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Sagot, Marie-FranceSpelling approximate repeated or commonmotifs using a su�x treeMarie-France SagotService d'Informatique Scienti�que, Institut Pasteur28, rue du Dr. Roux - ParisandInstitut Gaspard Monge, Universit�e de Marne la Vall�ee2, rue de la Butte Verte - Noisy le GrandAbstract. We present in this paper two algorithms. The �rst one ex-tracts repeated motifs from a sequence de�ned over an alphabet �. Forinstance, � may be equal to fA, C, G, Tg and the sequence representsan encoding of a DNA macromolecule. The motifs searched correspondto words over the same alphabet which occur a minimum number q oftimes in the sequence with at most e mismatches each time (q is calledthe quorum constraint). The second algorithm extracts common motifsfrom a set of N � 2 sequences. In this case, the motifs must occur, againwith at most e mismatches, in 1 � q � N distinct sequences of the set.In both cases, the words representing the motifs may never be presentexactly in the sequences. We therefore speak of the motifs, repeated ina sequence or common to a set of them, as being \external" objects anddenote them by the expression \valid models" if they verify the quorumconstraint q. The approach we introduce here for �nding all valid modelscorresponding to either repeated or common motifs starts by buildinga su�x tree of the sequence(s) and then, after some further preprocess-ing, uses this tree to simply \spell" the models. Assuming an alphabetof �xed size, the total time needed is O(nN2V(e; k)) using O(nN2=w)space, where n is the (average) length of the sequence(s), k is the lengthof the models sought or is the length of the longest possible valid models,w is the size of a word machine and V(e; k) is the number of words oflength k at a Hamming distance at most e from another k-length word.V(e; k) may be majored by kej�je. This improves on an algorithm byWaterman [23]. It is also a better time bound than our previous ap-proach [15] for the common motifs problem whenever N < kj�j, and abetter space bound when N=w < k. It is a better time and space boundin absolute for the repeated motifs problem. The complexities obtainedin this second case are O(nV(e; k)) and O(n) respectively. Finally, wesuggest how to extend these algorithms to deal with gaps.1 IntroductionWe present in this paper two algorithms. The �rst one extracts repeated motifsfrom a sequence, typically of DNA, that is, a sequence de�ned over � = fA,



112 Marie-France SagotC, G, Tg. The motifs searched correspond to words over the same alphabetwhich occur a minimum number q of times in the sequence with at most emismatches each time. The second algorithm extracts common motifs from a setof N � 2 sequences. In this last case, the motifs must occur, again with at moste mismatches, in 1 � q � N distinct sequences of the set.In both cases, the words representing the motifs may never be present exactlyin the sequences. We therefore speak of the motifs, repeated in a sequence orcommon to a set of them, as being \external" objects and denote them by theterm models. We also call q the quorum constraint such models have to verifyto be considered valid.Objects such as these were �rst introduced in the literature by Waterman(under the name of consensus patterns) [7] [21] [22] [23] and later employed byourselves [15] with the aim of solving the common motifs problem.The main inconvenient of Waterman's approach is that it obtains the modelseither by generating all words over �k for some k and then looking for them inthe sequences, or by looking only for those models, also of length k, that have achance of being valid but this requires more space. In the �rst case, the amountof memory necessary is O(nN) where n is the average length of the sequences,however the time complexity is O(nNkj�jk). In the second case, models of lengthk which have a chance of being valid are those in the e-neighborhood [13] ofthe words of same length present in the sequences of the set. A model m oflength k is said to be in the e-neighborhood of a word u if the (in this caseHamming) distance from m to u is no more than e (i.e. we need at most esubstitutions to obtain m from u). The e-neighborhood of a word u of lengthk contains Pej=0 �kj � (j�j � 1)j � kej�je elements - we denote this numberby V(e; k) (V for \Vicinity"). The time requirement for the second approach toWaterman's algorithm can be reduced to O(nNkV(e; k)) but this requires nowO(nN j�jk) space (as given in [23] using a window of length n since they haveto remember which models have already been generated). In both cases, themethod is therefore limited to small values of k (typically 6). It is also suitablefor small alphabets only.One could improve Waterman's approach by using more e�cient techniquesof pattern matching with e-mismatches against a text like those by Baeza-Yates[1], Manber [24] [25] or Myers [14] that are based on bit-parallelism. This wouldreduce the time complexity to O(nN j�jk) or O(nNV(e; k)) but one would thenstill have to deal with a multiplicative factor of j�jk in the time or space com-plexity of the algorithm that would make such approaches prohibitive for bigalphabets (if one dealt with proteins for instance instead of DNA sequences)and/or big values of k (as happens with some DNA signals such as the CRPbinding site which is believed to be 22 bases long [10]).Our own algorithm for the common motifs problem [15] generates the modelsby increasing lengths by simulating the traversal of a lexicographic tree of allpossible objects over �+ where at each node x are preserved the occurrencesin s of the model m labeling the path from the root to x. The traversal is kept



