
FRAGMENT ASSEMBLY OF DNA

In Chapter 1 we saw the biological aspects of DNA sequencing.
In this chapter we discuss the computational task involved in se-
quencing, which is called fragment assembly. The motivation for
this problem comes from the fact that with current technology it is
impossible to sequence directly contiguous stretches of more than
a few hundred bases. On the other hand, there is technology to cut
random pieces of a long DNA molecule and to produce enough
copies of the pieces to sequence. Thus, a typical approach to se-
quencing long DNA molecules is to sample and then sequence
fragments from them. However, this leaves us with the problem
of assembling the pieces, which is the problem we study in this
chapter. We present formal models for the problem and algorithms
for its solution.

BIOLOGICAL BACKGROUND

To sequence a DNA molecule is to obtain the string of bases that it contains. In large-
scale DNA sequencing we have a long target DNA molecule (thousands of bp) that we
want to sequence. We may think of this problem as a puzzle in which we are given a
double row of cards facing the table, as in Figure 4.1. We do not know which letter from
the set {A, C, G, T} is written on each card, but we do know that cards in the same po-
sition of opposite strands form a complementary pair. Our goal is to obtain the letters
using certain hints, which are (approximate) substrings of the rows. The long sequence
to reconstruct is called the target.

In the biological problem, we know the length of the target sequence approximately,
within 10% or so. It is impossible to sequence the whole molecule directly. However, we
may instead get a piece of the molecule starting at a random position in one of the strands
and sequence it in the canonical (5' —• 30 direction for a certain length. Each such se-
quence is called a fragment. It corresponds to a substring of one of the strands of the

106 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

5'
3'

...ananaan..-
•-.0000000...

FIGURE 4.1

3'
5'

Unknown DNA to be sequenced.

target molecule, but we do not know which strand or its position relative to the beginning
of the strand in addition it may contain errors. By using the shotgun method (described
in Section 1.5.2), we obtain a large number of fragments and then we try to reconstruct
the target molecule's sequence based on fragment overlap. Depending on experimental
factors, fragment length can be as low as 200 or as high as 700. Typical problems involve
target sequences 30,000 to 100,000 base-pairs long, and total number of fragments is in
the range 500 to 2000.

The problem is then to deduce the whole sequence of the target DNA molecule.
Because we have a collection of fragments to put together, this task is known as frag-
ment assembly. We note that it suffices to determine one of the strands of the original
molecule, since the other can be readily obtained because of the complementary pair rule.

In the remainder of this section we give additional details of a biological nature that
are important in the design of fragment assembly algorithms.

4.1.1 THE IDEAL CASE

The best way of studying the issues involved is by looking at an example. Be aware,
however, that real instances are much larger than the examples we present. Suppose the
input is composed of the four sequences

ACCGT
CGTGC
TTAC
TACCGT

and we know that the answer has approximately 10 bases. One possible way to assemble
this set is

--ACCGT—
CGTGC

TTAC
-TACCGT--

TTACCGTGC

Notice that we aligned the input set, ignoring spaces at the extremities. We try to
align in the same column bases that are equal. The only guidance to assembly, apart from
the approximate size of the target, are the overlaps between fragments. By overlap here
we mean the fact that sometimes the end part of a fragment is similar to the beginning
of another, as with the first and second sequences above. By positioning fragments so
that they align well with each other we get a layout, which can be seen as a multiple
alignment of the fragments.

4.1 BIOLOGICAL BACKGROUND 107

The sequence below the line is the consensus sequence, or simply consensus, and
is the answer to our problem. The consensus is obtained by taking a majority vote among
all bases in each column. In this example, every column is unanimous, so computing the
consensus is straightforward. This answer has nine bases, which is close to the given tar-
get length of 10, and contains each fragment as an exact substring. However, in practice
fragments are seldom exact substrings of the consensus, as we will see.

4.1.2 COMPLICATIONS

As mentioned above, real problem instances are very large. Apart from this fact, several
other complications exist that make the problem much harder than the small example
we saw. The main factors that add to the complexity of the problem are errors, unknown
orientation, repeated regions, and lack of coverage. We describe each factor in the sequel.

Errors

The simplest errors are called base call errors and comprise base substitutions, inser-
tions, and deletions in the fragments. Examples of each kind are given in Figures 4.2,
4.3, and 4.4, respectively. Transpositions are also common but we can treat them as com-
positions of an insertion and a deletion or two substitutions.

Input: Answer:

ACCGT
CGTGC
TTAC
TGCCGT

FIGURE 4.2

—ACCGT--
CGTGC

TTAC
-TGCCGT--
TTACCGTGC

In this instance there was a substitution error in the second
position of the last fragment, where A was replaced by G.
The consensus is still correct because of majority voting.

Base call errors occurs in practice at rates varying from 1 to 5 errors every 100 char-
acters. Their distribution along the sequence is not uniform, as they tend to concentrate
towards the 3' end of the fragment. As we can see from the examples, it is still possi-
ble to reconstruct the correct consensus even in the presence of errors, but the computer
program must be prepared to deal with this possibility and this usually means algorithms
that require more time and space. For instance, it is possible to find the best alignments
between two sequences in linear time if there are no errors, whereas we saw in Chapter 3
that quadratic algorithms are needed to account for gaps.

Apart from erroneous base calls, two other types of errors can affect assembly. One
of them is the artifact of chimeric fragments, and the other is contamination by host or
vector DNA. We explain each type in what follows.

