
On Indeterminate Strings Matching1

Paweł Gawrychowski2

Institute of Computer Science, University of Wrocław, Poland3

Samah Ghazawi1
4

Department of Computer Science, University of Haifa, Haifa, Israel5

idrees.samah@gmail.com6

Gad M. Landau7

Department of Computer Science, University of Haifa, Haifa, Israel8

Department of Computer Science and Engineering, NYU Tandon School of Engineering, Brooklyn,9

USA10

Abstract11

Given two indeterminate equal-length strings p and t with a set of characters per position in both12

strings, we obtain a determinate string pw from p and a determinate string tw from t by choosing13

one character per position. Then, we say that p and t match when pw and tw match for some choice14

of the characters. While the most standard notion of a match for determinate strings is that they15

are simply identical, in certain applications it is more appropriate to use other definitions, with16

the prime examples being parameterized matching, order-preserving matching, and the recently17

introduced Cartesian tree matching. We provide a systematic study of the complexity of string18

matching for indeterminate equal-length strings, for different notions of matching. We use n to19

denote the length of both strings, and r to be an upperbound on the number of uncertain characters20

per position. First, we provide the first polynomial time algorithm for the Cartesian tree version21

that runs in deterministic O(n log2 n) and expected O(n log n log log n) time using O(n log n) space,22

for constant r. Second, we establish NP-hardness of the order-preserving version for r = 2, thus23

solving a question explicitly stated by Henriques et al. [CPM 2018], who showed hardness for r = 3.24

Third, we establish NP-hardness of the parameterized version for r = 2. As both parameterized and25

order-preserving indeterminate matching reduce to the standard determinate matching for r = 1,26

this provides a complete classification for these three variants.27

2012 ACM Subject Classification Theory of computation → Pattern matching28

Keywords and phrases pattern matching, indeterminate strings, Cartesian trees, order-preserving29

matching, parameterized matching30

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2331

Funding Samah Ghazawi: Partially supported by the Israel Science Foundation (ISF) grant 1475/18.32

Gad M. Landau: Partially supported by the Israel Science Foundation (ISF) grant 1475/18, and the33

United States-Israel Binational Science Foundation (BSF) grant No. 2018141.34

1 Corresponding author.

© Paweł Gawrychowski, Samah Ghazawi and Gad M. Landau;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idrees.samah@gmail.com
mailto:Department of Computer Science and Engineering, NYU Tandon School of Engineering, Brooklyn, USA
mailto:Department of Computer Science and Engineering, NYU Tandon School of Engineering, Brooklyn, USA
mailto:Department of Computer Science and Engineering, NYU Tandon School of Engineering, Brooklyn, USA
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

P. Gawrychowski, S. Ghazawi and G. M. Landau 23:1

1 Introduction35

String matching, in the sense of comparing two equal-length strings, is one of the fundamental36

problems in computer science with multiple practical applications. While exact matching is37

trivial to solve in optimal linear time by comparing the strings character-by-character, for38

many of the applications it seems more appropriate to work with some kind of approximate39

matching. Prime examples include string matching with swaps [2], parameterized string40

matching [6], string matching with gaps [9], jumbled string matching [10], string matching41

with don’t cares [29], and edit distance [32]. In all of such problems, one needs to first42

precisely define when do two strings match.43

Parameterized matching is a classical notion motivated by finding identical sections of44

code [3, 4, 5, 6, 19, 34]. Formally, two strings p and t of length n are a parameterized match45

when for every i, j ∈ {1, . . . , n}, p[i] = p[j] iff t[i] = t[j]. This is denoted by p ∼= t.46

Order-preserving matching is a more recent but already well-studied notion motivated by47

stock price analysis and musical melody matching [11, 16, 17, 25, 26]. Formally, two strings48

p and t of length n are a order-preserving match when for every i, j ∈ {1, . . . , n}, p[i] ≤ p[j]49

iff t[i] ≤ t[j]. This is denoted by p ∼≤ t.50

Very recently, a different notion called Cartesian tree matching has been proposed [28].51

The Cartesian tree of a given string p (CT (p)), first defined in [31], is constructed according52

to the following rules:53

If p is an empty string, CT (p) is an empty tree.54

If p[1...n] is not empty and p[i] is the leftmost minimum value in p, CT (p) is the tree55

with p[i] being the root, CT (p[1...i− 1]) the left subtree, and CT (p[i+ 1...n]) the right56

subtree.57

Even though the most well-known applications of Cartesian trees are probably in designing58

space-efficient structures for finding the minimum in a range, they can be also used to compare59

strings. Similarly to order-preserving matching, this notion is motivated by applications60

concerned with time-series data such as stock price analysis, and has gained considerable61

attention during the last year [7, 18, 30]. Formally, two strings p and t of equal length n are62

a Cartesian tree match when their Cartesian trees CT (p) and CT (t) are identical. This is63

denoted by p ∼C t.64

We consider the complexity of string matching for indeterminate strings defined as follows.65

66

I Definition 1. An indeterminate string is a sequence of sets of characters p[1]p[2]...p[n],67

where p[i] ⊆ N. Each position is specified by writing p[i] = x1|...|xr, such that x` ∈ N, which68

means that we can choose p[i] to be any x`.69

Indeterminate strings were studied earlier, among others, covering problems for indeter-70

minate strings [1, 14] and indeterminate strings in graph theory [20, 12, 27]. Indeterminate71

string matching was investigated lately from different angles [8, 13, 15, 22, 23, 24]. It pro-72

vides a convenient formalism for compactly capturing situations in which there are some73

uncertainties concerning characters at some positions. Indeed, an indeterminate string p of74

length n describes rn determinate strings. We write p̃ to denote the set of all such strings,75

and pw when referring to a single determinate string described by p.76

First, we consider the complexity of Cartesian tree matching for indeterminate strings77

defined as follows.78

CVIT 2016

23:2 On Indeterminate Strings Matching

Problem: Cartesian Tree Matching of Indeterminate Strings (CTMIS)
Input: Two indeterminate strings p and t of length n with up to r of uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw Cartesian tree
matches tw?