Spelling approximate repeated or common motifs using a su�x tree 113e�cient because the tree may be pruned at the branch leading to a model mwheneverm does not verify the quorum constraint anymore. Modelsm0 havingmas pre�x are thus never considered. The counterpart of this approach as againstWaterman's is that, since models are built by increasing lengths, a multiplicativefactor of k is introduced in the time and space complexities, where k is thelength of the models looked for. However, neither complexity depends anymoreon j�jk. The search for all models of length k having occurrences at a Hammingdistance at most e in at least q distinct sequences of the set of N takes thenO(nNkj�jV(e; k)) time and O(nNk) space as indicated in the paper. A morespace demanding version of the algorithm allows to perform the same search inO(nN log kj�jV(e; k)) time but with O(nNV(e; k)) space. Let us observe that,in practice, (kj�j)e is much lower than j�jk since e=k is approximately 10-15%.Consider for instance the following not untypical values of k = 16, e = 2 andj�j = 4. We then have (kj�j)e=j�jk = 4�10. In both versions of the algorithm,as the process of model construction is not based on the generation of all thoseof a given length k, we have the further advantage of not having to �x the valueof k beforehand as is the case with Waterman. We may therefore look for validmodels of maximum length still verifying the quorum, or for all those betweenlengths k1 and k2 for 1 � k1 � k2 �1 (using the �rst version) while remainingwithin the same bounds.When either Waterman's algorithm or our own is applied to the repeatedmotifs problem, both time and space complexities remain the same except N isnow equal to 1.The new approach we introduce here starts by building a su�x tree of thesequences and then, after some further preprocessing, uses this tree to simply\spell" the valid models. It is therefore this tree that is now traversed to obtainsuch models.Assuming an alphabet of �xed size, the tree can be constructed in O(nN)time employingO(nN) space and the preprocessing takes time O(nN2=w), wherew is the size of a word machine, and space O(nN2=w). The time needed for themodel \spelling" operation itself is O(nN2V(e; k)) with O(nN) additional spacerequired. This is a better time bound for the common motifs problem wheneverN < kj�j, and also a better space bound when N=w < k. It is a better time andspace bound in absolute for the repeated motifs problem since the complexitiesthen become O(nV(e; k)) and O(n) respectively.Observe that, in this second case, if no errors are allowed, we obtain thesame time and space complexities, in O(n), of the best algorithms for identifyingrepeated motifs [3] [5]. This is not true for the common motifs problem wherewe have an O(nN2) time bound whereas Hui obtains an O(nN) bound [9]. Hisapproach should thus be preferred when e = 0. Since both algorithms sharesimilar structures, we show that only a minor modi�cation to ours is needed soas to be able to switch to Hui's when e is zero (which seldom happens when oneis dealing with biological sequences).Su�x trees for approximate searches (allowing mismatches and gaps) havebeen used before, notably by Ukkonen [20] and Cobbs [4]. Although in both cases



114 Marie-France Sagotwhat is searched is known beforehand making of it a quite di�erent problem (ofpattern matching as against pattern extracting), their approaches and ours sharesome similarity, if only because the same basic data structure (a su�x tree) andthe same technique (a form of dynamic programming) are used. However, a muchsimpler traversal of the tree is required here. This is obviously the case whenmismatches only are allowed, but is true also should gaps be permitted. Indeed,we quickly sketch an extension of the algorithm for the repeated motifs problem(the common motifs problem would be handled in a similar way) that deals withgaps by following the same philosophy. The time complexity is then O(nN (e; k))where N (e; k) is the number of models m at a (this time) Levenshtein distanceat most e from a word of length k. We therefore avoid introducing an additionalfactor of k in the complexity as would be the case should we adopt Cobbs'method, but may bring in