108 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Input: Answer:

ACCGT --ACC-GT--

CAGTGC
TTAC AC
TACCGT -TACC-GT--

TTACC-GTGC

FIGURE 4.3

In this instance there was an insertion error in the second
position of the second fragment. Base A appeared where

there should be none. The consensus is still correct because
of spaces introduced in the multiple alignment and majority

voting. Notice that the space in the consensus will be
discarded when reporting the answer.

Input: Answer:

- -ACCGT--ACCGT

TTAC
CGTGC CGTGC

TTAC
T A P P T — 1AC—CJ±

TTACCGTGC

FIGURE 4.4

In this instance there was a deletion in the third (or fourth)
base in the last fragment. The consensus is still correct
because of spaces in the alignment and majority voting.

Chimeric fragments, or chimeras, arise when two regular fragments from distinct
parts of the target molecule join end-to-end to form a fragment that is not a contiguous
part of the target. An example is shown in Figure 4.5. These misleading fragments must
be recognized as such and removed from the fragment set in a preprocessing stage.

Sometimes fragments or parts of fragments that do not have anything to do with the
target molecule are present in the input set. This is due to contamination from host or
vector DNA. As we saw in Section 1.5.2, the process of replicating a fragment consists
of inserting it into the genome of a vector, which is an organism that will reproduce and
carry along copies of our fragment. In the end, the fragment must be purified from the
vector DNA, and here is where contamination occurs — if this purification is not com-
plete. If the vector is a virus, then the infected cell — generally a bacterial cell — can
also contribute some genetic material to the fragment.

Contamination is a rather common phenomenon in sequencing experiments. Wit-
ness to this is the significant quantity of vector DNA that is present in the community
databases. Scientists sometimes fail to screen against the vector sequence prior to as-
sembly and submit a contaminated consensus to the database.

As with chimeras, the remedy for this problem is to screen the data before starting
assembly. The complete sequences of vectors commonly used in DNA sequencing are
well known, and it is not difficult to screen all fragments against these known sequences

4.1 BIOLOGICAL BACKGROUND 109

Input:

ACCGT
CGTGC
TTAC
TACCGT
TTATGC

Answer:

FIGURE 4.5

--ACCGT--
CGTGC

TTAC
-TACCGT--
TTACCGTGC

TTA TGC

The last fragment in this input set is a chimera. The only
way to deal with chimeras is to recognize and remove them

from the input set before starting assembly proper.

to see whether a substantial part of them is present in any fragment. Chimeric fragment
detection leads to interesting algorithmic problems, but we will not detail them any fur-
ther in this book. Pointers to relevant references are given in the bibliographic notes.

Unknown Orientation

Fragments can come from any of the DNA strands and we generally do not know to
which strand a particular fragment belongs to. We do know, however, that whatever the
strand the sequence read goes from 5' to 3'. Because of the complementarity and opposite
orientation of strands, the fact that a fragment is a substring of one strand is equivalent to
the fact that its reverse complement is a substring of the other. As a result, we can think of
the input fragments as being all approximate substrings of the consensus sought either
as given or in reverse complement. Figure 4.6 shows an assembly problem involving
fragments in both orientations, initially unknown, but with no errors. In practice, we have
to deal with both errors and unknown orientation at the same time.

Because the orientations are unknown, in principle we should try all possible corn-

Input: Answer:

CACGT ~*
ACGT ~*

CACGT-
-ACGT-

ACTACG *~ --CGTAGT-

GTACT
ACTGA
CTGA

-AGTAC
ACTGA
-CTGA

CACGTAGTACTGA

FIGURE 4.6

Fragment assembly with unknown orientation. Initially we
do not know the orientation of fragments. Each one can be
used either in direct or reverse orientation. In the solution,
we indicate by an arrow the chosen orientation: —> means

fragment as is, <— means its reverse complement.

110 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

binations, which are 2n for a set with n fragments. Of course, this method is unacceptable
and is not the way it is done in an assembly program, but it does hint at the complexity
introduced by the orientation issue.

Repeated Regions

Repeated regions or repeats are sequences that appear two or more times in the target
molecule. Figure 4.7 shows an example. Short repeats, that is, repeats that can be entirely
covered by one fragment, do not pose difficulties. The worst problems are caused by
longer repeats. Also, the copies of a repeat do not have to be identical to upset assembly.
If the level of similarity between two copies of a repeat is high enough, the differences
can be mistaken for base call errors. Remember that the assembler must be prepared to
deal with errors, so there is usually some degree of tolerance in overlap detection.

X\ X2

FIGURE 4.7

Repeated regions. The blocks marked X\ and X2 are
approximately the same sequence.

The kinds of problems that repeats cause are twofold. First, if a fragment is totally
contained in a repeat, we may have several places to put it in the final alignment, as it may
fit reasonably well in the several repeat copies. One could argue that it does not matter
where we put it, since in any copy of the same repeat the consensus will be approximately
the same. But the point is that, when the copies are not exactly equal, we may weaken
the consensus by placing a fragment in the wrong copy.

Second, repeats can be positioned in such a way as to render assembly inherently
ambiguous; that is, two or more layouts are compatible with the input fragments and ap-
proximate target length at equivalent levels of fitness. Two such cases are shown in Fig-
ures 4.8 and 4.9, respectively. The first one features three copies of the same repeat, and
the second has two interleaving copies of different repeats. The common feature between
these two cases is the presence of two different regions flanked by the same repeats. In
the first example, both B and C are flanked by X and X. In the second, both B and D
are flanked by X and Y.