A naive solution to the CTMIS would be to apply the solution of [28] to each tw ∈ t̃ and79

pw ∈ p̃ in O(n2rn) time. In Section 2 we provide the first polynomial algorithm for this80

problem that works in O(n log2 n) time and O(n logn) space, assuming that r is constant.81

Additionally, in the Word RAM model of computation we further improve the time complexity82

to expected O(n logn log logn).83

I Example 2. Consider the following indeterminate strings:84

p = (2|4|7, 2|5|6, 1|4|8, 4|7|8, 3|10|16)85

t = (2|7|10, 5|20|31, 10|17|25, 0|9|11, 1|8|18).86
87

pw = (7, 2, 8, 4, 16) and tw = (10, 5, 17, 9, 18) define the same Cartesian tree, see Figure 1.88

Therefore, we say that p ∼C t. Note that p and t define other matching or non-matching89

Cartesian trees.90

2

7 4

8 16

5

10 9

17 18

Figure 1 The Cartesian trees of pw = (7, 2, 8, 4, 16) and tw = (10, 5, 17, 9, 18).

Second, we consider the complexity of order-preserving matching for indeterminate strings91

defined as follows.92

Problem: Order-Preserving Matching of Indeterminate Strings (OPMIS)
Input: Two indeterminate strings p and t of length n with up to r uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw order-preserving
matches tw?

Henriques et al. [21] proved that OPMIS is NP-hard for r = 3. As for r = 1 there is a simple93

linear-time algorithm, this left r = 2 as the only open case (CPM version of the paper [21]94

claims a polynomial time algorithm for this case, but this has been clarified in the arXiv95

version [13]). In Section 4 we provide a different reduction that establishes NP-hardness of96

OPMIS already for r = 2, thus fully resolving the complexity of this problem and answering97

an open question explicitly stated by Costa et al. In contrast with the previous work, our98

reduction exploits the order between elements instead of just their equality, and is more99

involved.100

Third, we consider the complexity of parameterized matching for indeterminate strings101

defined as follows.102

P. Gawrychowski, S. Ghazawi and G. M. Landau 23:3

Problem: Parameterized Matching of Indeterminate Strings (PMIS)
Input: Two indeterminate strings p and t of length n with up to r uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw parameterized
matches tw?

NP-hardness proof by Henriques et al. [21] implicitly shows hardness of PMIS for r = 3.103

This, again, leaves r = 2 as the only open case. In Section 5 we provide a reduction that104

establishes NP-hardness of PMIS for r = 2.105

2 CTMIS in O(n3) Time and O(n2) Space106

In this section, we describe a warm-up solution for the CTMIS problem. The input is two107

equal-length indeterminate strings p and t with two uncertain characters per position, and108

the output is whether p ∼C t or not. The solution can be generalized to any constant value109

of r in a straightforward manner. We will assume that both p and t consists of distinct110

values, which can be always ensured by an appropriate perturbation.111

First, note that for each index i, we have p[i] = xi|x′i and t[i] = yi|y′i, hence each i defines112

4 pairs {(xi, yi), (xi, y
′
i), (x′i, yi), (x′i, y′i)} called thresholds. The main idea of the algorithm is113

to determine for each index i and a threshold (xi, yi):114

1. for which indices k we have p[k, i] ∼C t[k, i] with the roots xi and yi, respectively.115

2. for which indices j we have p[i, j] ∼C t[i, j] with the roots xi and yi, respectively.116

Consider an interval [k, i], the reasoning for an interval [i, j] is similar. We have p[k, i] ∼C117

t[k, i] with the roots xi and yi iff there exists an index ` and a threshold (x`, y`) where118

k ≤ ` ≤ i− 1, xi < x` and yi < y` such that p[k, `] ∼C t[k, `] and p[`, i− 1] ∼C t[`, i− 1].119

We process all possible intervals [k, i] and [i, j] in an increasing order of their lengths120

using dynamic programming. For each index i and threshold (xi, yi) we compute the answer121

for all left intervals [k, i − 1] and all right intervals [i + 1, j], see Figure 2. We define two122

types of states and associate a boolean value with each of them as follows:123

Left states Lk,i(xi, yi) = true iff p[k, i] ∼C t[k, i] with the roots xi and yi, respectively.124

Right states Ri,j(xi, yi) = true iff p[i, j] ∼C t[i, j] with the roots xi and yi, respectively.125

Figure 2 An interval [k, j] with the root at index i, defining left and right Cartesian subtrees.

