
ELSEVIER

March 1995

Pattern Recognition Letters 16 (1995) 233-246

Pattern Recognition
Letters

Searching for flexible repeated patterns
using a non-transitive similarity relation

Henri Soldano a,o,., Alain Viari b,c, Marc Champesme a,c
a Laboratoire d'Informatique de Paris Nord, URA-CNRS 1507, Institut Galilde, Universit~ Paris Nord,

.4v. J.B. Cld~ment, 93430 Villetaneuse, France
b Laboratoire de Physique et Chimie Biomoldculaires, URA-CNRS 198, Institut GaliMe, Universiti Paris Nord,

,'Iv. J.B. Cl~.ment, 93430 Villetaneuse, France
c .4relier de Bio-Informatique, section Physique-Chimie, Institut Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France

Received 15 May 1993; revised 2 August 1994

Abstract

Given a reflexive and symmetric, but not necessarily transitive, similarity relation defined on an alphabet of symbols, two
objects of size k are related if, at each position, their symbols are related. Then, given a set of objects, we are interested in
maximal subsets of related objects. We give some general properties of these subsets and we propose algorithms for identifying
them in the particular case of k-length substrings in a string. These algorithms derive from the Karp, Miller and Rosenberg
algorithms for the identification of repeated patterns.

Introduction

In a previous work, Karp et al. (1972) have proposed various algorithms, hereafter referred to as KMR algorithms,
to identify repeated patterns in a structure of size N (string, array or tree). In their approach the patterns to identify
correspond to exact matches between objects. For instance, two k-length substrings match if, at each position, the
same symbol is present in both substrings. However some situations require a more flexible matching and patterns
corresponding to similar, rather than strictly identical, objects are searched for. As an example, in molecular biology
similar fragments of amino acid sequences may exhibit a similar 3D-structure or biological function. In this work
we suppose that a symmetric and reflexive relation R, expressing a similarity, is defined on the alphabet. This leads
to a reflexive and symmetric relation Rk on structured objects of size k, defined as follows: two objects are similar
if, at each position, the corresponding symbols are related by R. Now, given a set of objects, our purpose is to find
all the maximal cliques of the relation Rk, i.e., the maximal subsets in which any pair of objects (x, y) is such that
x and y are related. Then each maximal clique of Rk defines a pattern.

The remainder of this paper is divided into four sections. Section 1 presents some definitions and properties
concerning the maximal cliques of Rk. This includes some constructive properties for structured objects of size k.

* Corresponding author.

0167-8655/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
S S D I 0 1 6 7 - 8 6 5 5 (9 4) 0 0 0 9 5 - 6

234 H. Solar.no et al. / Pattern Recognition Letters 16 (1995) 233-246

Section 2 presents some algorithms, implementation, and experiments on random strings addressing the following
problems: (1) find all maximal cliques Of Rk, whose size is greater than 2 (i.e., repeated patterns) when the objects
are the k-length subslrings of an N-length string; (2) find the largest k for which such repeated patterns exist in an
N-length string. Experiments are discussed in Section 3 and a conclusion is given in Section 4.

1. Properties of the relation Rk

1.1. Notations

Throughout this paper, we will use the following notations:
A = {tr~ o's} is an alphabet ors symbols.
R is a symmetric and reflexive (but not necessarily transitive) relation, defined on A, which represents a similarity
between the symbols of A.

An "object" of size k is a labeled and oriented structure composed of k elements ofA. Each element is assigned
to a certain "position".

For instance, a k-length string is a structure of size k, and an l × c array is a structure of size k = l. c.
It is important to distinguish between the name of an object and its "value" (i.e., the components of its structure).

More precisely, i fx is an object of size k, we will note its value as

V(x) = (Vl(X), V2(x) Vk(X)) , where V/(x) belongs to A.

For example, consider a string S = (sl, s2 SN) of length N. The set X = { 1, 2 y N - k + 1 } of positions
in the string is a set of N - k+ 1 objects representing all the k-length substrings of S. An object (substring) of size
k will be referred to as j (its starting index) and its value is V(j) = (sj, sj+ 1 Sj+k- 1)'

Unless specified, we will denote by X the set of all objects of size k we are considering and by N the size of X.

1.2. Definitions

The comparison between two objects of the same size will result from the comparisons of symbols at each position.
To this purpose, we define the following relation:

Definition 1. Rk stands for the symmetric and reflexive relation on X, defined as

XRky ** V i ~ { 1 , 2 k} , V~(x) RVi(y) .

