mentioned in the introduction, when e = 0 we do not obtain Hui’s better
bound of O(nN). In this case though, we only need to remove lines 7, 16, 24,
31 and 32 to fall back to the algorithm Hui introduced in [9]. Observe this also
means getting rid of the Colors structure that is no longer necessary. It is easy
to modify the algorithm of Fig. 4 so that the instructions contained in the lines
just indicated are performed only if e > 0.

5 Sketch of Extension Dealing with Gaps

We sketch in this section how to extend the algorithms so as to be able to treat
gaps as well as mismatches. This is done only for the repeated motifs problem.
The common motifs problem would be dealt with in a quite similar manner. The
algorithm is presented without further ado in Fig. s 5 and 6. Node-occurrences
must be maintained in Occ,, for m a model in the order in which they would
be encountered if the tree were traversed in a depth-first manner. This preorder
follows naturally from the way nodes are processed at each step of the algorithm.
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SpellModels(l, m, Occm, Exty)

13.
14.
15.
16.

17.

18.
19.
20.

21.
22.
23.
24.

25.

26.
27.
28.
29.
30.
31.
32.

if (1= k)

KeepModel(m)

else if (I < k)

for each symbol « in Ext,,
mazseq = 0
minseq = 0O
Colorsme is initialized with no colors
Ettma = 0
Octma =0
for each pair (z, Zerr) in Ocer,
if there is a branch b leaving node x with a label starting with «
add to Occme the pair (z', zer) where x' is the node reached by
following branch b from x
mazseq = mazseq + CSS
if CSS, < minseq
minseq = CSS
add colors in Colors, to Colorsma
{ Extoma Ulabely, for b leaving 2’ if z.,, = e
Ertma = .
X otherwise
if o < e
for each branch b leaving = except the one labeled « if it exists

add to Occme the pair (z', zerr + 1) where 2’ is the node reached

by following branch b from =
mazseq = mazseq + CSS
if 5SS, < minseq
minseq = CSS
add colors in Colors, to Colorsma

Extma Ulabely for b’ leaving 2’ if zerr = e — 1
Ettma = .
X otherwise
if mazseq < q
return (no hope)
else
if minseq > q

SpellModels(l + 1, ma, Ocema, BEttma)
else if the number of bits at 1 in Colors,,. is no less than ¢
SpellModels(l + 1, ma, Ocema, Bttma)

Fig. 4. Sketch of the procedure for spelling models corresponding to common motifs
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We do not prove it here, but the only thing that changes in the complexity of
the algorithm is that V(e, k) is replaced by N (e, k) where N (e, k) is the number
of models m at a (this time) Levenshtein distance at most e from a word of
length k. This comes from the fact that, since each node of the tree is considered
at most once as a node-occurrence, Occ,, remains bounded over by O(n). There
may simply now be more models.

One can think of the operation performed by the procedure T'reat of Fig. 6
as adding the last row of a dynamic programming matrix of model m against the
suffix tree of s as in [20] or [4]. As mentioned in the introduction however, the
current algorithm has a different way of accounting for the “real” occurrences of
a model than the one by Cobbs [4]. Indeed, in his case, for each position i in s,
only one occurrence is kept that ends at ¢. Doing that however implies verifying
certain things and this may cost him as much as k additional operations per
occurrence. In our case, although we may keep up to 2e node-occurrences per
valid ending position (the total number of nodes remaining less than Cn for a
small constant C), we still get a better time bound since in general 2e < k.
The algorithm is also simpler. Furthermore, it may be interesting in some cases
(e.g. when searching for tandem repeats [16]) to know both the start and end
positions of an occurrence.

SpellModels(l, m, Occm, Exty)

1. if(l=k)

2 KeepModel(m)

3. elseif (I < k)

4 for each symbol a in Ezt,,

5. nboce = 0

6 Extpme =0

7 Octma =0

8 for each pair (z, ) in Ocem

9. remove (z, Terr) from Ocey,

10. Treat(Occm, Occma, Ettma, Leaves, T, Terr, o, nboce, 0)
11. if nbocc > q

12. SpellModels(l + 1, ma, Oceme, Bttma)

Fig. 5. Sketch of the procedure for spelling models corresponding to repeated motifs
when gaps as well as mismatches are allowed (internal procedure Treat is given in
Fig. 6)
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Treat( Occpm, Ocema, Bttma, Leaves, x, Terr, a, nboce, level)

1. if (level = 0) /* deletion */

2 if Zerr < e

3. add to Ocema the pair (z, Terr + 1)

4 nbocc = nboce + Leavesy

Extima Ulabely for b leaving z if (zerr +1) =€
b)) otherwise

o

Ertma =

6. for each z' obtained by following, in lexicographic order,
a branch (labeled 3) from z

7. if (2, x\,,) is the next pair in Occ,
8. remove (z', z!,,) from Occp,

Terr if 3 =a /* match */

. . Terr + 1 if a /* substitution *

9. let mine,» = min 2+ 1 p# f* deletion */ /

Terr + 1 /* insertion */
10. if mine. <e
11. add to Ocema the pair (z', mine,,)
12. nbocc = nbocc + Leaves
13 Bt — Extma Ulabely for b’ leaving ' if mine.w =e

b)) otherwise

14. Treat(Occm, OcCma, Bttma, Leaves, z', min.,,, a, nboce, level 4+ 1)
15. else
16. remove from Occ,, the sons of 2’ and all the sons thereof recursively
17. else

Terr if 3=a /* match */
18. let mine,» = min { Zerr + 1 if B # « /* substitution */

Terr + 1 /* insertion */
19. if mine. <e
20. add to Occme the pair (2', min...)
21. nbocec = nbocc + Leaves
-~ - {Eztma U labely for ' leaving «' if min.,, = e

b)) otherwise

Fig. 6. Procedure Treat, used by the algorithm for spelling models corresponding to

repeated motifs, when gaps as well as mismatches are allowed
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6 Future Work

It is not too difficult to see that the new approach to approximate motif ex-
traction presented in this paper may be extended to deal with the special kinds
of alphabets required for protein sequence analysis [18] and with combinatorial
alphabets such as introduced in [17]. This will be explored and formalized in a
future paper.

The present algorithm should also help deal with models that, although dif-
ferent, have sets of “real” occurrences (or, equivalently, of node-occurrences)
that are identical or included in the set of another model. This is a problem
often encountered and it may be appropriate to get rid of included sets. It is not
completely trivial how to do it in an efficient way.
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