I Example 3. Let p = (4|7, 2|6, 1|8, 3|20, 10|16) and t = (2|10, 20|31, 10|17, 0|11, 8|18). Con-126

sidering index 3 as a possible root for the Cartesian tree in both strings, the thresholds defined127

by index 3 are (x3, y3) ∈ {(1, 10), (8, 10), (1, 17), (8, 17)}. The right states are R3,4(x3, y3) and128

CVIT 2016

23:4 On Indeterminate Strings Matching

R3,5(x3, y3). The left states are L2,3(x3, y3) and L1,3(x3, y3). Some of their corresponding129

boolean values are as follows:130

1. R3,4(1, 10) = true for p[3, 4] = (1, 3) and t[3, 4] = (10, 11).131

2. R3,4(8, 10) = true for p[3, 4] = (8, 20) and t[3, 4] = (10, 11).132

3. L2,3(1, 10) = true for p[2, 3] = (6, 1) and t[2, 3] = (31, 10).133

4. L1,3(1, 10) = true for p[1, 3] = (4, 6, 1) and t[2, 3] = (2, 31, 10).134

From the definition of a Cartesian tree we directly obtain the following proposition135

illustrated in Figure 3.136

I Proposition 4. (a) Ri,j(xi, yi) = true iff ∃` ∈ [i+ 1, j] such that R`,j(x`, y`) = true and137

Li+1,`(x`, y`) = true where x` > xi and y` > yi. (b) Lk,i(xi, yi) = true iff ∃`′ ∈ [k, i− 1]138

such that R`′,i−1(x`′ , y`′) = true and Lk,`′(x`′ , y`′) = true where x`′ > xi and y`′ > yi.139

Figure 3 The Cartesian tree of p[k, j] with i position as the root. The left Cartesian subtree
corresponds for the left state Lk,i(xi, yi). The right Cartesian subtree corresponds for the right state
Ri,j(xi, yi). Note that, t[k, j] matches the tree above with values yi, y` and y`′ .

Recall that we apply dynamic programming in an increasing order of the lengths of140

the intervals. Therefore, the states R`,j(x`, y`) and Li+1,`(x`, y`) from Proposition 4(a) are141

computed before the state Ri,j(xi, yi). Similarly, the states R`′,i−1(x`′ , y`′) and Lk,`′(x`′ , y`′)142

are computed before the state Lk,i(xi, yi). Therefore, for every interval we can simply consider143

all relevant ` and `′, access their corresponding states, and update the answer. Finally, after144

having processed all the intervals, we conclude that p ∼C t iff there exists an index i and a145

threshold (xi, yi) such that L1,i(xi, yi) = true and Ri,n(xi, yi) = true.146

I Example 5. Let p = (4|7, 2|6, 1|8, 3|20, 10|16) and t = (2|10, 20|31, 10|17, 0|11, 8|18) as147

in the previous example above. The states: L1,3(1, 10) = true for p[1, 3] = (4, 6, 1) and148

t[2, 3] = (2, 31, 10), and R3,5(1, 10) = true for p[3, 5] = (1, 3, 16) and t[3, 5] = (10, 11, 18).149

Hence, p ∼C t with the roots 1 and 10 respectively.150

Time complexity. For each state Lk,i(xi, yi) and Ri,j(xi, yi) we consider O(n) relevant151

indices ` and `′, respectively. Each such index is processed in constant time, thus the overall152

time complexity is O(n3). The space complexity is bounded by the number of states processed153

in the dynamic programming, which is O(n2).154

3 CTMIS O(n log2 n) Time and O(n log n) Space155

In this section we present an efficient solution for the CTMIS problem that builds on the156

slower algorithm presented in the previous section.157

The input is two equal-length indeterminate strings p and t with 2 uncertain characters158

per position, and the output is whether p ∼C t, or not. The solution can be generalized to159

P. Gawrychowski, S. Ghazawi and G. M. Landau 23:5

any constant value of r in a straightforward manner. The main idea of the algorithm is to160

find, for index i and a threshold (xi, yi), the largest matching Cartesian trees with the root161

in both trees being xi and yi at position i, respectively. As in the previous algorithm, we162

consider each index i and a threshold (xi, yi) separately. However, now instead of computing163

the answer for all intervals [k, i] and [i, j] we use the following definition.164

I Definition 6. For an index i and a threshold (xi, yi):165

minL(xi, yi) denotes the smallest index such that p[minL(xi, yi), i] ∼C t[minL(xi, yi), i],166

maxR(xi, yi) denotes the largest index such that p[i,maxR(xi, yi)] ∼C t[i,maxR(xi, yi)],167

with the root in both trees being xi and yi at position i, respectively.168

Computing minL(xi, yi) and maxR(xi, yi) fully describes the situation, as the above169

definition together with the definition of a Cartesian tree matching directly imply the170

following:171

p[`, i] ∼C t[`, i] iff minL(xi, yi) ≤ ` ≤ i.172

p[i, r] ∼C t[i, r] iff i ≤ r ≤ maxR(xi, yi).173

We also note that p[minL(xi, yi),maxR(xi, yi)] ∼C t[minL(xi, yi),maxR(xi, yi)] due to a174

Cartesian tree with the root in both trees being xi and yi at position i, respectively. Conse-175

quently, p ∼C t iff there exists an index i and a threshold (xi, yi) such that minL(xi, yi) = 1176

and maxR(xi, yi) = n. Thus, in the remaining part of this section we focus on efficiently177

computing the values of minL and maxR.178

Our algorithm is based on the following observation. Consider an index i and a threshold179