A clique of the relation Rk on X is a subset of X in which any pair of elements (x, y) is such that x Rk y. A clique is
called maximal if by adding any other element to it, the resulting subset is no longer a clique.

Hereafter, we denote by Cx a clique of the relation Rk on X.
In the same manner, one can consider the cliques of the relation R on A. To distinguish them from the cliques of

Rk, we will use a lowercase c for such cliques and an uppercase C for the cliques of Rk.
Let {Cl, c2 ck} be a set of k cliques of R. We will call the Cartesian product c=cl ×c2× "'" ×Ck a clique

product of R. Moreover, if all the ci are maximal cliques, then c will be called a maximal clique product.
We will use the following example throughout the paper:
Let A = {a, b, c, d, e}. R is a symmetric and reflexive relation whose graph is represented on Fig. 1. The maximal

cliques of R are the sets

Cl ={a, b, c} , c2 ={b, c, d} , c3 ={d, e} , c4 ={a, e} .

H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246 235

b

a c

Fig. 1. Graph of a symmetric and reflexive relation. The edges due to reflexivity are omitted.

Let us consider a string S = adbeb, and the set X = { 1, 2, 3 } of the 3-length substrings of S represented by their
starting indexes. Then we have, for instance, 1 R 3 3 since a R b, d R e, and b R b. Moreover { 1, 3 } is a maximal
clique of R 3 since it cannot be extended.

1.3. Properties of Rk

We now give several properties of the maximal cliques of Rk.
Let fbe the function that relates any clique Cx Of Rk to the Cartesian product el × e2 X... x ek, where each ei stands

for the subset of A defined as follows:

Definition 2. e i = U x ~ cx Vi (x) .

Proposition 1. f (Cx) is a clique product of R.

Proof. For each position i, the values of V,. corresponding to the elements of Cx are related by R (Definition 1). As
a consequence ei is a clique of R. []

Proposition 2. Given a maximal clique product ~ of R, there exists at most one maximal clique Cx of Rk such that

f (Cx) c_e.

Proof. Let Cx and C~: be two maximal cliques of Rk, such that f(Cx) ~ ~ and f (C~) _ ~. Then for each position i,
we obtain (Definition 2):

e i 1,3 e~ = [,,J vi(x) ~ . .
x~CxUC~x

This means that Cx U C~ is a clique of Rk, and, since Cx and C~ are both maximal cliques, this necessarily implies
that Cx= C'x. []

From these propositions one derives the following:

Proposition 3. Let f be the restriction o f f to the set of maximal cliques Of Rk. Then f is one to one.

Proof. Let Cx and C~ be two maximal cliques of Rk such that f (Cx) =f(C~) . Since f (Cx) is a clique product
(Proposition 1), there exists at least one maximal clique product e such that f (Cx) =f (C~) ___ ~. Then it follows
(Proposition 2) that Cx = C'x. []

Proposition 4. Given:
ek: The number of maximal cliques Of Rk.

236 H. Soldano et al. /Pattern Recognition Letters 16 (1995) 233-246

m: The number of maximal cliques of R.
g: The maximum number of maximal cliques of R containing the same symbol of A.
Fk: The set of maximal cliques of Rk.

We have the following upper bounds:
(a) Ecx~rk Card(Cx) <~N'gk;
(b) ek <~min(N'g k, ink).

Proof. (a): By definition of g, each element x of X is such that V(x) belongs to less than gk maximal clique products.
Then, according to Proposition 2, x belongs to less than gk maximal cliques of Rk. Since N is the size of X, the
inequality is proved.

(b): The number of maximal clique products is equal to m k. Then, according to Proposition 2, we have
ek<~m k. Furthermore, since each maximal clique of Rk contains at least one element, it follows from (a) that
ek <~N.g k. []

In the particular case where R is an equivalence relation, g = 1 and these inequalities simply mean that the classes
of Rk form a partition of X, and that the number of classes is less than min(N, mk). The number g, hereafter referred
to as the "degeneracy" of R, represents a discrepancy from R to an equivalence relation. One could also consider,
as a more realistic measure in practical cases, the averaged degeneracy g, obtained by assigning an a priori probability
to each symbol. Then, as an example, for a random N-length string the averaged quantifies in Proposition 4(a)- (b)
become of order O(N. gk).