So far we discussed direct repeats, namely, repeated copies in the same strand.
However, inverted repeats, which are repeated regions in opposite strands, can also oc-
cur and are potentially more dangerous. As few as two copies of a long, inverted repeat
are enough to make the instance ambiguous. An example is given in Figure 4.10.

Lack of Coverage

Another problem is lack of adequate coverage. We define the coverage at position i
of the target as the number of fragments that cover this position. This concept is well

4.1 BIOLOGICAL BACKGROUND 111

A X B X C X D

A X C X B X D

FIGURE 4.8

Target sequence leading to ambiguous assembly because of
repeats of the form XXX.

C X D

A X D Y C X B

FIGURE 4.9

Target sequence leading to ambiguous assembly because of
repeats of the form XYXY.

X rotate 180°

FIGURE 4.10

Target sequence with inverted repeat. The region marked X
is the reverse complement of the region marked X,

112 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Target DNA

Fragments

Uncovered
area

FIGURE 4.11

Example of insufficient coverage.

defined, but it is impossible to compute it because we do not know the actual positions
of the fragments in the target. Even after assembly, all we have is our best guess about
these positions. We can compute the mean coverage, though, by adding up all fragment
lengths and dividing by the approximate target length.

If the coverage is equal to zero for one or more positions, then there is not enough
information in the fragment set to reconstruct the target completely. Figure 4.11 shows
an example in which there is an uncovered area. In such cases, the best we can hope to
achieve is a layout for every one of the contiguously covered regions, called contigs.
There are two contigs in Figure 4.11.

Lack of coverage occurs because the sampling of fragments is essentially a random
process; it is therefore possible that some parts end up not being well covered or not cov-
ered at all. In general, we want not only one, but several different fragments covering any
given point. The more fragments we have, the safer is our assessment of the consensus
based on voting. It is also desirable to have fragments from both strands covering a given
region, for it has been observed in practice that certain kinds of errors occur consistently
in one strand only.

Insufficient coverage can usually be dealt with by sampling more fragments, but
we must be careful with this approach. If everything is well covered except for a small
portion of the target, sampling at random can be a very inefficient way of covering the
gaps. An approach, called directed sequencing or walking (see Section 4.1.3), can be
used in this case. To avoid the formation of these little gaps, some researchers advocate
sampling at very high coverage rates, collecting fragments whose combined length is
enough to cover the target molecule 8 times or more.

It is important to know how many fragments we need to generate in order to achieve
a given coverage. The answer cannot be absolute, of course, since sampling is a random
process, but reasonable bounds can be derived. We mention here an important result that
is valid under certain simplifying assumptions.

Let T denote the length of the target molecule. Assume that all fragments have about
the same length / and that we can safely recognize overlaps of at least t bases. If we
sample n fragments at random, the expected number p of apparent contigs is given by
the formula

p = ne-nil-°/T. (4.1)

4.1 BIOLOGICAL BACKGROUND 113

The term "apparent contig" refers to the fact that we are assuming that we are able
to recognize overlaps only if they have size at least t. Thus some of the contigs we have
may in fact overlap by less that t bases, so they are really parts of a longer true contig
but "appear" to be two separated contigs to us.

Notice that p approaches zero as the number n of fragments grows, which seems
strange because we know there will always be at least one apparent contig. This happens
because formula (4.1) is an approximation. It can be used also in the context of DNA
mapping, where the number of contigs is much larger, so a difference of one or two is
negligible. The formula is useful in the sense that it provides a reliable ballpark in a wide
variety of situations.

A formula for the fraction of the target molecule covered by the fragments is also
available. With the same notation as above, the fraction covered by exactly k fragments
is given by

k\
where c = nl/T is the mean coverage.

(4.2)

4.1.3 ALTERNATIVE METHODS
FOR DNA SEQUENCING

We mention here a few supplementary and alternative approaches to DNA sequencing.
We start with directed sequencing, a method that can be used to cover small remaining
gaps in a shotgun project. In direct sequencing a special primer is derived from the se-
quence near the end of a contig, so that fragments spanning the region including the end
of this contig and the continuation of it in the target are generated. These new fragments
are then sequenced and give the sequence adjacent to the contig, thereby augmenting it.
Continuing in this fashion, we can cover the gap to the next contig. The problem with
this approach is that it is expensive to build special primers. Also, the next step can be
accomplished only after the current one, so the process is essentially sequential rather
than parallel (but can be done for all gaps in parallel).

Another technique that has become very popular is called dual end sequencing. In
a shotgun experiment several copies of the target DNA molecule are broken randomly
and short pieces are selected for cloning and sequencing. We recall from Section 1.5.2
that these pieces are called inserts because they are inserted into a vector for amplifica-
tion. Inserts sizes range from 1 to 5 kbp, but only about 200 to 700 bases can be directly
read from one extremity to yield a fragment. However, it is also possible to read the other
extremity if we have a suitable primer. The two fragments thus obtained belong to op-
posite strands, and they should be separated in the final alignment by roughly the insert
size minus the fragment size. This extra information is extremely useful in closing gaps,
for instance. Sometimes the dual end is sequenced only if it is necessary to close a gap.
Notice that dual end sequencing exploits the fact that inserts are usually larger than the
portion read from them.

A radically different approach from shotgun methods has been proposed recently.
Called sequencing by hybridization (SBH), it consists of assembling the target molecule

114 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

based on many hybridization experiments with very short, fixed length sequences called
probes. A hybridization simply checks whether a probe binds (by complementarity) to
a DNA molecule. The idea is to design a DNA chip that performs all the necessary hy-
bridizations simultaneously and delivers a list of all strings of length w, or w-mers, that
exist in the target. With current technology it is possible to construct such chips for probes
of length up to eight bases. Larger probe sizes seem still prohibitive at this point.

