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Abstract
Considering matrices with missing entries, we study NP-hard matrix completion problems where the
resulting completed matrix shall have limited (local) radius. In the pure radius version, this means
that the goal is to fill in the entries such that there exists a ‘center string’ which has Hamming
distance to all matrix rows as small as possible. In stringology, this problem is also known as
Closest String with Wildcards. In the local radius version, the requested center string must be
one of the rows of the completed matrix.

Hermelin and Rozenberg [CPM 2014, TCS 2016] performed parameterized complexity studies for
Closest String with Wildcards. We answer one of their open questions, fix a bug concerning
a fixed-parameter tractability result in their work, and improve some upper running time bounds.
For the local radius case, we reveal a computational complexity dichotomy. In general, our results
indicate that, although being NP-hard as well, this variant often allows for faster (fixed-parameter)
algorithms.
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1 Introduction

In many applications data can only be partially measured, which leads to incomplete data
records with missing entries. A common problem in data mining, machine learning, and
computational biology is to infer these missing entries. In this context, matrix completion
problems play a central role. Here the goal is to fill in the unknown entries of an incomplete
data matrix such that certain measures regarding the completed matrix are optimized.
Ganian et al. [9] recently studied parameterized algorithms for two variants of matrix
completion problems; their goal was to either minimize the rank or to minimize the number
of distinct rows in the completed matrix. In this work, we focus our study on another
variant, namely, minimizing the ‘radius’ of the completed matrix. Indeed, this is closely
related to the topic of consensus (string) problems, which received a lot of attention in
stringology and particularly with respect to parameterized complexity studies [3]. Indeed,
radius minimization for incomplete matrices is known in the stringology community under
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Figure 1 An example of MinRMC and MinLRMC. The incomplete input matrix is depicted
in the left (a ∗ denotes a missing entry). Optimal solutions for MinRMC (d = 2) and MinLRMC
(d = 3) are shown in the middle and right. Entries differing from the solution vector are marked
gray.

the name Closest String with Wildcards [12], a generalization of the frequently studied
Closest String problem. Herein, an incomplete matrix shall be completed such that there
exists a vector that is not too far from each row vector of the completed matrix in terms of
the Hamming distance (that is, the completed matrix has small radius). We consider this
radius minimization problem and also a local variant where all row vectors of the completed
matrix must be close to a row vector in the matrix.

Given the close relation to Closest String, which is NP-hard already for binary
strings [8], all problems we study in this work are NP-hard in general. However, we provide
several positive algorithmic results, namely fixed-parameter tractability with respect to
natural parameters or even polynomial-time solvability for special cases. Formally, we study
the following problems (see Figure 1 for illustrative examples):

Minimum Radius Matrix Completion (MinRMC)
Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d ∈ N.
Question: Is there a ‘completion’ T ∈ Σn×` of S such that δ(v,T) ≤ d for some vector

v ∈ Σ`?

Minimum Local Radius Matrix Completion (MinLRMC)
Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d ∈ N.
Question: Is there a ‘completion’ T ∈ Σn×` of S such that δ(v,T) ≤ d for some vector

v ∈ T?

Here, missing entries are denoted by ∗ and δ denotes the Hamming distance. In fact, our
results for MinRMC also hold for the following more general problem:

Constraint Radius Matrix Completion (ConRMC)
Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Question: Is there a row vector v ∈ Σ` such that δ(v,S[i]) ≤ di for each i ∈ [n]?

Related work.

Our most important reference point is the work of Hermelin and Rozenberg [12] who
analyzed the parameterized complexity of MinRMC (under the name Closest String
with Wildcards) with respect to several problem-specific parameters (also see Table 1). In
particular, they provided fixed-parameter tractability results for the parameters number n
of rows, number ` of columns, and radius d combined with maximum number k of missing
entries per row. However, we will show that their fixed-parameter tractability result for the
combined parameter k + d is flawed. Moreover, they showed a computational complexity
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Table 1 Overview of known results and our new results for MinRMC and MinLRMC. Notation:
n—number of rows, `—number of columns, |Σ|—alphabet size, d—distance bound, k—maximum
number of missing entries in any row vector. Note that all our results for MinRMC also hold for
ConRMC.

Parameter MinRMC Reference MinLRMC Reference

n O∗(22O(n log n)
) [12] O∗(2O(n2 log n)) Corollary 3

O∗(2O(n2 log n)) [13]

` O∗(2`2/2) [12] O∗(``) Corollary 7
O∗(``) Corollary 6

d = 1 O(n`2) for |Σ| = 2 [12] O(n2`) Corollary 2
O(n`) Theorem 1

d = 2 NP-hard for |Σ| = 2 [12] NP-hard for |Σ| = 2 [12]

k NP-hard for k = 0 [8] O∗(kk) Corollary 7
d+ k O∗((d+ 1)d+k) Theorem 9
d+ k + |Σ| O∗(|Σ|k · dd) [12] O∗(|Σ|k) trivial

O∗(24d+k · |Σ|d+k) Theorem 12

dichotomy for binary inputs between radius 1 (polynomial time) and radius 2 (NP-hard) (see
Table 1 for a complete overview).