Proposition 5. Let Cx be a clique Of Rk, and C'x be a maximal clique of Rk. Then we have

Cx c_ C'x ¢~ f(Cx) c__f(C~).

Proof. ~ : Follows from the definition o f f
: Let x be an element of Cx. Then, by definition off, V(x) ~f(Cx) and thus V(x) Ef(C~). In the same manner,

for any element x' of C" we have V(X') ~f(C'x). Hence V(x) and V(x') belong to the same clique productf(C~:).
It follows from Definition 1 that x Rk x'. Since C~ is a maximal clique of Rk, x must belong to C~, and then
cxc_ c'~. []

Hence, f appears as a "characteristic function" of cliques of Rk. This allows us to compare maximal cliques
(Proposition 3), and to check whether a clique is included into a given maximal clique (Proposition 5) in a constant
number of operations with respect to N. Furthermore we give upper bounds both for the total number of objects in
the whole set of maximal cliques of Rk, and for the size ek of this set. These bounds are linear with respect to N, and
depend on the degeneracy g of R.

The previous properties are quite general in the sense that they do not depend upon a particular structure but only
upon its size. We will now focus on other properties allowing step by step constructions of maximal cliques of Rk,
for particular structures.

1.4. Constructing maximal cliques of Rkfor k-length substrings of an N-length string

In a previous work, Karp, Miller and Rosenberg (KMR) (1972) have addressed the problem of identifying
repeated substructures of fixed size in a structure of size N (string, array or tree). In their work, the relation R
between the symbols was the identity. In the case of repeated substrings in an N-length string, the algorithms they
proposed were based on two lemmas:

Lemma 1 (KMR, 1972).xRa+by ¢* x R a y a n d x + b Ray+b (withb<~a).

H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246 237

L e m m a 2 (KMR, 1972).XRa+bY ¢~ x R a y a n d x + a R b y + a .

These lemmas allow the construction of the Ra+ b relation starting from the R a (and Rb in Lemma 2) relation. When
R is not transitive, these lemmas still hold (since they only involve pairwise comparisons).

1.4.1. Constructing maximal cliques of R1
In the case of an N-length string S = (Sl, s2 sN), and considering its l-length substrings, X is the set { 1, 2

y N) of all positions in S (see Section 1.1).
Let us denote by:

{ cl, cz ~,, }: The m maximal cliques of R.
{ C~, C 2 C~ }: The subsets of X defined as C~ = {j ~X I sj ~ ~ }.
Then we have the following properties:

Proposition 6. (a) C'x is a clique of R1.
(b) The set of maximal cliques of R1 is included in {C 1, C 2 C~ }.

Proof. (a) : For any x, y in C~, we have sx R sy and thus x R1 y.
(b): Let C be a maximal clique of R~. Then c =f (C) is a clique of R (Proposition 1). Thus, there exists a maximal

clique ~. of R, such that c ~ ~. Then, since C~ contains all the elements j such that sj ~ ~, it follows that C c C~¢.
But, since C is a maximal clique of R1, this necessarily implies that C= C~:. []

Hence, the set of maximal cliques of R1 is obtained by constructing { C 1, C 2 C~: }, and by eliminating all
the C~ which are included in any other C~.

In our previous example (Section 1.2), we have with S = adbeb:

CJ¢= {1, 3, 5}, C~={2 , 3, 5}, C3x={2, 4}, C 4 = { 1 , 4 } .

Note that in this example all the C~ are maximal.

1.4.2. Step-by-step construction of maximal cliques Of Rk
Given a set E of indices, let us denote by Era (resp. E-d) the set obtained by adding (resp. subtracting) the

integer d to each index in E. Consider a clique Cx of Ra. Then any pair {x, y} belonging to (Cx) -b is such that
x + b R ~ y + b .

The following properties are established from the KMR lemmas:

Proposition 7. (a) Let Cx be a clique of Ra and C'x be a clique o f R a. Then Cx n (C~) _ b is a clique of Ra + b.
(b) Let Cx be a clique o f e a and C'x be a clique Of Rb. Then Cxn (C'x) -a is a clique ofRa ÷b.

Proof. (a): For any pair {x, y}C_CxO(C'x)_b we have x g a y since {x, y}C_Cx, and x + b e a y + b since
{x, y } c_ (C~) _ b. Then, according to Lemma 1, it follows that x Ra ÷ b Y. AS a consequence Cx n (C'x) _ b is a clique
of R~+b.