Important issues in SBH include the following. It is clear that not all target molecules
can be reconstructed with a probe size as small as eight (see Exercise 10). One important
problem then is to characterize the molecules that can actually be reconstructed with a
given probe size. Another problem is that the hybridization experiments do not provide
the number of times a given w-mex appears in the target, just whether an u>-mer does ap-
pear. Clearly, it would help to have the extra information on how many copies do appear.
Finally, problems with errors in the experiments and orientation need to be tackled. One
proposed strategy is to reduce the shotgun data to hybridization data by simply using all
the w-mers of the fragments instead of the fragments themselves and to think of them as
generated by hybridization experiments. However, this strategy throws away informa-
tion, because it is generally impossible to recover the fragments from the w-mers, while
it is possible to generate the w-mers from the fragments. Algorithms for the SBH prob-
lem are not covered in this book, but references are given in the bibliographic notes at
the end of this chapter.

We will now examine formalisms for fragment assembly. We present in this section three
models for the problem: shortest common superstring (SCS), RECONSTRUCTION, and
MULTICONTIG. Each throws light on the diverse computational aspects of the problem,
although none of them completely addresses the biological issues. All three assume that
the fragment collection is free of contamination and chimeras.

4.2.1 SHORTEST COMMON SUPERSTRING

One of the first attempts to formalize fragment assembly was through a string problem in
which we seek the shortest superstring of a collection of given strings. Accordingly, this
is called the Shortest Common Superstring problem, or SCS. Although this model has
serious shortcomings in representing the fragment assembly problem — it does not ac-
count for errors, for instance — the techniques used to tackle the resulting computational
problem have application in other models as well. It is worthwhile, therefore, to study
these techniques. The Shortest Common Superstring problem is defined as follows:

PROBLEM: SHORTEST COMMON SUPERSTRING (SCS)
INPUT: A collection T of strings.

4.2 MODELS 115

OUTPUT: A shortest possible string S such that for every / € T, S is a super-
string of / .

Example 4.1 Let T = {ACT, CTA, AGT}. The sequence S = ACTAGT is the shortest
common superstring of T. It obviously contains all fragments in T as substrings. To see
that it is the shortest, notice that any string S' that has both u — ACT and v = AGT as
substrings must have length at least 6. Moreover, with \S'\ = 6 we have just the con-
catenations uv and vu. But CTA is a substring of uv = S only.

In the context of fragment assembly, the collection T corresponds to the fragments,
each one given by its sequence in the correct orientation, and S is the sequence of the
target DNA molecule.

Notice that the computational problem specifies that S should be a perfect super-
string of each fragment, not an approximate superstring, so it does not allow for exper-
imental errors in the fragments. Furthermore, the orientation of each fragment must be
known, which is seldom the case. Finally, even in a perfect assembly project in which all
these factors could be somehow controlled, the shortest common superstring may not be
the actual biological solution because of repeated sections in the target DNA sequence,
as the following example shows.

Example 4.2 Suppose that the target molecule has two copies of an exact repeat and
that fragments are sampled as shown in Figure 4.12. Notice that the repeat copies are long
and contain many fragments. In this case, even if the fragments are exact substrings of the
consensus, and even if we know their correct orientation, finding the shortest common
superstring may not be what we want.

X X

FIGURE 4.12

Target sequence with long repeat that contains many
fragments. This example shows that even with no errors and

known orientation, the SCS formulation fails in the
presence of repeats.

Indeed, Figure 4.13 shows a different assembly, with a shorter consensus for the
same fragment set. Observe that because the repeat copies are identical, a superstring
may contain only one copy, which will absorb all fragments totally contained in any of
the copies. The other copy can be shorter, as it must contain only fragments that cross
the border between X and its flanking regions. The shortened version of X is denoted by
X' in this figure.

116 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

X X'

FIGURE 4.13

Alternative assembly for the fragments in the previous
figure. This assembly leads to a shorter consensus, because

all fragments totally contained in the rightmost copy (the
dashed fragments) were moved to the leftmost copy, causing

a decrease in length of the rightmost copy.

Notice that although shorter, this alternative assembly is poorer in terms of both cov-
erage and linkage. The coverage is uneven, with many fragments spanning X and much
fewer spanning X'. The linkage is poor because no fragment links the leftmost part of Xf

to its rightmost part. In fact, this consensus is the concatenation of two unrelated parts
u and v, with u going from the beginning to about the middle of X', and v going from
the middle of X' to the end. As far as shortest substrings are concerned, vu would be a
perfectly equivalent consensus.

The Shortest Common Superstring problem is NP-hard, but approximation algo-
rithms exist. However, given all the shortcomings of this model with respect to the real
biological problem, such algorithms are primarily of theoretical interest.

4.2.2 RECONSTRUCTION

This model takes into account both errors and unknown orientation. To deal with er-
rors, we need a few preliminary definitions. Recall from Chapter 3 that we can configure
the basic dynamic programming sequence comparison algorithm to suit many different
needs. Here we will use distance rather than similarity and a version that charges for gaps
in the extremities of the second sequence only. The scoring system is edit distance; that
is, one unit of distance is charged for every insertion, deletion, or substitution, except for
deletion in the extremities of the second sequence, which are free of charge. The distance
thus obtained will be called substring edit distance, to distinguish it from the classical
edit distance that charges for end deletions in both strings. We denote it by ds and define
it formally by the expression

ds(a,b)= min d(a, s),
szS(b)

where S(b) denotes the set of all substrings of b and d is the classical edit distance. Notice
that substring edit distance is asymmetric, that is, in general ds(a, b) ^ ds(b, a).