As mentioned before, Ganian et al. [9] started research on the parameterized complexity
of two related matrix completion problems (minimizing rank and minimizing number of
distinct rows). Very recently, Eiben et al. [7] studied generalizations of our problems
by demanding that the completed matrix is clustered into several submatrices of small
(local) radius—basically, our work studies the case of a single cluster. They proved fixed-
parameter tractability (problem kernels of superexponential size) with respect to the combined
parameter (c, d, r). Here, c is the number of clusters and r is the minimum number of rows
and columns covering all missing entries. They also proved that dropping any of c, d, or r
results in parameterized intractability even for binary alphabet. Amir et al. [1] showed that
the clustering version of MinLRMC on complete matrices with unbounded alphabet size is
NP-hard when restricted to only two columns. Note that fixed-parameter tractability for the
clustering variant implies fixed-parameter tractability for MinRMC and MinLRMC with
respect to d+ r. Indeed, to reach for (more) practical algorithms, we consider an alternative
parameterization by the maximum number k of missing entries in any row vector (which can
be much smaller than r).

Our contributions.

We survey our and previous results in Table 1. Notably, all of our results for MinRMC
indeed also hold for the more general ConRMC when setting d := max{d1, d2, . . . , dn}.

Let us highlight a few of our new results in comparison with previous work. For MinRMC,
we give a linear-time algorithm for the case radius d = 1 and arbitrary alphabet. This answers
an open question of Hermelin and Rozenberg [12]. We also show fixed-parameter tractability
with respect to the combined parameter d+ k, which was already claimed by Hermelin and
Rozenberg [12] but was flawed, as we will point out by providing a counter-example to their
algorithm. Lastly, inspired by known results for Closest String, we give a more efficient
algorithm for small alphabet size.
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As regards MinLRMC, we show that it can be solved in polynomial time when d = 1.
This yields a computational complexity dichotomy since MinLRMC is NP-hard for d = 2.
Moreover, we show that MinLRMC is fixed-parameter tractable with respect to the maximum
number k of missing entries per row. Remarkably, this stands in sharp contrast to MinRMC,
which is NP-hard even for k = 0.

2 Preliminaries

For m ≤ n ∈ N, let [m,n] := {m, . . . , n} and [n] := [1, n].
Let T ∈ Σn×` be an (n× `)-matrix over a finite alphabet Σ. Let i ∈ [n] and j ∈ [`]. We

use T[i, j] to denote the character in the i-th row and j-th column of T. We use T[i, :] (or
T[i] in short) to denote the row vector (T[i, 1], . . . ,T[i, `]) and T[:, j] to denote the column
vector (T[1, j], . . . ,T[n, j])T . For any subsets I ⊆ [n] and J ⊆ [`], we write T[I, J ] to denote
the submatrix obtained by omitting rows in [n] \ I and columns in [`] \ J from T. We
abbreviate T[I, [`]] and T[[n], J ] as T[I, :] (or T[I] for short) and T[:, J ], respectively. We
use the special character ∗ for a missing entry. A matrix S ∈ (Σ ∪ {∗})n×` that contains a
missing entry is called incomplete. We say that T ∈ Σn×` is a completion of S ∈ (Σ∪{∗})n×`
if either S[i, j] = ∗ or S[i, j] = T[i, j] holds for all i ∈ [n] and j ∈ [`].

Let v, v′ ∈ (Σ ∪ {∗})` be row vectors and let σ ∈ Σ ∪ {∗}. We write Pσ(v) to denote the
set {j ∈ [`] | v[j] = σ} of column indices where the corresponding entries of v are σ. We
write Q(v, v′) to denote the set {j ∈ [`] | v[j] 6= v′[j] ∧ v[j] 6= ∗ ∧ v′[j] 6= ∗} of column indices
where v and v′ disagree (not considering positions with missing entries). The Hamming
distance between v and v′ is δ(v, v′) := |Q(v, v′)|. For S ∈ (Σ ∪ {∗})n×` and v ∈ (Σ ∪ {∗})`,
let δ(v,S) := maxi∈[n] δ(v,S[i]). The binary operation v ⊕ v′ replaces the missing entries
of v with the character in v′ in the corresponding position, given that v′ contains no missing
entry. We sometimes use string notation σ1σ2σ3 to represent the row vector (σ1, σ2, σ3).

Parameterized Complexity.

We sometimes use the O∗-notation which suppresses polynomial factors in the input size. A
parameterized problem Π is a set of instances (I, k) ∈ Σ∗×N, where k is called the parameter
of the instance. A parameterized problem is fixed-parameter tractable if (I, k) ∈ Π can be
determined in f(k) · |I|O(1) time for an arbitrary computable function f . An algorithm with
such a running time is called a fixed-parameter algorithm.