(b) : Proof is similar. []

Proposition 8. Let C~: be a maximal clique Of ga+ b. Then:
(a) There exist a maximal clique Cx of Ra and a maximal clique C ~ of R~ such that C~ = Cx n (C'x) _ b.
(b) There exist a maximal clique Cx o f Ra and a maximal clique C'x of Rb such that Cxn (C'x) _~.

Proof. (a): For any pair {x, y} ___C~, we have x Ra+ b y and thus, according to Lemma 1, we have x Ray and
x + b R a y + b .

238 H. Soldano et al./ Pattern Recognition Letters 16 (1995) 233-246

From x R a y, it follows that C~ is a clique of R~ and thus there exists a maximal clique Cx of Ra such that C~ ~ Cx.
From x + b R a y + b it follows that (C~) +b is a clique o f R a and thus there exists a maximal clique C~ o f R a such
that (C~) +b -- C~¢ and therefore Cx _ (Cx) _ b.

As a consequence we have C~ c Cx f3 (C~) _ b. However, according to Proposition 7 (a), Cx N (C~) _ b is a clique
ofRa+ b and since C~ is supposed to be maximal, the inclusion necessarily implies that C~ = Cxf~ (C~¢) -b"

(b) : Proof is similar. []

Starting from the set of maximal cliques of R, (resp. R~ and Rb), w e will obtain all the maximal cliques of Ra + b
by performing all the intersections mentioned above. Some intersections will produce non-maximal cliques which
can be eliminated by checking if there exists any other clique which includes them.

Let us consider again our previous example (Section 1.2).
When a = b = 1, the two lemmas are equivalent, and we will use the maximal cliques Cx of RI: { { 1, 3, 5 }, { 2, 3,

5 }, { 2, 4 }, { 1, 4 } }, together with their corresponding (Cx) _ 1: { { 0, 2, 4 }, { 1, 2, 4 }, { 1, 3 }, { 0, 3 } }. Performing all
the intersections and removing non-maximal cliques yields { {2, 4}, { 1, 4}, { 1, 3} } as the maximal cliques of R2.
They correspond to the substrings {{db, eb}, {ad, eb}, {ad, be} }.

This clearly leads to a step-by-step algorithm which takes as input an N-length string and a relation R and which
produces all maximal cliques of Rk.

2. Algorithms, implementation and experiments

2.1. Algorithms

In this section, we address the problem of finding all the repeated k-length substrings in a string, according to a
relation R between symbols. In the previous section, we have proposed a method to construct all maximal cliques
of Rk in an N-length string. This clearly solves the problem since the repeated k-length substrings are the maximal
cliques of Rk whose size is larger than two. The repeated patterns are constructed by using the previous method
except that, at the end of each step, the maximal cliques whose size is less than two are removed. This strategy is
justified since if a given maximal clique Cx of Rk is of size less than two, then its intersection with any set will also
be of size less than two and thus will not produce a longer repeated substring.

The first algorithm solves the following problem:

Problem 1. Given an alphabet A, a symmetric and reflexive relation R, and a string S, find all its repeated substrings
of length k.

This problem generalizes, by using a similarity relation R rather than the identity, a problem solved by KMR.

Algorithm 1
Step 1. Construct the set of maximal cliques of R.
Step 2. Construct the set L 1 of repeated substrings of length 1 as seen in Section 1.4.1 except that all cliques of size

less than two are removed before removing non-maximal cliques of R1.
Initialize i to 1.

Step 3. Repeat while 2i ~ k.
Construct the set LEi of repeated substrings of length 2i, by using Li as seen in Section 1.4.2"

Lernma 1 is used with a = b = i. The intersections mentioned in Proposition 7(a) concern only the
maximal cliques of Ri belonging to L,..

H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246 239

Remove the resulting cliques of R2i whose size is less than two.
Remove non-maximal cliques by using an inclusion test.
Multiply i by 2.

Step 4. If k = 2i.
return L2i as result.

else
construct Lk as in Step 3 by using Lemma 1 with a = 2i, b = k - 2i.
return Lk.

The second algorithm solves the following problem:

Problem 2. With the same inputs as in Problem 1, find the largest integer kr~x such that there exists at least one
repeated substring of length kmax, and return this substring (s).