instead a factor in, at most, 2e in relation to hisapproach. Since in general we have 2e < k, we nevertheless obtain a betterbound besides presenting a simpler algorithm.This paper is organized as follows. We give in section 2 some basic de�nitionsand state the two problems we wish to solve. We then discuss in section 3 thesolution to the repeated motifs problem �rst. We start by recalling the su�x treedata structure and introduce the further preprocessing of it we have to performbefore using the tree to obtain the models. We then show how to use the treeto \spell" the models and discuss the time and space complexities obtained. Insection 4, we present the modi�cations we have to do to the previous algorithmto treat the common motifs problem. These concern both the preprocessing ofthe su�x tree before the spelling operation and the spelling itself. We end bysuggesting in section 5 how to extend the �rst of the two algorithms to be ableto deal with gaps as well as mismatches.2 Basic De�nitions and Statement of the ProblemsIn what follows, we denote by s a (unique) sequence where repeated motifs aresearched and by fsi, 1 � i � N for some N � 2g a set of sequences from whichwe want to extract common motifs. In the case of DNA sequences, s and si aretherefore elements of �+ where � = fA, C, G, Tg. We call u a word in s, or si,if the sequence is equal to xuy with x; y 2 ��. The empty word is denoted by �.A model m is also an element of �+. It is said to occur (or to be present) in asequence s if there is at least one word u in s of same length as m and such thatHamming(m;u) � e where Hamming(m;u) is the Hamming distance betweenm and u (it is the minimum number of substitutions needed to transform m intou) and e is a non negative integer.The problems we wish to solve may then be stated as follows:The Repeated Motifs Problem. Given a sequence s and two integers e � 0 andq � 2, �nd all models m such that m is present at least q times in s (some ofthe occurrences of m may overlap);



Spelling approximate repeated or common motifs using a su�x tree 115The Common Motifs Problem. Given a set of N sequences si (for 1 � i � N)and two integers e � 0 and 2 � q � N , �nd all models m such that m is presentin at least q distinct sequences of the set.In both cases, models satisfying the above conditions are called valid. Weare therefore looking for all valid models that correspond either to repeated orcommon motifs depending on the problem.In [15], we proposed an algorithm for solving the common motifs problem(actually, a little more than that since we also dealt with gaps). It is easy tomodify it so that it can handle the repeated motifs problem as well. However,the approach described there did not try to take advantage of the sequence (orsequences) structure in order to obtain the valid models as was done in [9] butfor identically repeated motifs only (no mismatches allowed) or in [11] but for�xed-length motifs that had to appear at least once exactly in the sequence. Inthe present paper, this underlying structure is exploited to obtain a new modelbuilding algorithm dealing with a Hamming distance that has a better complex-ity in absolute for the �rst problem stated above, and a better complexity oversome range of parameters we explicit later on in the case of the second problem.We recall that the models need never be present exactly in the sequence(s). Westart by looking on this new way of solving the problem when repeated motifsare sought.3 Solving the Repeated Motifs Problem3.1 PreprocessingConstructing the Su�x Tree. We do not describe the su�x tree construc-tion, this can be found in either [12], [19] or (for a review of this and other datastructures and text algorithms) [6] and [8]. We just recall here some of the basicproperties of such structures (these are taken from [12]).Basic Properties of the Su�x Tree T of a Sequence s.1. A branch of T may represent any nonempty substring of s;2. Each node of T that is not a leaf, except for the root, must have at least twoo�spring branches (compact version of the tree);3. The strings represented by sibling branches of T must begin with di�erentsymbols of �.Observe that property 2 means that a branch of T may be labeled by anelement of �k for k � 2 (for space considerations, each branch of T is in factlabeled by a pair of numbers corresponding to the start and end positions in sof the substring it represents, or its start position and length).The key feature of a su�x tree is that for any leaf i, the concatenation ofthe labels of the branches on the path from the root to leaf i spells the su�x ofs starting at position i. Reciprocally, the path spelled by every su�x of s leadsto a distinct leaf if we assume that the last symbol of s appears nowhere else



116 Marie-France Sagotin s. To achieve this, we just need to concatenate at the end of s a symbol notappearing in �.An example of a su�x tree T for s = AACCACG is given in Fig. 1. This isadapted from [6].