3 Linear-time algorithm for radius d = 1

Hermelin and Rozenberg [12, Theorem 6] gave a reduction from MinRMC to 2-SAT for the
case |Σ| = 2 and d = 1, resulting in an O(n`2)-time algorithm. We provide a more efficient
reduction to 2-SAT, exploiting the compact encoding C≤1 of the “at-most-one” constraint
by Sinz [17]. Let L = {l1, . . . , lm} be a set of m literals. The encoding uses m− 1 additional
variables r1, . . . , rm−1 and it is defined as follows:

C≤1(L) = (¬l1 ∨ r1) ∧ (¬lm ∨ ¬rm−1)

∧
∧

2≤j≤m−1
((¬lj ∨ ¬rj−1) ∧ (¬lj ∨ rj) ∧ (¬rj−1 ∨ rj)) .

Note that if lj is true for some j ∈ [m], then rj , . . . , rm−1 are all true and r1, . . . , rj−1 are
all false. Hence, at most one literal in L can be true.



T. Koana, V. Froese, and R. Niedermeier 5

Actually, our algorithm solves ConRMC, the generalization of MinRMC where the
distance bound can be specified for each row vector individually.

I Theorem 1. If maxi∈[n] di = 1, then ConRMC can be solved in O(n`) time.

Proof. We reduce ConRMC to 2-SAT. Let Id := {i ∈ [n] | di = d} be the row indices for
which the distance bound is d for d ∈ {0, 1}. We define a variable xj,σ for each j ∈ [`] and
σ ∈ Σ. The intuition behind our reduction is that the j-th entry of the solution vector v
becomes σ when xj,σ is true. We give the construction of a 2-CNF formula φ in three parts
φ1, φ2, φ3 (that is, φ = φ1 ∧ φ2 ∧ φ3).

Let Xj = {xj,σ | σ ∈ Σ} for each j ∈ [`]. The first subformula will ensure that at most
one character is assigned to each entry of the solution vector v:

φ1 =
∧
j∈[`]

C≤1(Xj).

Subformula φ2 handles distance-0 constraints:

φ2 =
∧
i∈I0

∧
j∈[`]

S[i,j] 6=∗

(xj,S[i,j]).

Finally, subformula φ3 guarantees that the solution vector v deviates from each row vector
of S[I1] in at most one position.

φ3 =
∧
i∈I1

C≤1({¬xj,S[i,j] | j ∈ [`],S[i, j] 6= ∗}).

Note that our construction uses O(|Σ| · `) variables and O((n+ |Σ|) · `) = O(n`) clauses. We
prove the correctness of the reduction.

(⇒) Suppose that there exists a vector v ∈ Σ` such that δ(v,S[i]) ≤ di holds for each
i ∈ [n]. For each j ∈ [`] and σ ∈ Σ, we set xj,σ to true if v[j] = σ, and false otherwise. It is
easy to see that this truth assignment satisfies φ.

(⇐) Suppose that there exists a satisfying truth assignment ϕ. Let J∗ denote the column
indices j ∈ [`] such that ϕ(xj,σ) = 0 for all σ ∈ Σ. Note that at most one variable in Xj is
set to true in ϕ for each j ∈ [`]. It follows that, for each j ∈ [`] \ J∗, there exists exactly one
character σj ∈ Σ satisfying ϕ(xj,σj

) = 1 and we assign v[j] = σj . For each j ∈ J∗, we set
v[j] = σ∗ for some arbitrary character σ∗ ∈ Σ. The formula φ2 ensures that δ(v,S[i]) = 0
holds for each i ∈ I0. Moreover, φ3 ensures that there is at most one column index j ∈ [`]
such that S[i, j] 6= ∗ and S[i, j] 6= v[j] for each i ∈ I1. J

Note that MinRMC (and thus ConRMC) is NP-hard for |Σ| = 2 and d = 2 [12]. Thus,
our result implies a complete complexity dichotomy regarding d. We remark that this
dichotomy also holds for MinLRMC since there is a simple reduction from MinLRMC to
ConRMC. To solve an instance (S, d) of MinLRMC, we solve n instances of ConRMC: For
each i ∈ [n], we solve the instance (S, d1, . . . , dn) where di′ = d for each i′ ∈ [n] \ {i} and
di = 0. Clearly, (S, d) is a Yes-instance if and only if at least one ConRMC-instance is a
Yes-instance. This yields the following.

I Corollary 2. MinLRMC can be solved in O(n2`) time when d = 1.

Since ConRMC is solvable in O∗(2O(n2 logn)) time [13], we also obtain the following
result, where the running time bound only depends on the number n of rows.
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Algorithm 1 Improved algorithm for ConRMC (based on Hermelin and Rozenberg [12])

Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,S[i]) ≤ di for all i ∈ [n].
1: if di < 0 for some i ∈ [n] then return No.
2: if `− |P∗(S[i])| ≤ di for all i ∈ [n] then return Yes.

. |P∗(S[i])| is the number of missing entries in S[i]
3: Choose any i ∈ [n] such that `− |P∗(S[i])| > di.
4: Choose any R ⊆ [`] \ P∗(S[i]) with |R| = di + 1.
5: for all j ∈ R do
6: Let S′ = S[:, [`] \ {j}] and d′i′ = di − δ(S[i, j],S[i′, j]) for each i′ ∈ [n].
7: if recursion on (S′, d′1, . . . , d′n) returns Yes then return Yes.
8: return No.