As above, this generalizes a problem solved by KMR.

Algorithm 2
Step 1. Same Step 1 as in Algorithm 1.
Step 2. Same Step 2 as in Algorithm 1.
Step 3. Repeat while L,. is not empty

same operations as Step 3 in Algorithm 1
Step 4. Perform a binary search by using Lemma 1. Namely: use Li/: to construct L3i/4. If this latter is not empty

then use it to construct L7i/8 else u s e Li/2 to construct L5~/8, and so on.

2.2. Implementation

Because of the similarity of the following implementation to those described in (Karp et al., 1972), we have
followed the same notations whenever possible.

At a given step, say that Ra has e a maximal cliques labeled from 1 to ea. The occurrence of these cliques on the
string is represented as an N - a + 1 place vector of lists l) a ~--- (Va(1), va(2) v ~ (N - a + 1)) , where each va (i)
is the list of all the labels of the maximal cliques of Ra to which position i belongs.

These lists are actually implemented as pushdown stacks with the traditional "Push" and "Pop" operations.
However at some steps, we need to read down the content of a stack without actually popping the values. For this
purpose, we provide the stack with an additional "Downread" operation.

Now we have to construct Ra+ b from R~, by using Lemma 1 and the above representation. Assume that we have
at our disposal the vector Va stored as indicated above, and two initially empty ea place vectors of stacks available.
Call them P = (P(1), P (2) P(e~)) and Q = (Q(1), Q(2) Q(ea)).

2.2.1. Pseudocode

/ /S tep 1. (Build P)
For i = 1 to N - a + 1

While va(i) is not exhausted
c ~-- Downread(va(i))
Push i into P (c)

EndWhile
EndFor

240 H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246

/ / P gives an explicit representation of the maximal cliques of Ra, one maximal clique in each P (c) . This is the dual
//representation of v~ which gives, for each position, the labels of the maximal cliques at this position.

II Step 2. (Build Q)
For j = 1 to e a

While P(j) is not empty
s (-- Pop(P(j))
I f s + b < . N - a + 1 then

While va(s + b) is not exhausted
c (- Downread(va(s + b))
Push s into Q(c)
Push j into Q (c) / ~also push P-origin into Q

EndWhile
Endlf

EndWhile
End For
/ / This gives us the maximal cliques o fR a shifted so that allpairs of integers (x, y) occurring on the same Q-stack
/ /are such that x + b Ray + b. This means that, to a given Q(c), there corresponds a maximal clique C' o f Ra, such
/ / that Q(c) represents the set (C') -b, mentioned in Section 1.4.2. The reason why j (the label o f the P-stack from
/ /which s come(s) is also pushed into Q will appear at the next step.

/ /Step 3. (Construct Va + b)
ea + b ~- 0 / / a clique counter
For j = 1 to e a

previous ~ 0 //initialized to a dummy P label
While Q(j) is not empty

c (-- Pop(Q(j)) / / the P label o fs
s *-- Pop(Q(j)
If c :~ previous

ea+b(--e,+b + 1 / / s tar ta new clique OfRa+ b
previous = c

Endlf
Push ea+b into Va÷b(S)

EndWhile
EndFor
//Va +b is a representation of the set of cliques of R~ +b obtained by performing the intersections mentioned in
//Proposition 7(a). Note that ea+ b is incremented each time a new Q(j) is considered or each time a new value
/ / o f c appears. It should be pointed out that, since only repeated patterns are searched for rather than all maximal
//cliques, the previous pseudocode should be modified so that only the labels corresponding to cliques whose size
/~is greater than of equal to two are actually pushed into v a + b"

/ /Step 4. (Remove non-maximal cliques of Ra + b)
/ /First construct a vector T = T(1) T(e, ÷ b) of e, ÷ b stacks. Each T-stack will contain one of the cliques of
/ / R , ÷ b represented in v a ÷ b" In addition, the status of each T-stack is flagged as " + ", " - " o r "?". " + "means
/ / "c l ique is maximal"; " - "means "clique is not maximal" and " ? " means "status of clique is unknown"
Build Tfrom Va+b as for P in Step 1.
Mark all T-stacks as " ? " .
For i= 1 t o N - (a + b) + 1

/ / W e wilI f ix once and for all the status of all T-stacks at position i.