2 51 4 3 67� ��� � � � �� ��

CACG GACCACG CAACG GCACCGC G
Fig. 1. Compact su�x tree for s = AACCACGWe shall assume we have adopted the McCreight's compact su�x tree con-struction. However, we need some more information to be added to our tree.This is described next.Adding Information to the Nodes of the Tree. In the case of the �rstproblem concerning us (�nding repeated motifs in a sequence), the further pre-processing of the tree that we need to do is easy to realize.Indeed, in order to be able to spell the models present at least q times ins, all that remains for us to know is, for each node x of T , how many leavesare contained in the subtree of T having x as root. Let us denote Leavesx thisnumber for each node x. This information can be added to the tree by a simpletraversal of it.3.2 Spelling the ModelsLet us consider �rst the case where e = 0, that is, no mismatches are allowed.Valid models verify two properties.1. All their pre�xes are also valid;2. Spelling these models (which is the same as spelling any of their occurrences)leads to a node x in T for which Leavesx is at least q.Once errors are allowed, the �rst property is still veri�ed but spelling all theoccurrences of a valid model may now lead to more than one node of the tree.However, the values of Leavesx for all such nodes x sums up to at least q also.The second property above is thus replaced by:



Spelling approximate repeated or common motifs using a su�x tree 1172. Spelling all the occurrences of a model m leads to nodes x1; : : : ; xl in T forwhich Plj=1 Leaves(xj) is at least q.As a matter of fact, it is not occurrences we shall spell, but instead the modelsthat will be read o� the tree.The main di�erence with our previous approach is therefore that, in thepresent case, we extract models from the su�x tree of s whereas in [15] weconstructed them by a simulated traversal (within bounds) of the lexicographictree of all possible models, i.e. of all possible elements of ��. This means inparticular that occurrences are now grouped into classes and \real" ones, that isoccurrences considered as individual words in s, are never directly manipulated.Present case occurrences of a model are thus in fact nodes of the su�x tree(we denote them by the term \node-occurrences") and are extended in the treeinstead of in the sequence as in [15]. Once the process of model spelling has ended,the start positions of the \real" occurrences of the valid models may be recoveredby traversing the subtrees of the nodes reached so far and reading the labels oftheir leaves. As in [15], the su�x tree need not be entirely traversed, althoughthis time the tree itself must be fully constructed. There are two reasons thatmay lead to stop the spelling of a model: we have reached the length requiredfor models, the model may not be further extended while remaining valid. Forany model, we may also stop the descent down a path in the tree as soon as toomany mismatches have been accumulated along it.The algorithm is a development of the recurrence formula given in the lemmabelow where x denotes a node of the tree, father (x) its father and err the numberof misspellings between the label of the path going from the root to x as againsta model m.Lemma 1. (x; err ) is a node-occurrence of m0 = m� with m 2 �k and � 2 �if, and only if, one of the following two conditions is veri�ed:(match) (father (x); err ) is a node-occurrence of m and the label of the branchfrom father (x) to x is �;(subst.) (father (x); err�1) is a node-occurrence of m and the label of the branchfrom father (x) to x is � 6= �. utA sketch of the procedure to follow is shown in Fig. 2 for the case wheremodels of a given length k are sought.In order to do this model spelling operation, we have to make use of thefollowing:{ a set Extm of symbols by which a model may be extended at the next step(implemented as a bit-vector);{ a setOccm of node-occurrences of a modelm. We recall that these correspondin fact to classes of occurrences. Each node-occurrence x is represented bya pair (x, xerr ) where xerr is the number of mismatches between m and thelabel of the path leading from the root to x in the tree;{ a variable nbocc that counts the number of \real" occurrences of the modelwe are currently trying to extend;