I Corollary 3. MinLRMC can be solved in O∗(2O(n2 logn)) time.

Finally, we remark that ConRMC can be solved in linear time for binary alphabet
Σ = {0, 1} if di ≥ `−1 for all i ∈ [n] (the problem remains NP-hard in the case of unbounded
alphabet size [14] even if di ≥ `− 1 for all i ∈ [n]): First, we remove each row vector with
distance bound `. We also remove every row vector with at least one missing entry since it
has distance at most `− 1 from any vector of length `. We then remove every duplicate row
vector. This can be achieved in linear time: We sort the row vectors lexicographically using
radix sort and we compare each row vector to the adjacent row vectors in the sorted order.
We return Yes if and only if there are at most 2` − 1 row vectors, because each distinct row
vector u ∈ {0, 1}` excludes exactly one row vector u ∈ {0, 1}` where u[j] = 1− u[j] for each
j ∈ [`]. Summarizing, we arrive at the following.

I Proposition 4. If Σ = {0, 1} and di ≥ `− 1 for all i ∈ [n], then ConRMC can be solved
in linear time.

4 Parameter number ` of columns

Hermelin and Rozenberg [12, Theorem 3] showed that one can solve MinRMC in O(2`2/2 ·n`)
time using a search tree algorithm. We use a more refined recursive step to obtain a better
running time (see Algorithm 1). In particular we employ a trick used by Gramm et al. [11]
in order to reduce the search space to d + 1 subcases. Note that for nontrivial instances
clearly d < `.

I Theorem 5. For d := maxi∈[n] di, ConRMC can be solved in O((d+ 1)` · n`) time.

Proof. We prove that Algorithm 1 is correct by induction on `. More specifically, we show
that it returns Yes if there exists a vector v ∈ Σ` that satisfies δ(S[i], v) ≤ di for all i ∈ [n].
It is easy to see that the algorithm is correct for the base case ` = 0, because it returns
Yes if di is nonnegative for all i ∈ [n] and No otherwise (Lines 1 and 2). Consider the
case ` > 0. The terminating conditions in Lines 1 and 2 are clearly correct. We show that
branching on R is correct in Lines 4 and 5. If v[j] 6= S[i, j] holds for all j ∈ R, then we have
a contradiction δ(v,S[i]) ≥ |R| > di. Thus the branching on R leads to a correct output.
Now the induction hypothesis ensures that the recursion on S[:, [`] \ {j}] (notice that it has
exactly one column less) returns a desired output. This concludes that our algorithm is
correct.
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As regards the time complexity, note that each node in the search tree has at most d+ 1
children. Moreover, the depth of the search tree is at most ` because the number of columns
decreases for each recursion. Since each recursion step only requires linear (that is, O(n`))
time, the overall running time is in O((d+ 1)` · n`). J

Since d < ` for nontrivial input instances, Theorem 5 yields “linear-time fixed-parameter
tractability” with respect to `, meaning an exponential speedup over the previous result due
to Hermelin and Rozenberg [12].

I Corollary 6. ConRMC can be solved in O(n``+1) time.

We remark that this algorithm cannot be significantly improved assuming the ETH.1 It is
known that there is no `o(`) · nO(1)-time algorithm for the special case Closest String
unless the ETH fails [14]. The running time of our algorithm matches this lower bound (up
to a constant in the exponent) and therefore there is presumably no substantially faster
algorithm with respect to `.

As a consequence of Corollary 6, we obtain a fixed-parameter algorithm for MinLRMC
with respect to the maximum number k of missing entries per row in the input matrix.

I Corollary 7. MinLRMC can be solved in time O(n2`+ n2kk+1).

Proof. For each i ∈ [n], we construct an ConRMC-instance, where the input matrix is
Si = S[:, P∗(S[i])] and di,i′ = d − δ(S[i],S[i′]) for each i′ ∈ [n]. We return Yes if and
only if there is a Yes-instance (Si, di,1, . . . , di,n) of ConRMC. Each ConRMC-instance
requires O(n`) time to construct, and O(nkk+1) time to solve, because Si contains at most k
columns. J

5 Combined parameter d + k

In this section we generalize two algorithms (one by Gramm et al. [11] and one by Ma and
Sun [15]) for the special case of MinRMC in which the input matrix is complete (known as
the Closest String problem) to the case of incomplete matrices. We will describe both
algorithms briefly. In fact, both algorithms solve the special case of ConRMC, referred to as
Neighboring String (generalizing Closest String by allowing row-individual distances),
where the input matrix is complete.

Neighboring String
Input: A matrix T ∈ Σn×` and d1, . . . , dn ∈ N
Question: Is there a row vector v ∈ Σ` such that δ(v,T[i]) ≤ di for each i ∈ [n]?

The algorithm of Gramm et al. [11] is given in Algorithm 2. First, it determines whether
the first row vector T[1] is a solution. If not, then it finds another row vector T[i] that differs
from T[1] on more than di positions and branches on the column positions Q(T[1],T[i])
where T[1] and T[i] disagree.