4.2 MODELS 117

GC-GATAG
CAGTCGCTGATCGTACG

FIGURE 4.14

Optimal alignment for substring edit distance, which does
not charge for end deletions in the second string.

Example 4.3 If a = GCGATAG and b = CAGTCGCTGATCGTACG, then the best
alignment is as indicated in Figure 4.14 and the distance is ds(a, b) = 2.

Let 6 be a real number between 0 and 1. A string / is an approximate substring of
S at error level e when

ds(f,S)<e\fl

where | / | is the length of / . This means that we are allowed on average e errors for each
base in / . For instance, if € = 0.05 we are allowed five errors per hundred bases. We are
now ready for the definition of fragment assembly according to the RECONSTRUCTION
model.

PROBLEM: RECONSTRUCTION

INPUT: A collection T of strings and an error tolerance e between 0 and 1.
OUTPUT: A shortest possible string S such that for every / G T we have

where / is the reverse complement of / .

The idea is to find a string S as short as possible such that either / or its reverse
complement must be an approximate substring of S at error level e. This formulation
will assemble correctly all the examples in Section 4.1 except for the one involving a
chimeric fragment. However, the general problem is still NP-hard. This is not surprising,
though, as it contains the SCS as a particular case with 6 = 0 (see Exercise 18).

In summary, RECONSTRUCTION models errors and orientation but does not model
repeats, lack of coverage, and size of target.

4.2.3 MULTICONTIG

The MULTICONTIG model adds a notion of good linkage to the answer. The previous
models do not care about the internal linkage of the fragments in the layout — only the
final answer matters. Thus, it is also necessary to accept answers formed by several con-
tigs, and for this reason it is called "multicontig."

We define first an error-free version of the MULTICONTIG model. Given a collection
T of fragments, we consider a multiple alignment, or layout. This layout must be such
that every column contains only one kind of base. This is where the error-free hypothe-
sis comes in. Also, to contemplate orientation, we require that either the fragment or its
reverse complement be in the alignment, but not both.

118 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Let us call this layout £. We number the columns from 1 to the length \C\ of the
layout. According to this numbering, each fragment / has a left endpoint / (/) and a
right endpoint r (/) , so that | / | = r (/) — / (/) + 1. We say that fragments / and g
overlap in this layout if the integer intervals [I(/)../-(/)] and [Z(g)..r(g)] intersect. The
nonempty intersection [/(/)..r (/)] O [/(#)..r (g)] is called the overlap between / and g.
The size of this overlap is just the size of the intersection. Because we are using integer
intervals, all sets are finite.

Among all the overlaps between fragments, we are interested in the most important
ones, the ones that provide linkage. We say that an overlap [*..}>] is a nonlink if there is
a fragment in T that properly contains the overlap on both sides, that is, if the fragment
contains interval [(x — 1) ..(y -f-1)]. If no fragment has this property, the overlap is a link.
The weakest link in a layout is the smallest size of any link in it. Finally, we say that a
layout is a t-contig if its weakest link is at least as large as t. If it is possible to construct
a J-contig from the fragments of a collection j r , we say that T admits a f-contig.

We can now formalize the fragment assembly problem according to the MULTICON-
TIG model. Given a collection of fragments T and an integer t, we want to partition T
in the minimum number of subcollections d, 1 < i < fc, such that every C, admits a
f-contig.

Example 4.4 Let T — {GTAC, TAATG, TGTAA}. We want to partition T in the mini-
mum number of r-contigs. If t = 3, this minimum is two, as follows.

—TAATG GTAC
TGTAA—

There is no way to make one single contig with all three fragments, so two contigs is the
minimum possible in this case. Notice that GTAC is its own reverse complement.

If t = 2, the same solution is a partition in 2-contigs, since every 3-contig is a 2-
contig. However, another solution exists now:

TAATG GTAC
TGTAA

Here again it is impossible to assemble T into one f-contig.
Finally, if t = 1, we see that a solution with one f-contig exists:

TGTAA
—TAATG

GTAC

A version contemplating errors can be defined as follows. The layout is not required
to be error-free, but with each alignment we must associate a consensus sequence S of
the same length, possibly containing space characters (-). The numbers / (/) and r(f)
are still defined as the leftmost and rightmost columns of / in the alignment, but now we
may have \f\ •=/=• r (/) — / (/) + 1. The image of an aligned fragment / in the consensus
is S[l(f)..r(f)]. Given an error tolerance degree 6, we say that S is an €-consensus for

4.3 ALGORITHMS 119

this contig when the edit distance between each aligned fragment / and its image in the
consensus is at most e | / | . We are now ready for the formal definition.

PROBLEM: MULTICONTIG
INPUT: A collection T of strings, an integer t > 0, and an error tolerance €

between 0 and 1.
OUTPUT: A partition of T in the minimum number of subcollections C,-, 1 <

i < k, such that every C,- admits a /-contig with an e-consensus.

Notice that in the RECONSTRUCTION model a fragment is required to be an approx-
imate substring of S, but the particular place in S where it is aligned is not important.
In contrast, in the MULTICONTIG formulation we need to specify explicitly where each
fragment should go.

The MULTICONTIG formalization of fragment assembly is NP-hard, even in the sim-
plest case of no errors and known orientation. It contains as a special case the problem
of finding a Hamiltonian path in a restricted class of graphs.