(xi, yi), and assume that minL(xi, yi) and maxR(xi, yi) have been already computed. Then,180

the following holds:181

1. for any index b ∈ [minL(xi, yi)−1,maxR(xi, yi)] and a threshold (xb, yb) such that xb < xi182

and yb < yi, the index maxR(xi, yi) is a potential candidate for maxR(xb, yb).183

2. for any index b ∈ [minL(xi, yi),maxR(xi, yi)+1] and a threshold (xb, yb) such that xb < xi184

and yb < yi, the index minL(xi, yi) is a potential candidate for minL(xb, yb).185

Each index b and a threshold (xb, yb) might be considered for several indices i and thresh-186

olds (xi, yi) in the above statement, hence we might have several potential candidates for187

minL(xb, yb) and maxR(xb, yb). By the definition of a Cartesian tree, one of these potential188

candidates corresponds to the sought minL(xb, yb) and maxR(xb, yb) as defined above.189

The high-level description of the algorithm is as follows. We iterate over all indices i and190

thresholds (xi, yi) in a specific order that will be precisely defined later. For each index i191

and a threshold (xi, yi) we aim to:192

Step 1 Compute efficiently the indices minL(xi, yi) and maxR(xi, yi), where minL(xi, yi)193

equals the minimum among the potential candidates for minL(xi, yi) and maxR(xi, yi)194

equals the maximum among the potential candidates for maxR(xi, yi).195

Step 2 Update for all thresholds (xb, yb) at indices b such that xb < xi and yb < yi196

where minL(xi, yi) ≤ b ≤ maxR(xi, yi) + 1 as a potential candidate minL(xi, yi).197

Additionally, where minL(xi, yi) − 1 ≤ b ≤ maxR(xi, yi) as a potential candidate198

maxR(xi, yi).199

We need to ensure that, for any index i and a threshold (xi, yi), and any index b and a200

threshold (xb, yb) such that xb < xi and yb < yi, minL(xi, yi) and maxR(xi, yi) are already201

CVIT 2016

23:6 On Indeterminate Strings Matching

Figure 4 (a) The Cartesian tree of p[minL(xi, yi), maxR(xi, yi)] with xi as a root. (b) The
Cartesian tree of p[minL(xi, yi), maxR(xi, yi)] with xb as the root after changing x′

b to xb. The
Cartesian trees of t[minL(xi, yi), maxR(xi, yi)] matches the trees above with the values yb and yi.
(c) The given strings p and t with the proper intervals defining the Cartesian trees (a) and (b) above.

computed when we are considering threshold (xb, yb) at index b. This will be guaranteed by202

the algorithm as explained below.203

The algorithm considers all indicies i and thresholds (xi, yi) in the reverse lexicographical204

order, that is, the decreasing order of xi and, if there is a tie, the decreasing order of yi. Before205

we explain how to implement Step 1 and Step 2 efficiently, we define the necessary data206

structures. We maintain a balanced binary search tree Ty on the values of yi, and identify yi207

with its corresponding node of Ty. In each node u of Ty we have its associated secondary208

trees Tmin(u) and Tmax(u). Each Tmin(u) and Tmax(u) stores a collection of intervals [`, r].209

The update adds a new interval [`, r] to the collection. The query in Tmin(u) for i finds210

the smallest ` such that [`, r] containing i belongs to the collection, while the query in211

Tmax(u) finds the largest r. By symmetry, it is enough to explain how to implement Tmin(u).212

We maintain the following invariant: there are no two intervals [`, r] and [`′, r′] such that213

[`, r] ⊆ [`′, r′]. Clearly, such [`, r] is not an answer to any query. Note that this implies that214

if we sort all the remaining intervals [`1, r1], [`2, r2], . . . , [`s, rs] so that `1 < `2 < . . . < `s215

then we also have r1 < r2 < . . . < rs. This gives us a linear order on the intervals, and so we216

can maintain them in any balanced binary search tree. After adding the new interval [`, r] to217

the collection, we can check if it is not contained in any of the already existing intervals, and218

if so find the already existing intervals that should removed, with standard operations on the219

balanced binary search tree.220

Now we explain how to implement Step 1 and Step 2 efficiently using Ty and the221

secondary structures associated with its nodes. Let i and (xi, yi) be the index and the222

threshold we are currently considering. We begin our discussion with Step 2 and therefore223

assume that we already computed minL(xi, yi) and maxR(xi, yi) for this threshold. Note224

that all thresholds (xb, yb) such that xi < xb and yi < yb have been already processed.225

Moreover, all thresholds (xc, yc) such that xi < xc have been already processed and will not226

be considered in the future, so we don’t need to be concerned with updating their answer.227

Hence, in Step 2 we update all thresholds (xb, yb) such that yb < yi, regardless of the value228

of xb. To this end, we consider every ancestor yb of yi such that yb < yi, plus the node yi229

itself, and add the interval [minL(xi, yi),maxR(xi, yi)] to their corresponding Tmin and Tmax.230

To implement Step 1, we consider every ancestor yc of yi such that yc > yi, plus the node231

yi itself, and we query their corresponding Tmin and Tmax. It can readily verified that by the232

P. Gawrychowski, S. Ghazawi and G. M. Landau 23:7

choice of which ancestors are updated, this is enough to implicitly consider every yb > yi, as233

such yb must have updated one of the ancestors yc.234

Time complexity. The time complexity of the algorithm is O(n log2 n). First, we need to235

sort the 4n thresholds in O(n logn) time. Each of these thresholds in processed by considering236