Using a search variant of Algorithm 2, Hermelin and Rozenberg [12, Theorem 4] claimed
that MinRMC is fixed-parameter tractable with respect to d+ k. Here, we reveal that their
algorithm is in fact not correct. The algorithm chooses an arbitrary row vector S[i] and
calls the algorithm by Gramm et al. [11] with input matrix S′ = S[:, [`] \ P∗(S[i])]. This

1 The Exponential Time Hypothesis asserts that 3-SAT cannot be solved in O∗(2o(n+m)) time for a
3-CNF formula with n variables and m clauses.
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Algorithm 2 Algorithm for Neighboring String by Gramm et al. [11]

Input: A matrix T ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,T[i]) ≤ di for all i ∈ [n].
1: if di < 0 for some i ∈ [n] then return No.
2: if δ(T[1],T[i]) ≤ di for all i ∈ [n] then return Yes.
3: Choose any i ∈ [n] such that δ(T[1],T[i]) > di.
4: Choose any Q′ ⊆ Q(T[1],T[i]) with |Q′| = di + 1.
5: for all j ∈ Q′ do
6: Let T′ = T[:, [`] \ {j}] and d′i′ = di − δ(T[i, j],T[i′, j]) for each i′ ∈ [n].
7: if recursion on (T′, d′1, . . . , d′n) returns Yes then return Yes.
8: return No.

results in a set of row vectors v satisfying δ(v,S′) ≤ d. Then, the algorithm constructs
an instance of ConRMC where the input matrix is S[P∗(S[i])] and the distance bound
is given by di′ = d − δ(v,S′[i′]) for each i′ ∈ [n]. The correctness proof was based on
the erroneous assumption that the algorithm of Gramm et al. [11] finds all row vectors v
satisfying δ(v,S′) ≤ d in time O((d+ 1)d · n`). Although Gramm et al. [11] noted that this
is indeed the case when d is optimal, it is not always true. In fact, it is generally impossible
to enumerate all solutions in time O((d + 1)d · n`) because there can be Ω(`d) solutions.
We use the following simple matrix to illustrate the error in the algorithm of Hermelin and
Rozenberg [12]:

S =

 0 1 1
1 1 1
∗ 0 0

 .
We show that the algorithm may output an incorrect answer for d = 2. If the algorithm
chooses i = 3, then the algorithm by Gramm et al. [11] returns only one row vector 00. Then
the algorithm of Hermelin and Rozenberg [12] constructs an instance of ConRMC with
S′ =

[
0 1

]T and d1 = d2 = 0, resulting in No. However, the row vector v = 001 satisfies
δ(v,S) = 2 and thus the correct output is Yes. To remedy this, we give a fixed-parameter
algorithm for MinRMC, adapting the algorithm by Gramm et al. [11].

Before presenting our algorithm, let us give an observation noted by Gramm et al. [11]
for the case of no missing entries. Suppose that the input matrix S ∈ (Σ ∪ {∗})n×` contains
more than nd dirty columns (a column is said to be dirty if it contains at least two distinct
symbols from the alphabet). Clearly, we can assume that every column is dirty. For any
vector v ∈ Σ`, there exists i ∈ [n] with δ(v,S[i]) ≥ d by the pigeon hole principle and hence
we can immediately conclude that it is a No-instance. It is easy to see that this argument
also holds for MinRMC and thus ConRMC.

I Lemma 8. Let (S, d1, . . . , dn) be a ConRMC instance, where S ∈ (Σ ∪ {∗})n×` and
d1, . . . , dn ∈ N. If S contains more than nd dirty columns for d = maxi∈[n] di, then there is
no row vector v ∈ Σ` with δ(v,S[i]) ≤ di for all i ∈ [n].

Our algorithm is given in Algorithm 3. It generalizes Algorithm 2 and finds the solution
vector even if the input matrix is incomplete. In contrast to Neighboring String, the
output cannot be immediately determined even if d1 = 0. We use Algorithm 1 to overcome
this issue (Line 3). Algorithm 3 also considers the columns where the first row vector
has missing entries (recall that P∗(S[1]) denotes column indices j with S[1, j] = ∗) in the
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Algorithm 3 Algorithm for ConRMC (generalizing Algorithm 2)

Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,S[i]) ≤ di for all i ∈ [n].
1: if d1 = 0 then
2: Let S′ = S[[2, n], P∗(S[1])] and d′i = di − δ(S[1],S[i]) for each i ∈ [2, n].
3: return the output of Algorithm 1 on (S′, d′2, . . . , d′n).
4: Let Ri = (P∗(S[1]) \ P∗(S[i])) ∪Q(S[1],S[i]) for each i ∈ [2, n].
5: if |Ri| ≤ di for all i ∈ [2, n] then return Yes.
6: Choose any i ∈ [n] with |Ri| > di.
7: Choose any R ⊆ Ri with |R| = di + 1.
8: for all j ∈ R do
9: Let S′ = S[:, [`] \ {j}] and d′i′ = di − δ(S[i, j],S[i′, j]) for each i′ ∈ [n].
10: if recursion on (S′, d′1, . . . , d′n) returns Yes then return Yes.
11: return No.

branching step (Line 8), and not only the columns where S[1] and S[i] disagree. Again, we
restrict the branching to di + 1 subcases (Line 7). This reduces the size of the search tree
significantly. We show the correctness of Algorithm 3 and analyze its running time in the
proof of the following theorem.