This formulation models errors, orientation, and lack of coverage but has no pro-
vision to use information on the approximate size of the target molecule. In addition, it
partially models repeats, in the sense that it can satisfactorily solve some instances with
repeats, although not all of them. For instance, it can correctly reconstruct the instance
given in Figure 4.12.

• ALGORITHMS

In this section we present two algorithms for the case of fragments with no errors and
known orientation. One of them is known as the greedy algorithm, and many practical
systems are based on the same idea, with additions that contemplate errors and unknown
orientation. The other algorithm is based on the MULTICONTIG model and is useful when
we can obtain an acyclic overlap graph by discarding edges with small weight. It should
be mentioned that both algorithms are of little practical value in themselves, because of
the restrictive hypothesis. Nevertheless, the ideas behind them can be useful in designing
algorithms that deal with real instances of the problem.

4.3.1 REPRESENTING OVERLAPS

Common superstrings correspond to paths in a certain graph structure based on the col-
lection T. We can translate properties of these superstrings to properties of the paths. Be-
cause researchers have studied paths in graphs for a long time, many people feel more
comfortable dealing with graphs, and relating a new problem to them is often a good
idea.

The overlap multigraph OM (J7) of a collection T is the directed, weighted multi-
graph defined as follows. The set V of nodes of this structure is just T itself. A directed

120 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

edge from a e T to a different fragment b e T with weight t > 0 exists if the suffix of
a with t characters is a prefix of b. In symbols, this is equivalent to

suffix(a, t) = prefix(b, t),

or

or

where /c is the killer agent defined in Section 2.1. Notice that we must have \a\ > / and
|Z?| > r for this edge to exist. Observe also that there may be many edges from atob, with
different values of t. This is why the structure is called a multigraph instead of simply
a graph. Note that we disallow self-loops, that is, edges going from a node to itself. On
the other hand, edges of zero weight are allowed.

A word must be said about edge weights. These weights represent overlaps between
fragments, and we use the overlaps to join fragments into longer strings, sharing the over-
lapping part. This joining means that we believe that the two fragments come from the
same region in the target DNA. Now this belief has to be based on solid evidence. In our
case, this evidence is the size of the overlap. A short overlap provides weak evidence,
whereas a long overlap gives strong evidence. When dealing with hundreds of fragments,
each one a few hundred characters long, it is foolish to assume that two fragments share
ends based on an overlap of, say, three characters. For this reason, sometimes we impose
a minimum acceptable amount of overlap, and throw away all edges with weight below
this threshold. But, in principle, we will keep all the edges in the multigraph, including
the zero weight edges. There are n(n — 1) such edges, because any two strings share a
common part of zero characters.

4.3.2 PATHS ORIGINATING SUPERSTRINGS

The overlap multigraph is important because directed paths in it give rise to a multiple
alignment of the sequences that belong to this path. A consensus sequence can then be
derived from this alignment, providing a common superstring of the involved sequences.
Let us investigate this process more closely.

Given a directed path P in OMiJ7), we can construct a multiple alignment with
the sequences in P as follows. Each edge e = (/, g) in the path has a certain weight r,
which means that the last t bases of the tail / of. e are a prefix of the head g of e. Thus,
/ and g can be aligned, with g starting t positions before / ' s end.

An example is given in Figure 4.15. Only edges with strictly positive weight were
drawn. The collection T is {a, b, c, d], where

a = TACGA,

b = ACCC,

c = CTAAAG,

d = GACA.

4.3 ALGORITHMS 121

TACGA

CTAAAG

FIGURE 4.15
Overlap multigraph with zero-weight edges omitted.

Usually, we indicate paths by a list of the form vertex, edge, vertex, edge, ..., ver-
tex, with each edge connecting its two neighboring vertices in the list. However, in this
example there are no parallel edges, so, for simplicity, we will indicate the paths by just
a list of the vertices involved. The path Pi = dbc leads to the following alignment:

GACA
ACCC

CTAAAG

whereas path P^ = abed originates the following alignment.

TACGA
ACCC

CTAAAG
GACA

In general, let P be a path in OM.(T), and let A be the set of fragments involved
in P. Paths by definition cannot repeat vertices, so we have exactly |A| — 1 edges in P.
The common superstring derived from P as above will be called S(P).

The relationship between the total length of A, the path's weight, and the superstring
length is given by the following equation.

||A|| = u;(P) + |S(P)|, (4.3)

where \\A\\ = YlaeA \a\ ls> m e s u m °^ lengths of all sequences in A, and w(P) is the
weight of P. Is this really true? Let us check it for some simple cases.

Start with a path with just one fragment and no edges. Then A = {/}, ||A|| = | / | ,
and w(P) = 0, since P has no edges. Furthermore, S(P) is simply / . It is easy to see
that Equation (4.3) holds in this case. Let us try something larger. Suppose that P =
f\e\f2^2 •'' fi an(3 that the formula holds for P. What happens if we consider an addi-
tional edge? We have P' = Pei+\fi+\ and

w(P') = w{P) + w(el+l) = w(P) + k,

if w(ei+\) = k.

122 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

On the other hand, S(P') = S(P)suffix(fi+i, \fi+\\ - k), because the first k char-
acters of fi+i are already present in S(P). We need to concatenate the remaining suffix
of fi+\ only. Then,

= \\Af\\-w(Pf)

and the formula holds. We have just proved Equation (4.3) by induction.