H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246 241

While Va+b(i) is not empty
C ~"- Pop(Va+b(i))
If T(C) is not marked as " - "

/ / Check T(c) against all remaining T-stacks.
While Va+b (i) is not exhausted and T(c) is not marked as " - "

d ~ DownRead (Va + b (i))
If T(d) is not marked as " - "

If T(c) is marked as " ? "
If T(c) c_ T(d) then mark T(e) as " - " EndIf

EndIf
If T(d) is marked as " ? "

If T(d) c_T(c) then mark T(d) as " - " EndIf
EndIf

EndIf
EndWhile

/ /T(c) could be maximal.

/ /T (d) could be maximal
/ /T (c) status still unknown

/ /T (d) status still unknown

/ / N o w the final status o fT(c) is known: if it is not included in any T(d) at this position then it is maximal.
If T(c) is not marked as " - " then mark it as " + " EndIf

EndWhile
EndFor
/ / N o w the status of each T-stack is determined.
Rebuild V.+b from T by using only the T-stacks marked as " + "
/ / End

2.2.2. Complexity
Now, we will consider the complexity of each separate step.
Step 1: At the beginning of Step 1, we have at most N. g a indices in va (Proposition 4 (a)) . Thus, Step 1 requires

O(N. g a) operations.
Step 2: This step requires O(N.g a + b) operations. The proof of this bound is more difficult. Let us consider, for

the sake of simplicity, the cases of Lemma 2 or the case of Lemma 1 with a = b (which is similar), since these are
the cases mostly used in Algorithms 1 and 2 above. Let us now consider a particular index s popped from P(i) and
its associated a-length substring at position s. Each symbol of this substring cannot belong to more than g maximal
cliques of R (by definition of g), thus, this a-length substring cannot belong to more than ga maximal clique
products and, hence, to more than ga maximal cliques ofR a (this follows from Proposition 3). Therefore, the index
s cannot appear more than ga times in the P-stacks. Each time s is popped from a P-stack, it will be pushed in the
Q-stacks indicated in Vb(S + a). Thus, let us consider, in the same manner, the b-length word at the position s + a.
The same argument as above shows that this word cannot belong to more than g b maximal cliques of Rb and, hence,
s cannot be pushed into more than gb Q-stacks. Thus, a given index s cannot appear more than ga. gb= ga +b times
in all Q-stacks. Finally, there are at most N.g ~+b elements in all the Q-stacks and the whole step has required
O(N'g a+b) operations. Analogous arguments with Lemma 1 and aq~b would lead to O(N.g 2a) instead of
O(N.g~+b).

Step 3: This step requires the same number of operations as Step 2 since at most O(N. ga+b) indices have been
pushed into Q-stacks, as previously stated. Note that, since a clique contains at least one element (actually 2 for
repeated substrings), e a + b ~ N " g ~ + b.

Step 4: The construction of the T-stacks requires O (N.g a ÷ b) operations (this is the same operation as in Step 1
but now with at most N- g a ÷ b elements).

Then we perform all necessary inclusion tests by using V~+b and the T-stacks. First, remember that we have
previously stated that each index s cannot appear more than g~+b times in the Q-stacks and thus each Va+b(d)
cannot contain more than ga+b cliques. Therefore, we have to perform at most O(N. (ga+b)2) inclusion tests.

242 H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246

Finally, we need to evaluate how many operations are required by one inclusion test. This depends on how the
inclusion test (between two T-stacks representing two cliques) is conducted: there are basically two ways to do
this. The easiest way is to compare each position indicated in the two T-stacks. Since the indices are ordered in each
clique, this will take at most O(N) operations. This first method would thus lead to O(N 2. (ga+b)2) operations for
the overall step. There is, however, another way to perform the inclusion test. Remember that Proposition 5 states
that any inclusion test on cliques Of Rk (here k = a + b) can be performed on clique products. Thus, if all the clique
products are assumed to be known, one inclusion test would thus require O(k) operations (considering Card(A)
as constant). The explicit representation of all the c I clique products can be conducted separately and requires
O (k . N . g k) (this follows from Definition 2). Finally, this second method leads to O(N. k.g 2k) for the overall step.

Note, however, that for most practical cases (i.e., with non biased strings), the first method is linear with respect
to N (this comes from the fact that when many cliques have to be considered their size is actually very small) and
is simpler. Note also that for g = 1 there is only 1 clique (class) in each Va+b(d) and hence no inclusion test at all
is performed. Hence the algorithm behaves, in this particular case, like the original KMR algorithm.