I Theorem 9. For d = maxi∈[n] di, ConRMC can be solved in O(n`+ (d+ 1)d+k+1n) time.

Proof. First, we prove that Algorithm 3 is correct by induction on d1 + |P∗(S[1])|. More
specifically, we show that the algorithm returns Yes if and only if a vector v ∈ Σ` satisfying
δ(S[i], v) ≤ di for all i ∈ [n] exists.

Consider the base case d1 + |P∗(S[1])| = 0. Since d1 = 0, the algorithm terminates in
Line 3. When d1 = 0, any solution vector must agree with S[1] on each entry unless the
entry is missing in S[1]. Hence, the output in Line 3 is correct by Theorem 5. Consider the
case d1 + |P∗(S[1])| > 0. Let Ri = (P∗(S[1]) \ P∗(S[i])) ∪Q(S[1],S[i]) for each i ∈ [2, n]. If
|Ri| ≤ di holds for all i ∈ [2, n], then the vector S[1]⊕ σ` (the vector obtained by filling each
missing entry in S[1] with σ) is a solution for an arbitrary character σ ∈ Σ. Hence, Line 5 is
correct. Suppose that there exists a solution vector v ∈ Σ` with δ(v,S[i]) ≤ di for all i ∈ [n].
We show that the branching in Line 8 is correct. Let R be as specified in Line 7. We claim
that there exists a j ∈ R with v[j] = S[i, j] for every choice of R. Otherwise, v[j] 6= S[i, j]
and S[i, j] 6= ∗ holds for all j ∈ R and we have δ(v,S[i]) > di (a contradiction). Note that
S[:, [`] \ {j}] has exactly one less missing entry if j ∈ P∗(S[1]) and that d′1 = d1 − 1 in case
of j ∈ Q(S[1],S[i]). It follows that d1 + |P∗(S[1])| is strictly smaller in the recursive call
(Line 10). Hence, the induction hypothesis ensures that the algorithm returns Yes when
v[j] = S[i, j] holds. On the contrary, it is not hard to see that the algorithm returns No if
there is no solution vector. Thus, Algorithm 3 is correct.

We examine the time complexity. Assume without loss of generality that k = |P∗(S[1])|
and d = d1 hold initially. Consider the search tree where each node corresponds to a call
on either Algorithm 1 or Algorithm 3. If d1 > 0, then d1 + P∗(S[1]) decreases by 1 in each
recursion and there are at most d+ 1 recursive calls. Let u be some node in the search tree
that invokes Algorithm 1 for the first time. We have seen in the proof of Theorem 5 that the
subtree rooted at u is a tree of depth at most |P∗(S[1])|, in which each node has at most
di − δ(S[1],S[i]) + 1 ≤ d+ 1 children. Note also that u lies at depth d+ k− |P∗(S[1])|. Thus,
the depth of the search tree is at most d+ k and the search tree has size O((d+ 1)d+k). We
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Algorithm 4 Algorithm for Neighboring String by Ma and Sun [15]

Input: A matrix T ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,T[i]) ≤ di for all i ∈ [n].
1: if δ(T[1],T[i]) ≤ di for all i ∈ [n] then return Yes .
2: Choose any i ∈ [n] such that δ(T[1],T[i]) > di.
3: Let Q = Q(T[1],T[i]).
4: for all v ∈ Σ|Q| such that δ(v,T[1]) ≤ d1 and δ(v,T[i]) ≤ di do
5: Let T′ = T[:, [`] \Q] and d′1 = min{d1 − δ(v,T[1, Q]), dd1/2e − 1}.
6: Let d′i′ = di′ − d(v,T[i′, Q]) for each i′ ∈ [2, n].
7: if recursion on (T, d′1, . . . , d′n) returns Yes then return Yes.
8: return No.

can assume that ` ≤ nd by Lemma 8 and hence each node requires O(nd) time. This results
in the overall running time of O(n`+ (d+ 1)d+k+1n). J

Now, we provide a more efficient fixed-parameter algorithm when the alphabet size is
small, based on Algorithm 4 by Ma and Sun [15]. Whereas Algorithm 2 considers each
position of (a subset of) Q(T[1],T[i]) one by one, Algorithm 4 considers all vectors on
Q(T[1],T[i]) in a single recursion. The following lemma justifies why d1 can be halved
(Line 5) in each iteration (the vectors u and w correspond to T[1] and T[i], respectively).

I Lemma 10. [15, Lemma 3.1] Let u, v, w ∈ Σ` be row vectors satisfying δ(u,w) > δ(v, w).
Then, it holds that δ(u[Q′], v[Q′]) < δ(u, v)/2 for Q′ = [`] \Q(u,w).