O(logn) nodes of Ty. At each of these nodes u we spend O(logn) amortized time to update237

and query Tmin(u) and Tmax(u). Furthermore, the space complexity is O(n logn), because238

each interval appears in O(logn) secondary structures. Instead of using balanced binary239

search trees with O(logn) query and update time for the secondary structures, we can plug240

in any predecessor structure that stores a collection of s integers from {1, 2, . . . , n} in O(s)241

space with expected O(log logn) query and update time [33].242

4 Order-Preserving Matching of Indeterminate Strings243

Two determinate strings pw[1..n] and tw[1..n] are order-equivalent when, for every i, j ∈244

{1, . . . , n}, pw[i] ≤ pw[j] iff tw[i] ≤ tw[j]. This is denoted by pw ∼≤ tw. Given two245

indeterminate strings p and t of equal-length n with at most 2 uncertain characters per246

position, we want to check if there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼≤ tw. The goal of247

this section is to prove that this is NP-hard by reducing checking satisfiability of a 3-CNF248

formula.249

We start with rephrasing the question in a graph-theoretical language. Let Σp and Σt be250

the sets of characters that occur in p and t, respectively. We consider a complete bipartite251

graph G with Σp corresponding to the nodes on the one side and Σt corresponding to the252

nodes on the other side. We claim that there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼≤ tw253

iff there exists a non-crossing matching M in G, where non-crossing means that we cannot254

have two edges (x, y), (x′, y′) such that x < x′ but y′ < y, such that the following holds for255

every position i = 1, 2, . . . , n:256

p[i] = x and t[i] = y : (x, y) ∈M ,257

p[i] = x1|x2 and t[i] = y : (x1, y) ∈M or (x2, y) ∈M258

p[i] = x and t[i] = y1|y2 : (x, y1) ∈M or (x, y2) ∈M ,259

p[i] = x1|x2 and t[i] = y1|y2 : (x1, y1) ∈ M or (x1, y2) ∈ M or (x2, y1) ∈ M or260

(x2, y2) ∈M .261

The proof is straightforward.262

We consider a 3-CNF formula φ on n variables 1, 2, . . . , n and m clauses. We reduce263

checking satisfiability of φ to finding a non-crossing matching M in a complete bipartite264

undirected graph G that respects a number of constraints of the form M ∩X × Y 6= ∅, for265

|X|, |Y | ≤ 2, or X × Y for short. As long as the size of G and the number of constraints is266

polynomial, this will establish NP-hardness of our problem, as we can create two strings p267

and t and encode each constraint by setting up some p[i] and t[i] appropriately.268

We start with creating nodes 1, 2, . . . , n on the left side and 1, 2, 3, 4, . . . , 2n on the right269

side of G. We add a constraint {i}×{2i−1, 2i}, for every i = 1, 2, . . . , n. We add a constraint270

{2n+ 1}×{2n+ 1}. For every k = 1, 2, . . . ,m, we consider the k-th clause (`k,1 ∨ `k,2 ∨ `k,3),271

where `k,1, `k,2, `k,3 are literals. Let s = 2n+ 2 + 5(k − 1). We add the following constraints:272

{s} × {s, s + 1}, {s + 2, s + 3} × {s + 3}, {s, s + 2} × {s + 1, s + 3}. This is illustrated in273

Figure 5. Then we add a constraint for every literal:274

1. If `k,1 = x then we add {x, s}×{2x, s}, and if `k,1 = ¬x then we add {x, s}×{2x− 1, s}.275

CVIT 2016

23:8 On Indeterminate Strings Matching

2. If `k,2 = y then we add {y, s+ 1}× {2y, s+ 2}, and if `k,2 = ¬y then we add {x, s+ 1}×276

{2y − 1, s+ 2}.277

3. If `k,3 = z then we add {z, s+ 3} × {2z, s+ 3}, and if `k,3 = ¬z then we add {z, s+ 3} ×278

{2z − 1, s+ 3}.279

Due to the constraint {2n+ 1}×{2n+ 1}, a variable constraint {v, a}×{2v− 1, b} translates280

into (v, 2v − 1) ∈M or (a, b) ∈M . Similarly, {v, a} × {2v, b} translates into (v, 2v) ∈M or281

(a, b) ∈M .282

We need to prove that φ is satisfiable iff there exists a non-crossing matching M in G283

that respects all the constraints.284

First, assume that φ is satisfiable and fix a satisfying valuation of all the variables. We285

obtain M by first adding (v, 2v − 1) or (v, 2v) to M depending on whether v is set to false286

or true, respectively. We also add (2n+ 1, 2n+ 1) to M . Then, we proceed as follows for287

the k-th clause. For concreteness assume that the clause is (x ∨ y ∨ z), the argument is288

symmetric for the other cases. If x is set to false then we add (s, s) to M . If y is set to false289

then we add (s+ 1, s+ 2) to M . Finally, if z is set to false then we add (s+ 3, s+ 3) to M .290

Because at least one of x, y, z is set to true, at least one of these three edges is not in M . If291

(s+ 1, s+ 2) /∈M then we add (s+ 2, s+ 1) to M . If (s, s) /∈M then we add (s, s+ 1) to M .292

Finally, if (s+ 3, s+ 3) /∈M then we add (s+ 2, s+ 3) to M . In all cases, the constraints293

corresponding to the k-clause are fulfilled. Due to how we compose the gadgets, M being294

a non-crossing matching in every gadget implies that M is a non-crossing matching in the295

whole G.296

Second, assume that we have a non-crossing matching M in G. For every v = 1, 2, . . . , n,297