Another way of seeing it is by using the killer character. If P = f\e\fiei...//,

S(P) = flK
wiex) f2K

w{ei) • • • Kwie'-Ofh

The right-hand side is not ambiguous in this case because

(.flKWM)fi+l = MKWMfl+l),

by definition of edge weight.
Computing the length,

\S(P)\ = | / i | - w(e{) + |/2 | - w(e2) +

1=1

So, every path originates a common superstring of the fragments involved. This is par-
ticularly important when we have a path that goes through every vertex. Such paths are
called Hamiltonianpaths (see Section 2.2). If we get a Hamiltonian path, we have a com-
mon superstring of A = T. In this case Equation 4.3 becomes

\S(P)\ = \\F\\-w(P) (4.4)

and, since ||JF|| is constant, that is, independent of the particular Hamiltonian path we
take, we see that minimizing |5(P)| is equivalent to maximizing w(P).

4.3.3 SHORTEST SUPERSTRINGS AS PATHS

We have seen that every path corresponds to a superstring. Is the converse true? Not
always, as the following example shows. For the fragment set that originated the graph
in Figure 4.15, the superstring

GTATACGACCCAAACTAAAGACAGGG

does not correspond to any path, and it easy to see why. Superstrings may contain un-
necessary characters not present in any fragment.

But shortest superstrings cannot waste any characters. So, do shortest superstrings
always correspond to paths? The answer is affirmative, and we will prove this result in
the sequel. We first observe that it is true for certain collections that are substring-free,
defined below, and then generalize the result to any collection.

4.3 ALGORITHMS 123

A collection T is said to be substring-free if there are no two distinct strings a and b
in T such that a is a substring of b. The advantage of dealing with substring-free collec-
tions is that a partial converse of the path-to-superstring construction is easier to prove,
as illustrated by the following result.

THEOREM 4.1 Let T be a substring-free collection. Then for every common super-
string S of T there is a Hamiltonian path P in OMiT} such that S(P) is a subsequence
of 5.

Proof. The string S is a common superstring of T, so for each / e T there is an in-
terval [/(/)..r(/)] of S such that S[l(f)..r(f)] = / . For some fragments there may be
many positions in which to anchor them. Never mind. Take one of them and fix it for the
rest of this proof.

No interval of the form [/(/)..r(/)] is contained in another such interval, because
T is substring-free. These intervals have the following important property: All left end-
points are distinct and all right endpoints are distinct, although there may be left end-
points equal to right endpoints. Moreover, if we sort the fragments in increasing order
of left endpoint, the right endpoints end up in increasing order as well. Indeed, if we had
two strings / and g in T with / (/) < l(g) and r (/) > r {g), then the interval of g would
be contained in the interval of / , which is impossible. So, we have the intervals sorted
by increasing initial and final endpoints. Let (/!)i=i,...,m be this ordering. The fragments
in this order make up the claimed path.

Consider the relationship between ft and ft+\, for each i such that 1 < i < m — 1.
If l(fi+1) <r(fi) + l, then there is an edge in OM{T) with weight r(ft) + 1 -l(fi+i).
lfl(fi+i) > r(fi) + l, then take the edge of weight zero from /; to ft+\. The characters
S[j] for r(ft) + 1 < j < l(ft+\) — 1 will be discarded, because they do not belong
to any interval and are therefore superfluous as far as making a common superstring is
concerned. These characters are in S but not in 5(P), which is therefore a subsequence
of 5. •

COROLLARY 4.1 Let T be a substring-free collection. If 5 is a shortest common su-
perstring of T, there is a Hamiltonian path P such that S = S(P).

Proof. By the previous theorem, there is such a path with S (P) a subsequence of S. But
S(P) is also a common superstring, because P is Hamiltonian. Because S is a shortest
common superstring, we have |S(P)| > |.S| and therefore S = S(P). •

We now generalize this result to any collection. First, a few definitions are in order.
A collection of strings T dominates another collection Q when every g e Q is a substring
of some / € T. For instance, if Q c T, then T dominates Q. Two collections T and Q
are said to be equivalent, denoted T = Q, when T dominates Q and Q also dominates
T. Equivalent collections have the same superstrings, so this notion is important for us.

LEMMA 4.1 Two equivalent substring-free collections are identical.

Proof. If T = G and ^ is substring-free, then T c Q. To see that, consider / € T.
Since T is dominated by Q, there must be g e Q such that / is a substring of g. But T

124 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

also dominates Q, so there is a superstring h of g in T. By transitivity, / is a substring
of h. But ,F is substring-free, so / = h, and, since g is "in between" them, / = g = /z.
It follows that f = g e Q. Since / is arbitrary, we conclude that f e g , The same
argument with J7 and Q interchanged shows that Q c j ; Hence, J7 = Q. •

The next theorem helps us understand how to obtain a substring-free collection from
an arbitrary collection of fragments.

THEOREM 4.2 Let T be a collection of strings. Then there is a unique substring-free
collection Q equivalent to T.

Proof. Uniqueness is guaranteed by the previous lemma. Now let us turn to the exis-
tence. We want to show that for every T there is a substring-free collection Q equivalent
to T. We do that by induction on the number of strings in T.