118 Marie-France Sagot{ a function KeepModel (m) that either stores all information concerning avalid model of the required length for printing later, or immediately printsthis information.The function SpellModels is called with arguments:(0; �;Occ� = f(root; 0)g;Ext�); whereExt� = �� if e > 0labelb for branches b leaving the root otherwiseWhere valid models of maximum length are sought, we just need to changelines 1 and 2 into the code given in Fig. 3. Variable kmax is initialized to 0 before�rst entering function SpellModels .For the sake of simplicity, the code shown here assumes we are dealing withan uncompact version of the tree (that is, with a trie). Using a compact versiona�ects the operations done in lines 9, 10, 12, 14, 15 and 17. Indeed, we need inthat case to know at any given step whether we are:{ at a node x, or{ inside a branch b between nodes x and x0and, if we can travel down T with a symbol �, whether that:{ gets us to a new node x0, or{ keeps us inside branch b.This means that additional information has to be kept relative to each node-occurrence, and, consequently, extending such an occurrence implies more work.This however increases the algorithm's time and space complexity by a constantfactor only.3.3 ComplexityAssuming an alphabet of �xed size, a compact su�x tree T may be constructedin O(n) time where n is the length of sequence s and occupies O(n) space [12][19].Adding information to the nodes of the tree as described in section 3.1 takestime O(n) and requires O(1) space per node of T .Concerning the spelling operation, we have that:Lemma 2. Spelling all valid models for the Repeated Motifs Problem given Trequires O(nV(e; k)) time where k is either the length of the models sought or isa maximum length.Proof. Let us consider valid models of length k are searched for. Spelling themrequires descending down the tree of at most k levels (we may sometimes notreach that level if a given model stops verifying the quorum constraint q atan earlier stage). At level k, there are p � n nodes (since there are exactly



Spelling approximate repeated or common motifs using a su�x tree 119SpellModels(l;m;Occm;Extm)1. if (l = k)2. KeepModel(m)3. else if (l < k)4. for each symbol � in Extm5. nbocc = 06. Extm� = ;7. Occm� = ;8. for each pair (x, xerr) in Occm9. if there is a branch b leaving node x with a label starting with �10. add to Occm� the pair (x0, xerr) where x0 is the node reached byfollowing branch b from x11. nbocc = nbocc + Leavesx012. Extm� = �Extm� [ labelb0 for b0 leaving x0 if xerr = e� otherwise13. if xerr < e14. for each branch b leaving x except the one labeled by � if it exists15. add to Occm� the pair (x0, xerr + 1) where x0 is the node reachedby following branch b from x16. nbocc = nbocc + Leavesx017. Extm� = �Extm� [ labelb0 for b0 leaving x0 if xerr = e� 1� otherwise18. if nbocc � q19. SpellModels(l+ 1;m�;Occm�;Ext m�)Fig. 2. Sketch of the procedure for spelling models corresponding to repeated motifs
1. if (l � kmax )2. if (l > kmax )3. throw away all preceding kept models4. kmax = l5. KeepModel(m)Fig. 3. Modi�cation to apply to the code of Fig. 2 in order to generate valid modelsof maximum length - the lines given here replace lines 1 and 2