Finally, whole worst-case complexity of Steps 1 to 4, i.e., of construction of maximal cliques of Rk, is of order
O(N. k. g2k) and thus the overall algorithm is of order 2k O(N'km~x'gm~x) "log(kr~x) (knox being either a chosen
length (Problem 1) or the maximum possible length (Problem 2)).

Now we present some experimental results obtained on random sequences.

2.3. Experiments

The following experiments concern Algorithm 1. The program is written in C and is run on a SUN Sparcstation
(28 Mips). We present two sets of experiments, corresponding to two alphabets of respectively 10 (experiment 1)
and 26 (experiment 2) latin letters. In both cases, we are searching for repeated patterns of length k = 4, using four
different relations R between symbols. The first relation is the identity, i.e., has a degeneracy g = 1, in that case the
algorithm is equivalent to the original KMR algorithm. The three other relations R are designed to have averaged
degeneracies g equal to 1.5, 2, and 2.5, and numbers of maximal cliques m = 10 (experiment 1) and m = 2 6
(experiment 2). This is obtained by using the following circular relation R: in experiments with g = 2, the maximal
cliques of R are {{a, b}, {b, c} {i,j}, {j, a}} (for experiment 1) and {{a, b}, {b, c} {y, z}, {z, a}} (for
experiment 2); in experiments with g = 1.5, half of the previous maximal cliques contains two elements as before
and the other half contains only one element (e.g. {{a, b}, {b, c} {m, a}, {n} {x}, {y}, {z}} for experiment
2); in experiments with g = 2.5, half of the maximal cliques contains two elements and the others contain three
elements (e.g. {{a, b, c}, {b, c, d} {l, m, a}, {m, a, b}, {n, o} {y, z}, {z, n}} for experiment 2). For each
of these cases, we built a random string of size N increasing from 500 to 20 000 by step AN= 500. For each N, we
record the CPU time (t) and the total number of indices (ns) where 4-length repeated substrings were found, ns is
thus the actual number of indices to output in order to give the result. These values are plotted against N in Figs. 2a,
2b, 2c and 2d.

Figs. 2a and 2c correspond to the case m = 10. They clearly show that both t and n~ vary linearly with N, at least
for high values of N. As mentioned in Proposition 4(a) , n, is bounded by N.g k. Note that the behavior is not linear
for small values of N. This can be seen more clearly in Figs. 2b and 2d (m=26) . During the evaluation of the
boundaries, we have made the assumption that, in the worst case, all cliques appear on the string. In fact, for small
N, only a small number of cliques did actually appear. This number depends upon N and the variation of ns and t is
no longer linear, although still linearly bounded (see Fig. 2b). For the same value of N, more cliques are obtained
for m = 10 than for m = 26 and thus the asymptotic linear behaviour is observed sooner. One may also notice in
Figs. 2b and 2d that the variation of t does not follow strictly that of ns (actually for m = 26, in that range of N, the
variation of t is linear for g = 1 and 1.5, and is less than N 2 for g = 2 and g=2 .5) . This is shown in Fig. 3, where
we plot the "relative time", defined as the ratio of time to the number of indices, versus N for m = 10. We notice
that, for a given g, the relative time decreases with N, as more and more cliques appear. Conversely, and for the
same reason, at a given N, the relative time decreases with g. In many practical cases, R will be derived from a

H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246 243

300000

250000

200000

150000

100000

50000

I I I I

~ i 1 _

4 0 0 0 8 0 0 0 12000 18000 2 0 0 0 0
N

40000
® '

30000 ~- 2

25000

 oooo /
15000

1 , 5 oooo
5000

0 4000 8000 12000 16000 20000
N

Fig. 2. (a) Averaged number n, of repeated 4-length substrings plotted against the length N of random sequences, m = 10 and ~ varies from 1
to 2.5. (b) Averaged number n, of repeated 4-length substrings plotted against the length N of random sequences, m = 26 and ~ varies from 1
to 2.5.

distance defined on the alphabet (e.g. x R y iff distance(x, y) ~< a, where a is a given threshold). In that case large
values of the averaged degeneracy g are very unlikely.