M contains exactly one of the edges (v, 2v − 1), (v, 2v). We set v to false if (v, 2v − 1) ∈M298

and to true if (v, 2v) ∈M . We must have (2n+ 1, 2n+ 1) ∈M . We need to verify that every299

clause is satisfied by the obtain valuation of the variables. Again, for concreteness assume300

that the clause is (x ∨ y ∨ z). We cannot have all edges (s, s), (s+ 1, s+ 2), (s+ 3, s+ 3) in301

M , as in such case the constraint {s, s+ 2} × {s+ 1, s+ 3} cannot be fulfilled. If (s, s) /∈M302

then due to the constraint {x, s} × {2x, s} we must have (x, 2x) ∈ M , so x is set to true.303

If (s + 1, s + 2) /∈ M then due to the constraint {y, s + 1} × {2y, s + 2} we must have304

(y, 2y) ∈ M , so y is set to true. Finally, if (s + 3, s + 3) /∈ M then due to the constraint305

{z, s+ 3} × {2z, s+ 3} we must have (z, 2z) ∈M , so y is set to true. So, one of the variable306

x, y, z is set to true, making the clause satisfied.307

x y z

2x− 1 2x 2y − 1 2y 2z − 1 2z

2n+ 1

2n+ 1

s s+ 1 s+ 2 s+ 3

s s+ 1 s+ 2 s+ 3

Figure 5 Gadget created for the k-th clause concerning variables x, y, z.

5 Parameterized Matching of Indeterminate Strings308

Two determinate strings pw[1..n] and tw[1..n] are parameterized-equivalent when, for every309

i, j ∈ {1, . . . , n}, pw[i] = pw[j] iff tw[i] = tw[j]. This is denoted by pw ∼= tw. Given two310

indeterminate strings p and t of equal-length n with at most 2 uncertain characters per311

position, we want to check if there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼= tw. The goal of312

P. Gawrychowski, S. Ghazawi and G. M. Landau 23:9

this section is to prove that this is NP-hard by reducing checking if a given undirected graph313

has a vertex cover consisting of at most k vertices.314

As in the previous section, we start with rephrasing the question in a graph-theoretical315

language. Let Σp and Σt be the sets of characters that occur in p and t, respectively. We316

consider a complete bipartite graph G with Σp corresponding to the nodes on the one side317

and Σt corresponding to the nodes on the other side. We claim that there exist pw ∈ p̃ and318

tw ∈ t̃ such that pw ∼= tw iff there exists a matching M in G, such that the following holds319

for every position i = 1, 2, . . . , n:320

p[i] = x and t[i] = y : (x, y) ∈M ,321

p[i] = x1|x2 and t[i] = y : (x1, y) ∈M or (x2, y) ∈M322

p[i] = x and t[i] = y1|y2 : (x, y1) ∈M or (x, y2) ∈M ,323

p[i] = x1|x2 and t[i] = y1|y2 : (x1, y1) ∈ M or (x1, y2) ∈ M or (x2, y1) ∈ M or324

(x2, y2) ∈M .325

The proof is straightforward.326

We consider an undirected graph H on n vertices V = {1, 2, . . . , n} and m edges E327

together with a parameter k ≤ n. We reduce checking if there is a subset S of k vertices of328

H such that for every edge (u, v) ∈ E we have u ∈ S or v ∈ S to finding a matching M in a329

complete bipartite graph G that respects a number of constraints of the form M ∩X×Y 6= ∅,330

for |X|, |Y | ≤ 2, or X × Y for short. As long as the size of G and the number of constraints331

is polynomial, this will establish NP-hardness of our problem, as we can create two strings p332

and t and encode each constraint by setting up some p[i] and t[i] appropriately.333

We start with creating nodes 1, 2, . . . , n on the left side and 1, 2, . . . , n on the right side334

of G. We add a constraint {u, v} × {u, v} for every (u, v) ∈ E. For every i = 1, 2, . . . , n,335

(i, j) ∈ M for some j ∈ {1, 2, . . . , n} corresponds to including i in the sought vertex cover.336

The remaining part of H is constructed as to guarantee that there are at least k nodes337

i ∈ {1, 2, . . . , n} such that (i, j) ∈ M for some j 6= {1, 2, . . . , n}. To this end, we design a338

gadget G2s with the following property:339

1. there are distinguished 2s nodes v1, v2, . . . , v2s on the left side, each vi is incident to a340

unique edge ei,341

2. there are also some additional internal nodes on the left and on the right and some342

constraints that concern both the internal and the distinguished nodes,343

3. if none of the edges ei belongs to M then it is not possible to satisfy the constraints of344

G2s,345

4. for any nonempty subset S of distinguished nodes, it is possible to select some of the346

edges with both endpoints being internal nodes in such a way that, together with the347

edges ei for i ∈ S, they satisfy all constraints of G2s.348

We will first show that G4 exists, and then explain how to obtain G2(s+1) from G2s.349

I Lemma 7. G4 with the sought properties exists.350

Proof. G4 consists of nodes v1, v2, v3, v4 and internal nodes v′1, v′2, v′3, v′4 and x, y, z. We351

set ei = (vi, v
′
i) for i = 1, 2, 3, 4 and create the following constraints: {v1, x} × {v′1, y},352