120 Marie-France Sagotn leaves in T and the number of leaves is greater than the number of nodesat any particular level k above that of the lowest leaf). From these p nodes,there are p paths up to the root of T (note that in our algorithm, we in factgo down the paths, not up) and V(e; k) ways of misspelling their labels, that isspelling the labels with at most e mismatches. This corresponds also to an upperbound to the total number of visits that may have to be done to the branchesof T (or, equivalently, its nodes) in order to obtain the requested models. Sinceeach visit to a branch costs us constant time (basically, we need to increment acounter, add a node-occurrence to one set and a list of symbols to another set- a constant time operation if the list is implemented as a boolean array), thenthe total number of operations needed to spell all the valid models given T isbounded over by pV(e; k), that is, by O(nV(e; k)). utLemma 3. Spelling all valid models for the Repeated Motifs Problem given Trequires O(n) space.Proof. The space required is that of the tree plus that of the auxiliary structuresOccm and Extm. We need to keep such structures for the modelm currently beingtreated and for all its pre�xes (we are traversing the tree recursively). However,the sets Occm are all disjoint between them so that Pm0 prefix of mOccm0 � n.Since Pm0 prefix of m Extm0 � kj�j=w, the total space complexity is O(n+ n+kj�j=w) = O(n) if we assume a �xed length alphabet. utNote that if e = 0, then V(e; k) = 1. Let us point out also that V(e; k) is anupper bound for the number of models that corresponds to the maximum sizeof the output and is seldom observed.4 Solving the Common Motifs Problem4.1 Generalized Su�x TreesTrees for representing all the su�xes of a set of sequences fsi, 1 � i � N forsome N � 2g are called generalized su�x trees and are constructed in a wayvery similar to the construction of the su�x tree for a single sequence [2] [9]. Wedenote these generalized trees by GT . They share all the properties of a su�xtree given in section 3.1 with, in property 1, sequence s substituted by sequencess1; : : : ; sN .In particular, a generalized su�x tree GT veri�es the fact that every su�xof every sequence si in the set leads to a distinct leaf. When p � 2 sequenceshave a same su�x, the generalized tree has therefore p leaves corresponding tothis su�x, each associated with a di�erent sequence. To achieve this propertyduring construction, we just need to concatenate to each sequence si of the seta symbol that is not in � and is speci�c to that sequence.



Spelling approximate repeated or common motifs using a su�x tree 1214.2 Adding Information to the Nodes of the TreeIf the construction of a GT for a set fsig of sequences is similar to that of a su�xtree T for a single sequence s, it is not enough anymore to know the values ofLeavesx for each node x in GT in order to be able to solve the Common MotifsProblem.We could then modify our preprocessing of the tree so that we calculate, foreach node x, no longer the number of leaves in the subtree of GT having x asroot, but the number of di�erent sequences those leaves refer to. Computing thisnumber is what is called the \Color Size Problem" by Hui [9]. The color set sizeof a node x is precisely the number of di�erent leaf colors in the subtree rootedat x, where a leaf is assigned color i if it represents a su�x of si. Let us call thisnew number CSSx as in [9].Knowing CSSx for all nodes x is however all that is required only in the casewhere e = 0 (in this case, a model has only one node-occurrence). When e > 0,we also have to be able to tell which colors are common to 2 or more nodes ofthe tree.In order to do that, we need to associate to each node x in the GT of a setfsig an array, denoted Colorsx, of dimension N that is de�ned by:Colorsx[i] =8<:1 if at least one leaf in the subtreerooted at x represents a su�x of si0 otherwise (1 � i � N) :Colorsx may be