Proof. Assume that δ(u[Q′], v[Q′]) ≥ δ(u, v)/2. We can rewrite the value of δ(u, v) + δ(v, w)
as follows:

δ(u, v) + δ(v, w) = δ(u[Q′], v[Q′]) + δ(v[Q′], w[Q′]) + δ(u[Q], v[Q]) + δ(v[Q], w[Q]),

where Q is a shorthand for Q = Q(v, w). It follows from the definition of Q′ that u[Q′] = w[Q′]
and hence

δ(u[Q′], v[Q′]) = δ(v[Q′], w[Q′]). (1)

We also note that δ(u[Q] + v[Q]) + δ(v[Q] + w[Q]) ≥ |Q| = δ(v, w) because it must hold
that u[j] 6= v[j] or v[j] 6= w[j] for each j ∈ Q. Now, we obtain the following contradiction
concluding the proof:

δ(u, v) + δ(v, w) ≥ 2δ(u[Q′], v[Q′]) + δ(u,w) > δ(u, v) + δ(v, w).

J

Lemma 10 plays a crucial role in obtaining the running time O(n`+ (16|Σ|)dnd) of Ma
and Sun [15]. However, Lemma 10 may not hold in the presence of missing entries (in
fact, Equation (1) may break when at least one of u or w contains missing entries). For
instance, u = 0`, v = 1`, w = ∗` is one counterexample. Note that here Q(u,w) = ∅ and that
δ(u[Q′], v[Q′]) = δ(u, v) = `. To work around this issue, let us introduce a new variant of
Closest String which will be useful to derive a fixed-parameter algorithm for ConRMC
(Theorem 12). We will use a special character “�” to denote a “dummy” character.

Neighboring String with Dummies (NSD)
Input: A matrix T ∈ (Σ ∪ {�})n×` and d1, . . . , dn ∈ N.
Question: Is there a row vector v ∈ Σ` such that δ(v,T[i]) ≤ di for each i ∈ [n]?
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Note that the definition of NSD forbids dummy characters in the solution vector v.
Observe that Lemma 10 (in particular Equation (1)) holds even if row vectors u and w

contain dummy characters. We show that NSD can be solved using Algorithm 4 as a
subroutine.

I Lemma 11. NSD can be solved in O(n` + |Σ|k · nk + 24d−3k · |Σ|d · nd)) time, where
d := maxi∈[n] di and k is the minimum number of dummy characters in any row vector of T.

Proof. With Lemma 10, assuming d = d1 one can prove by induction on d1 that Algorithm 4
solves the NSD problem if the first row vector T[1] contains no dummy characters by
induction on d1. Refer to [15, Theorem 3.2] for details. We describe how we use Algorithm 4
of Ma and Sun [15] to solve NSD. Let I = (T, d1, . . . , dn) be an instance of NSD. We assume
that |P�(T[1])| = k. For each row vector u of Σk, we invoke Algorithm 4 with the input matrix
T′ = T[[`] \ P�(T[1])] and the distance bounds d1 − k, d2 − δ(u,T[2, P�(T[1])]), . . . , dn −
δ(u,T[n, P�(T[1])]). Note that T′[1] contains no dummy character and thus the output of
Algorithm 4 is correct. We return Yes if and only if Algorithm 4 returns Yes at least once.
Let us prove that this solves NSD. If I is a Yes-instance with solution vector v ∈ Σ`, then
it is easy to verify that Algorithm 4 returns Yes when u = v[P�(T[1])]. On the contrary,
the distance bounds in the above procedure ensure that I is a Yes-instance if Algorithm 4
returns Yes.

Now we show that this procedure runs in the claimed time. Ma and Sun [15] proved that
Algorithm 4 runs in

O

(
n`+

(
dmax + dmin

dmin

)
· (4|Σ|)dmin · ndmax

)
time, where dmax = maxi∈[n] di and dmin = mini∈[n] di. In fact, they showed that each node
in the search tree requires O(ndmax) time by remembering previous distances, as it only
concerns O(dmax) columns. In the same spirit, one can compute distances from the first row
vector for each NSD-instance under consideration in O(nk) time, given the corresponding
distances in the input matrix. Since we have dmax ≤ d and dmin ≤ d − k for each call of
Algorithm 4, it remains to show that

(2d−k
d

)
∈ O(22d−k). Using Stirling’s approximation√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n which holds for all positive integers n, we obtain(
2d− k
d

)
= (2d− k)!
d! · (d− k)! ≤ c ·

(2d− k)2d−k

dd · (d− k)d−k

for some constant c. We claim that the last term is upper-bounded by c · 22d−k. We
use the fact that the function x 7→ x log x is convex over its domain x > 0 (note that
the second derivative is given by x 7→ 1/x). Since a convex function f : D → R satisfies
(f(x) + f(y))/2 ≥ f((x+ y)/2) for any x, y ∈ D, we obtain

d log d+ (d− k) log(d− k) ≥ 2
(

2d− k
2

)
· log

(
2d− k

2

)
.