{v2, x} × {v′2, y}, {v3, z} × {v′3, y}, {v4, z} × {v′4, y} and {y} × {x, z}. See Figure 6.353

Assume that none of the edges ei belongs to M . By symmetry, we can assume that354

(x, y) ∈M . But then we must have (v′3, z), (v′4, z) ∈M , which is impossible.355

Let S be a nonempty set of distinguished nodes. By symmetry, we can assume that356

v1 ∈ S. Then, we include (y, z) ∈M and if e2 /∈ S we also include (v′2, x) ∈M . J357

CVIT 2016

23:10 On Indeterminate Strings Matching

v1 v2

v3 v4

e1 e2

e3 e4

v′1

v′3 v′4

v′2

x

y

z

v1

v3 v4

e1

e3 e4

v2

v5 v6

e2

e5 e6

Figure 6 Gadgets G4 (left) and G8 (right).

I Lemma 8. G2(s+1) with the sought properties can be obtained in polynomial time from358

G2s with the sought properties.359

Proof. We take a copy of G2s, let its distinguished nodes and their corresponding edges360

be v1, v2, . . . , v2s and e1, e2, . . . , e2s. We also take a copy of G4, let its distinguished nodes361

and their corresponding edges be u1, u2, u3, u4 and f1, f2, f3, f4. To obtain G2(s+1) we362

identify v2s with u1 and add a constraint that enforces including e2s or f1. in M . The363

distinguished nodes and their corresponding edges of G2(s+1) are v1, v2, . . . , v2s−1, u2, u3, u4364

and e1, e2, . . . , e2s−1, f2, f3, f4.365

Assume that none of the edges e1, e2, . . . , e2s−1, f2, f3, f4 belongs to M . Either e2s /∈M366

and we obtain that none of the edges e1, e2, . . . , e2s belongs to M , or f1 /∈M and none of the367

edges f1, f2, f3, f4 belongs to M . In either case we obtain a contradiction by the construction368

of G2s or G4.369

Let S be a nonempty set of distinguished nodes and assume that v1 ∈ S (other cases are370

essentially the same). We set S′ = S ∩ {v1, v2, . . . , v2s−1} and S′′ = (S ∩ {u2, u3, u4})∪ {u1}.371

Then S′, S′′ 6= ∅, and by assumption we can select some of the edges with both endpoints372

being internal nodes of G2s or G4 in such a way that, together with the edges ei for i ∈ S′373

and fj for j ∈ S′′, they satisfy all constraints of G2s and G4. Additionally, the constraint374

that enforces including e2s or f1 is satisfied by taking f1. So, by selecting the edges with375

both endpoints being internal nodes of G2s or G4 together with f1 we obtain a set of edges376

with both endpoints being internal nodes of G2(s+1) that, together with the edges associated377

with the nodes in S, satisfy all constraints of G2(s+1) as required. J378

With the gadget G2s in hand, we are ready to complete the reduction. By duplicating379

the graph H we can assume that n = 2s. We add n− k copies of the gadget G2s to G. Let380

v1, v2, . . . , v2s be the distinguished nodes of one such copy. We identify vi with the node i381

on the left side of G. This guarantees that for each gadget we must have a unique node i382

such that (i, 1), (i, 2), . . . , (i, n) /∈M . We claim that the resulting graph G has a matching383

that satisfies all the constrains if and only if H admits a vertex cover of cardinality at most384

k. In one direction, consider the set C consisting of all nodes i ∈ {1, 2, . . . , n} such that385

(i, 1), (i, 2), . . . , (i, n) /∈M . By the properties of G2s, |C| ≤ k. We need to argue that C is a386

vertex cover. Consider any (u, v) ∈ E. Due to the constraint {u, v}×{u, v}, one of the edges387

(u, u), (u, v), (v, u), (v, v) must belong to M . But then either u or v cannot be matched to388

any node not belonging to {1, 2, . . . , n}, so u ∈ C or v ∈ C as required. In other direction,389

let C be a vertex cover of H of cardinality at most k. For every i ∈ C, we include the edge390

(i, i) in M . This clearly satisfies every constraint {u, v} × {u, v} by C being a vertex cover.391

P. Gawrychowski, S. Ghazawi and G. M. Landau 23:11

Then, for every copy of G2s we choose a unique node i /∈ C (that is not matched to any other392

node yet) and use the properties of G2s to add its internal edges to M in such a way that,393

together with the edge associated to i, they satisfy all the constraints.394

References395

1 A. Alatabbi, A. S. S. Islam, M. S. Rahman, J. Simpson, and W. F. Smyth. Enhanced covers396

of regular & indeterminate strings using prefix tables, 2015. arXiv:1506.06793.397

2 A. Amir, Y. Aumann, G. M. Landaud, M. Lewenstein, and N. Lewenstein. Pattern matching398

with swaps. Journal of Algorithms, 37(2):247–266, 2000.399

3 A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching.400

Inf. Proc. Lett, 49(3):111–115, 1994.401

4 Lewenstein M. Apostolico A., Erdös Péter L. Parameterized matching with mismatches. J.402

Discrete Algorithms, 5(1):135–140, 2007.403

5 B. Baker. A theory of parameterized pattern matching: algorithms and applications. STOC,404

pages 71–80, 1993.405

6 B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of406

Computer and System Sciences, 52(1):28–42, 1996.407

7 M. Bataa, S. G. Park, A. Amir, G. M. Landau, and K. Park. Finding periods in cartesian tree408

matching. Colbourn C., Grossi R., Pisanti N. (eds) Combinatorial Algorithms. IWOCA2019,409