For \T\ = 0, T itself is substring-free, so we are done. For \T\ > 1, T may or may
not be substring-free. If it is, we are again done. If it is not, then there are a and b in T
such that a is a substring of b. Remove a from T, obtaining a smaller collection T' —
T — {a}. By the induction hypothesis, T' has an equivalent substring-free collection Q.
But it is easy to verify that T = T'. Obviously T dominates T', which is a subset of T.
On the other hand, the only string that is in T but not in T1 is a, which is covered by
b 6 T'. Hence, Q is also equivalent to T and we are done. •

This result tells us that if we are looking for common superstrings, we might as well
restrict ourselves to substring-free collections, because given any collection there is a
substring-free one equivalent to it, that is, having the same common superstrings. Inci-
dentally, the proof of Theorem 4.2 also gives us a way of obtaining the unique substring-
free collection equivalent to a given T\ Just remove from T all strings that are substrings
of other elements of T.

4.3.4 THE GREEDY ALGORITHM

We now know that looking for shortest common superstrings is the same as looking for
Hamiltonian paths of maximum weight in a directed multigraph. Moreover, because our
goal is to maximize the weight, we can simplify the multigraph and consider only the
heaviest edge between every pair of nodes, discarding other, parallel edges of smaller
weight. Any path that does not use the heaviest edge between a pair of nodes can be
improved, so it is not a maximum weight path. Let us call this new graph the overlap
graph of JF, denoted by OQ (T). In an actual implementation we would not construct
these edges one by one. Using suffix trees (see Section 3.6.3), we can build the edges si-
multaneously, saving both space and time in the computer (see the bibliographic notes).
The same structures can help in deciding which fragments are substrings of other frag-
ments and may therefore be left out of the graph.

The following algorithm is a "greedy" attempt at computing the heaviest path. The
basic idea employed in it is to continuously add the heaviest available edge, which is
one that does not upset the construction of a Hamiltonian path given the previously cho-

4.3 ALGORITHMS 125

sen edges. Because the graph is complete, that is, there are edges between every pair of
nodes, this process stops only when a path containing all vertices is formed.

In a Hamiltonian path, or in any path for that matter, we cannot have two edges leav-
ing from the same node, or two edges leading to the same node. In addition, we have to
prevent the formation of cycles. So these are the three conditions we have to test before
accepting an edge in our Hamiltonian path. Edges are processed in nonincreasing order
by weight, and the procedure ends when we have exactly n — 1 edges, or, equivalently,
when the accepted edges induce a connected subgraph.

Figure 4.16 shows the algorithm. For each node, we keep its current indegree and
outdegree with respect to the accepted edges. This information is used to check whether
a previously chosen edge has the same tail or head as the currently examined edge. In
addition, we keep the disjoint sets that form the connected components of the graph in-
duced by the accepted edges. It is easy to see that a new edge will form a cycle if and
only if its tail and head are in the same component. Therefore, this structure is needed to
check for cycles. The disjoint sets are maintained by a disjoint-set forest data structure
(mentioned in Section 2.3).

We described the greedy algorithm in terms of graphs, but it can be implemented
using the fragments directly. The algorithm corresponds to the following procedure be-
ing continuously applied to the collection of fragments, until only one fragment remains.
Take the pair (/, g) of fragments with largest overlap k, remove the two fragments from
J~, and add fickg to T. We assume that the collection T is substring-free.

This greedy strategy does not always produce the best result, as shown by the fol-
lowing example.

Algorithm Greedy
input: weighted directed graph OQ{T) with n vertices
output: Hamiltonian path in OQ{Jr)
II Initialize
for i «— 1 to n do

in[i] <-0 jf how many selected edges enter i
out[i] <- 0 // how many selected edges exit i
MakeSet{i)

II Process
Sort edges by weight, heaviest first
for each edge (/, g) in this order do

/ test edge for acceptance
if in[g] = 0 and out[f] = 0 and FindSet(f) # FindSet(g)

select (/, g)
in[g] <- 1
out[f] +- 1
Union(FindSet(f), FindSet(g))

if there is only one component
break

return selected edges

FIGURE 4.16

Greedy algorithm to find Hamiltonian path.

126 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

GCC

ATGC f > O T G C A T

3

FIGURE 4.17

A graph where the greedy algorithm fails.

Example 4.5 Suppose we have

T = {GCC, ATGC, TGCAT}.

The overlap graph looks like Figure 4.17, where we omitted the zero edges to avoid clut-
tering the drawing.

In this graph, the edge of weight 3 is the first one to be examined and is obviously
accepted because the first edge is always accepted. However, it invalidates the two edges
of weight 2, so the algorithm is forced to select an edge of weight zero to complete the
Hamiltonian path. The two rejected edges form a path of total weight 4, which is the
heaviest path in this example.

This example shows that the greedy algorithm will not always return the shortest
superstring. Is there an algorithm that works in all cases? Apparently not. We are trying
to solve the SCS problem through the Hamiltonian path (HP) problem; but as we have
seen in Section 2.3, the HP problem is NP-complete. Perhaps we could have better luck
trying another approach to solve the SCS problem. Unfortunately this is probably not
the case either, since, as already mentioned, it can be shown that the SCS problem is
NP-hard.

4.3.5 ACYCLIC SUBGRAPHS

The hardness results we mentioned in the previous section apply to an arbitrary collec-
tion of fragments. In this section we consider the problem of assembling fragments with-
out errors and known orientation assuming that the fragments have been obtained from
a "good sampling" of the target DNA. As shown in the sequel, this assumption enables
us to derive algorithms that deliver the correct solution and are particularly efficient.

What do we mean by a "good sampling"? Basically, we want the fragments to cover
the entire target molecule, and the collection as a whole to exhibit enough linkage to
guarantee a safe assembly. Recall from Section 4.2.3 the definition of r-contig. Our def-
initions here are based on similar concepts.

Suppose that S is a string over the alphabet {A, C, G, T}. Recall from Section 2.1