It follows that dd · (d − k)d−k = 2d log d+(d−k) log(d−k) ≥ 2(2d−k) log(d−k/2) = (d − k/2)2d−k.
This shows that

(2d−k
d

)
∈ O(22d−k). J

Finally, to show our second main result in this section, we provide a polynomial-time
reduction from ConRMC to NSD.

I Theorem 12. ConRMC can be solved in O(n`+ 24d+k · |Σ|d+k · n(d+ k)) time.
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S =

 0 0 0
1 1 ∗
∗ ∗ 2

 T =

 0 0 0 � �
1 1 � σ �
� � 2 σ σ


Figure 2 An illustration of the reduction in Theorem 12. Given the matrix S with k = 2 (left), our

reduction constructs the matrix T with k additional columns (right). Note that every row vector in
T contains exactly two dummy characters. The MinRMC instance (S, d = 1) is a Yes-instance with
a solution vector v = 100. The corresponding NSD-instance (T, d+ k = 3) is also a Yes-instance
with a solution vector v′ = 100σσ.

Proof. Let I = (S, d1, . . . , dn) be an instance of ConRMC. We construct an instance
I ′ = (T, d1 + k, . . . , dn + k) of NSD where T ∈ (Σ ∪ {�})n×(`+k) and each row vector of T
contains exactly k dummy characters. Note that such a construction yields an algorithm
running in O(n(`+k) + |Σ|k ·nk+ 24d+k · |Σ|d+k ·n(d+k)) = O(n`+ 24d+k · |Σ|d+k ·n(d+k))
time using Lemma 11. Let σ ∈ Σ be an arbitrary character. We define the row vector T[i]
for each i ∈ [n] as follows: Let T[i, [`]] = S[i]⊕ �` (in other words, the row vector T[i, [`]] is
obtained from S[i] by replacing ∗ by �) for the leading ` entries. For the remainder, let

T[i, `+ j] =
{
σ if j ≤ |P∗(S[i])|,
� otherwise,

for each j ∈ [k]. See Figure 2 for an illustration. We claim that I is a Yes instance if and
only if I ′ is a Yes instance.

(⇒) Let v ∈ Σ` be a solution of I. We claim that the vector v′ ∈ Σ`+k with v′[[`]] = v

and v[[`+ 1, `+ k]] = σk is a solution of I ′. For each i ∈ [n], we have

δ(v′,T[i]) = δ(v′[[`]],T[i, [`]]) + δ(σk,T[i, [`+ 1, `+ k]]).

It is easy to see that the first term is at most di + |P∗(S[i])| and that the second term equals
k − |P∗(S[i])|. Thus we have δ(v′,T) ≤ di + k.

(⇐) Let v′ ∈ Σ` be a solution of I ′. Since the row vector T[i, [` + 1, ` + k]] contains
k − |P∗(S[i])| dummy characters, we have δ(v′[[`]],T[i, [`]]) ≤ (di + k)− (k − |P∗(S[i])|) =
di + |P∗(S[i])| for each i ∈ [n]. It follows that δ(v′[[`]],S[i]) ≤ di holds for each i ∈ [n]. J

Note that the algorithm of Theorem 12 is faster than the algorithm of Theorem 9 for
|Σ| < d/16 and faster than the O∗(|Σ|k · dd)-time algorithm by Hermelin and Rozenberg [12]
for |Σ| < d/24+d/k.

6 Conclusion

We studied problems appearing both in stringology and in the context of matrix completion.
The goal in both settings is to find a consensus string (matrix row) that is close to all
given input strings (rows). The special feature here now is the existence of wildcard letters
(missing entries) appearing in the strings (rows). Thus, these problems naturally generalize
the well-studied Closest String and related string problems. Although with applications
in the context of data mining, machine learning, and computational biology at least as well
motivated as Closest String, so far there is comparatively little work on these “wildcard
problems”. This work is also meant to initiate further research in this direction.

We conclude with a list of challenges for future research:
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Can the running time of Theorem 12 be improved? Since Ma and Sun [15] proved that
Closest String can be solved in O((16|Σ|)d · n`) time, a plethora of efforts have been
made to reduce the base in the exponential dependence in the running time [6, 16, 4, 5].
A natural question is whether these results can be translated to MinRMC and ConRMC
as well.
Another direction would be to consider the generalization of MinRMC with outliers.
The task is to determine whether there is a set I ⊆ [n] of row indices and a vector v ∈ Σ`
such that |I| ≤ t and δ(v,S[[n] \ I]) ≤ d. For complete input matrices, this problem
is known as Closest String with Outliers and fixed-parameter tractability with
respect to d+ t is known [2]. Hence, it is interesting to study whether the outlier variant
of MinRMC (or ConRMC) is fixed-parameter tractable with respect to d+ k + t.
Finally, let us mention a maximization variant MaxRMC where the goal is to have a
radius at least d. The complete case is referred to as Farthest String [18] and fixed-
tractability with respect to |Σ|+ d is known [10, 18]. Is MaxRMC also fixed-parameter
tractable with respect to (d, |Σ|)?
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