11638:70–84, 2019.410

8 G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone. Even faster elastic-411

degenerate string matching via fast matrix multiplication, 2019. arXiv:1905.02298.412

9 P. Bille, I. Gørtz, H. Vildhøj, and D. Wind. String matching with variable length gaps.413

Theoretical Computer Science, 443:385–394, 10 2010.414

10 P. Burcsi, F. Cicalese, G. Fici, and Z. Liptak. Algorithms for jumbled pattern matching in415

strings. International Journal of Foundations of Computer Science, 23(02):357–374, 2012.416

11 S. Choa, J. C. Na, K. Park, and J. S. Sima. A fast algorithm for order-preserving pattern417

matching. Information Processing Letters, 115:397–402, 2015.418

12 M. Christodoulakis, P.J. Ryan, W.F. Smyth, and S. Wang. Indeterminate strings, prefix arrays419

& undirected graphs. Theoretical Computer Science, 600:34–48, 2015.420

13 D. Costa, L. M. S. Russo, R. Henriques, H. Bannai, and A. P. Francisco. Order-preserving421

pattern matching indeterminate strings. 2019. arXiv:1905.02589.422

14 M. Crochemore, C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń.423

Covering problems for partial words and for indeterminate strings, 2014. arXiv:1412.3696.424

15 J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, L. Mouchard,425

É. Prieur-Gaston, and B. Watson. Efficient pattern matching in degenerate strings with the426

burrows-wheeler transform, 2017. arXiv:1708.01130.427

16 P. Gawrychowski and P. Uznański. Order-preserving pattern matching with k mismatches.428

Theoretical Computer Science, 638:136–144, 2016. doi:10.1016/j.tcs.2015.08.022.429

17 G. Gourdel, T. Kociumaka, J. Radoszewski, W. Rytter, A. Shur, and T. Waleń. String periods430

in the order-preserving model. 96(38):1–16, 2018.431

18 G. Gu, S. Song, S. Faro, T. Lecroq, and K. Park. Fast multiple pattern cartesian tree matching.432

WALCOM2020, 2019.433

19 C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. ACM434

Transactions on Algorithms (TALG), 3(3):29–44, 2007.435

20 J. Helling, P. Ryan, W.F. Smyth, and M. Soltys. Constructing an indeterminate string from436

its associated graph. Theoretical Computer Science, 710, 03 2017. doi:10.1016/j.tcs.2017.437

02.016.438

21 Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai. Order-preserving439

pattern matching indeterminate strings. In CPM, volume 105 of LIPIcs, pages 2:1–2:15. Schloss440

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.441

CVIT 2016

http://arxiv.org/abs/1506.06793
http://arxiv.org/abs/1905.02298
http://arxiv.org/abs/1905.02589
http://arxiv.org/abs/1412.3696
http://arxiv.org/abs/1708.01130
http://dx.doi.org/10.1016/j.tcs.2015.08.022
http://dx.doi.org/10.1016/j.tcs.2017.02.016
http://dx.doi.org/10.1016/j.tcs.2017.02.016
http://dx.doi.org/10.1016/j.tcs.2017.02.016

23:12 On Indeterminate Strings Matching

22 J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate strings. Discrete442

Algorithms, 6(1):37–50, 2008.443

23 J. Holub and W.F. Smyth. Algorithms on indeterminate strings. in: M. Miller, K. Park444

(Eds.), Proc. 14th Australasian Workshop on Combinatorial Algorithms, pages 36 – 45, 2003.445

24 C. Iliopoulos, R. Kundu, and S. Pissis. Efficient pattern matching in elastic-degenerate strings,446

2016. arXiv:1610.08111.447

25 J. Kima, P. Eades, R.Fleischer, S. H. Hong, C. S. Iliopoulose, K. Park, S. J. Puglisig, and448

T. Tokuyamah. Order-preserving matching. Theoretical Computer Science, 525:68–79, 2014.449

26 M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, and T. Waleńca. A linear time450

algorithm for consecutive permutation pattern matching. Information Processing Letters,451

113(12):430–433, 2013. doi:10.1016/j.ipl.2013.03.015.452

27 R. McIntyre and M. Soltys. An exact upper bound on the size of minimal clique covers, 2017.453

arXiv:1705.06326.454

28 S. Park, A. Amir, G. M. Landau, and K. Park. Cartesian tree matching and indexing. CPM,455

128, 2019.456

29 M. S. Rahman and C. S. Iliopoulos. Pattern matching algorithms with don’t cares. 2007.457

30 S. Song, C. Ryu, S. Faro, T. Lecroq, and K. Park. Fast cartesian tree matching. SPIRE, 2019.458

31 J. Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–239,459

1980.460

32 R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM,461

21(1):168–173, 1974.462

33 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inf.463

Process. Lett., 17(2):81–84, 1983.464

34 B. Zeidman. Software v. software. IEEE Spectrum, 47:32–53, 2010.465

http://arxiv.org/abs/1610.08111
http://dx.doi.org/10.1016/j.ipl.2013.03.015
http://arxiv.org/abs/1705.06326

	Introduction
	CTMIS in O(n3) Time and O(n2) Space
	CTMIS O(nlog2 n) Time and O(nlogn) Space
	Order-Preserving Matching of Indeterminate Strings
	Parameterized Matching of Indeterminate Strings