3. Extensions to other problems

Two extensions may be considered.
The first one concerns repeated patterns in other structures such as arrays or trees. This has been considered by

Karp et al. (1972) in the particular case where R is the identity. As an example, in order to find repeated k × k
patterns in an N × N array, a variant of Lemma 1 was presented in which the right side was the conjunction of four

244 H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246

60

50

40

30

20

10

0
0

L t I I

1 . 5

1

4000 8000 12000 16000 20000
N

=.

60

50

40

30

20

10

0
0

® /

i
4000 8000 12000 16000 20000

N

Fig. 2. (c) Averaged CPU time t plotted against the length N of random sequences, m = 10 and g varies from 1 to 2.5. (d) Averaged CPU time
t plotted against the length N of random sequences, m = 26 and g varies from 1 to 2.5.

assertions instead of two. This leads, in our framework, to variants of Propositions 6, 7(a) and 8(a), in which four
intersections have to be performed in order to obtain a set of cliques. As before, non-maximal cliques must then be
removed. In this problem, each clique is represented by a set of index pairs.

The second extension concerns the use of more general relations between objects. Let us consider a set X of
objects and suppose a recurrence relation expressed with 3 symmetric and reflexive relations R~, R2 and R3:

X R 3 y ~ x Rl y and x R 2 y .

Then, one can show that the maximal cliques of the relation R 3 a re obtained by computing all the intersections of
pairs (C1, C2) of maximal cliques of R1 and R2 and by removing non-maximal cliques, as previously described.
From this point of view, a variant of Lemma 1 is obtained by considering the relations R1, R2 and R 3 defined as
follows:

H. Soldano et a l. /Pattern Recognition Letters 16 (1995) 233-246 245

800

700

6O0

o

~: s0o

o

.~ 400
I=

¢ 300

200

100

0
0

I I I

4
q

I

4000 8000 12000 16000 20000
N

Fig. 3. Averaged t/ns ratio plotted against the length N of random sequences, k = 4, m = 26 and g varies from 1 to 2.5.

RI=Ra: x R a y ¢~ Vi~{1 ,2 a} , Vi(x) R Vi(y) ,

R 2 ----R~.b" x R by ¢~ Vi~{1 ,2 a}, Vi+b(X) gVi+b(y),

R3=Ra+b : xR~+by ~ Vi~{1 ,2 a + b } , Vi(x) R V i (y) .

This variant allows us to search for maximal cliques of R~ in a dictionary of short strings, x standing for one string
in the dictionary, rather than inside an N-length string.

4. Conclusion

In this paper we give a framework, some results, and some algorithms to address the problem of finding the
maximal cliques of a relation Rk defined on labeled objects of size k, and derived from a symmetric and reflexive
relation R on the alphabet. The proposed algorithms will find repeated k-length flexible patterns in a string and are
extensions of the KMR algorithms. The significant parameter is the averaged degeneracy g of R, i.e., the averaged
number of maximal cliques of R to which a symbol belongs. The theoretical worst case time complexity is linear
with the size N of the string. It should be pointed out that these algorithms apply to the particular case of an alphabet
containing s symbols plus a "don' t care" symbol " # " which matches any other symbol (in this case g =
2s / (s+ 1) if all symbols including " # " have an equal probability). We have already used successfully these
algorithms in the field of molecular biology, where R is derived from amino-acid substitution matrices and the
strings represent protein sequences. As previously published in (Landraud, 1989), it is relatively easy to add some
constraints in the KMR algorithms in order, for instance, to look for patterns shared by several distinct sequences
(e.g. Landraud, 1989) or to look for dyad symmetries in DNA sequences (e.g. Martinez, 1983). Of course, the
same is true for the algorithms proposed here. We also hope that this framework will be useful in other pattern
recognition problems such as image analysis, speech recognition and time series analysis.

References

Karp, R.M., R.E. Miller and A .L Rosenberg (1972). Rapid identification of repeated patterns in strings, trees and arrays. In: Proc. 4th Ann.
ACM Syrup. Theory o f Computing, 125-136.

246 H. Soldano et al. / Pattern Recognition Letters 16 (1995) 233-246

Landraud, A., J.F. Avril and P. Chretienne (1989). An algorithm for finding a common structure shared by a family of strings. In: IEEE Trans.
Pattern Anal. Machine lntell. 11,890--895.

Martinez, H.M. (1983). An efficient method for finding repeats in molecular sequences. Nucl. Acids Res. 11, 4629-4634.