implemented as a bit vector, or as N=w bit-vectors if N > wwhere w is the size of a word machine.The array Colorsx for all x may be obtained by a simple traversal of thetree with each visit to a node taking O(N=w) time (for adding N=w bit-vectors).The additional space required is O(N=w) per node. We shall also use the infor-mation provided by CSSx which Hui showed can be obtained in O(nN) timeand uses O(1) space per node. Considering CSSx is not strictly necessary butmay be useful in practice as is suggested when we analyze the complexity of thisalgorithm later on.4.3 Spelling the ModelsFor ease of presentation, we assume here once more that we are looking for allvalid models of a �xed length k, and that we are working with an uncompactversion of the GT . A sketch of the algorithm for solving the Common MotifsProblem is given in Fig. 4. We use the same auxiliary structures Occm andExtm as in the previous algorithm, to which we add the following:{ a variable CSSx as de�ned in the previous section;{ a boolean array Colorsx (possibly N=w arrays if N > w) as de�ned in theprevious section ;{ a variable minseq that indicates the minimum of CSSx for all node-occur-rences x of the extended model;



122 Marie-France Sagot{ a variable maxseq that indicates the sum of CSSx for all node-occurrencesx of the extended model;{ a boolean array Colorm (possibly N=w arrays if N > w) de�ned by:Colorsm[i] = �1 if m occurs in si0 otherwiseObserve that, in all cases, we have:minseq � (number of distinct sequences the model is present in) � maxseq .4.4 ComplexityWhat produces an increase in the complexity of the algorithm of Fig. 4 in relationto that of Fig. 2 concerns simply the data structure Colorsx : the time neededto create and manipulate it, and the space required to store it.The space requirement of Colorsx is O(N=w) per node if it is implemented asa bit-vector having same size w as a word machine. The total space requirementof the algorithm is therefore now bounded over by O(nN2=w). This is smallerthan our previously obtained bound [15] of O(nNk) when N=w < k.Creating Colorsx for every node x of the tree takes time O(nN2=w), howevermanipulating it, in particular performing the operation indicated in line 31,requires O(N) time per model. Since there can be O(nNV(e; k)) valid models inthe worst case, the algorithm's time complexity becomes O(nN2V(e; k)). This isa better bound than the one given in [15] for N < kj�j.The tests of lines 26 and 29 should improve the algorithm's behaviour onaverage. Observe that the test of line 29 has more chance of being true at thebeginning of the algorithm (where models match almost everything) while thatof line 26 has a better chance of being veri�ed the longer the model is (becausethe number of its occurrences will then be quite close to q).As mentioned in the introduction, when e = 0 we do not obtain Hui's betterbound of O(nN). In this case though, we only need to remove lines 7, 16, 24,31 and 32 to fall back to the algorithm Hui introduced in [9]. Observe this alsomeans getting rid of the Colors structure that is no longer necessary. It is easyto modify the algorithm of Fig. 4 so that the instructions contained in the linesjust indicated are performed only if e > 0.5 Sketch of Extension Dealing with GapsWe sketch in this section how to extend the algorithms so as to be able to treatgaps as well as mismatches. This is done only for the repeated motifs problem.The common motifs problem would be dealt with in a quite similar manner. Thealgorithm is presented without further ado in Fig. s 5 and 6. Node-occurrencesmust be maintained in Occm for m a model in the order in which they wouldbe encountered if the tree were traversed in a depth-�rst manner. This preorderfollows naturally from the way nodes are processed at each step of the algorithm.
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SpellModels(l;m;Occm;Extm)1. if (l = k)2. KeepModel(m)3. else if (l < k)4. for each symbol � in Extm5. maxseq = 06. minseq = 17. Colorsm� is initialized with no colors8. Extm� = ;9. Occm� = ;10. for each pair (x, xerr) in Occm11. if there is a branch b leaving node x with a label starting with �12. add to Occm� the pair (x0, xerr) where x0 is the node reached byfollowing branch b from x13. maxseq = maxseq + CSSx014. if CSSx0 < minseq15. minseq = CSSx016. add colors in Colorsx to Colorsm�17. Extm� = �Extm� [ labelb0 for b0 leaving x0 if xerr = e� otherwise18. if xerr < e19. for each branch b leaving x except the one labeled � if it exists20. add to Occm� the pair (x0, xerr + 1) where x0 is the node reachedby following branch b from x21. maxseq = maxseq + CSSx022. if CSSx0 < minseq23. minseq = CSSx024. add colors in Colorsx to Colorsm�25. Extm� = �Extm� [ labelb0 for b0 leaving x0 if xerr = e� 1� otherwise26. if maxseq < q27. return (no hope)28. else29. if minseq � q30. SpellModels(l+ 1; m�;Occm�;Extm�)31. else if the number of bits at 1 in Colorsm� is no less than q32. SpellModels(l+ 1; m�;Occm�;Extm�)Fig. 4. Sketch of the procedure for spelling models corresponding to common motifs



124 Marie-France SagotWe do not prove it here, but the only thing that changes in the complexity ofthe algorithm is that V(e; k) is replaced by N (e; k) where N (e; k) is the numberof models m at a (this time) Levenshtein distance at most e from a word oflength k. This comes from the fact that, since each node of the tree is consideredat most once as a node-occurrence, Occm remains bounded over by O(n). Theremay simply now be more models.One can think of the operation performed by the procedure Treat of Fig. 6as adding the last row of a dynamic programming matrix of model m against thesu�x tree of s as in [20] or [4]. As mentioned in the introduction however, thecurrent algorithm has a di�erent way of accounting for the \real" occurrences ofa model than the one by Cobbs [4]. Indeed, in his case, for each position i in s,only one occurrence is kept that ends at i. Doing that however implies verifyingcertain things and this may cost him as much as k additional operations peroccurrence. In our case, although we may keep up to 2e node-occurrences pervalid ending position (the total number of nodes remaining less than Cn for asmall constant C), we still get a better time bound since in general 2e < k.The algorithm is also simpler. Furthermore, it may be interesting in some cases(e.g. when searching for tandem repeats [16]) to know both the start and endpositions of an occurrence.
SpellModels(l;m;Occm;Extm)1. if (l = k)2. KeepModel(m)3. else if (l < k)4. for each symbol � in Extm5. nbocc = 06. Extm� = ;7. Occm� = ;8. for each pair (x, xerr) in Occm9. remove (x, xerr) from Occm10. Treat(Occm, Occm�, Extm�, Leaves , x, xerr , �, nbocc, 0)11. if nbocc � q12. SpellModels(l+ 1; m�;Occm�;Extm�)Fig. 5. Sketch of the procedure for spelling models corresponding to repeated motifswhen gaps as well as mismatches are allowed (internal procedure Treat is given inFig. 6)
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Treat(Occm;Occm�;Extm�;Leaves ; x; xerr ; �; nbocc; level)1. if (level = 0) /* deletion */2. if xerr < e3. add to Occm� the pair (x, xerr + 1)4. nbocc = nbocc + Leavesx5. Extm� = �Extm� [ labelb0 for b0 leaving x if (xerr + 1) = e� otherwise6. for each x0 obtained by following, in lexicographic order,a branch (labeled �) from x7. if (x0, x0err) is the next pair in Occm8. remove (x0, x0err) from Occm9. let minerr = min 8><>:xerr if � = � /* match */xerr + 1 if � 6= � /* substitution */x0err + 1 /* deletion */xerr + 1 /* insertion */10. if minerr � e11. add to Occm� the pair (x0, minerr )12. nbocc = nbocc + Leavesx013. Extm� = �Extm� [ labelb0 for b0 leaving x0 if minerr = e� otherwise14. Treat(Occm;Occm�;Extm�;Leaves ; x0;minerr ; �; nbocc; level+ 1)15. else16. remove from Occm the sons of x0 and all the sons thereof recursively17. else18. let minerr = min (xerr if � = � /* match */xerr + 1 if � 6= � /* substitution */xerr + 1 /* insertion */19. if minerr � e20. add to Occm� the pair (x0, minerr )21. nbocc = nbocc + Leavesx022. Extm� = �Extm� [ labelb0 for b0 leaving x0 if minerr = e� otherwiseFig. 6. Procedure Treat , used by the algorithm for spelling models corresponding torepeated motifs, when gaps as well as mismatches are allowed
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