
In-Place Bijective Burrows Wheeler1

Transformations2

Dominik Köppl3

Department of Informatics, Kyushu University4

Japan Society for Promotion of Science (JSPS)5

dominik.koeppl@inf.kyushu-u.ac.jp6

Daiki Hashimoto7

Graduate School of Information Sciences, Tohoku University, Japan8

daiki_hashimoto@shino.ecei.tohoku.ac.jp9

Diptarama Hendrian10

Graduate School of Information Sciences, Tohoku University, Japan11

diptarama@tohoku.ac.jp12

Ayumi Shinohara13

Graduate School of Information Sciences, Tohoku University, Japan14

ayumis@tohoku.ac.jp15

Abstract16

One of the most well-known variants of the Burrows-Wheeler transform (BWT) is the bijective17

BWT (BBWT), which does not need to store the artificial dollar sign or any information regarding18

the location of the end of the text in the transformed string. In this paper, we present algorithms19

constructing the BBWT or restoring the text from the BBWT in-place using quadratic time. We also20

present conversions from the BBWT to the BWT, or vice versa, either (a) in-place using quadratic21

time, or (b) in the run-length compressed setting using O(n lg r/ lg lg r) time with O(r lgn) bits of22

words, where r is the sum of character runs in the BWT and the BBWT.23

2012 ACM Subject Classification Theory of computation; Mathematics of computing → Combin-24

atorics on words25

Keywords and phrases In-Place Algorithms, Burrows-Wheeler transform, Lyndon words26

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2327

Funding Dominik Köppl: JSPS KAKENHI Grant Number JP18F18120.28

© Dominik Köppl et al.;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8721-4444
mailto:dominik.koeppl@inf.kyushu-u.ac.jp
mailto:daiki_hashimoto@shino.ecei.tohoku.ac.jp
https://orcid.org/0000-0002-8168-7312
mailto:diptarama@tohoku.ac.jp
https://orcid.org/0000-0002-4978-8316
mailto:ayumis@tohoku.ac.jp
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 In-Place Bijective Burrows Wheeler Transformations

1 Introduction29

The Burrows-Wheeler transform (BWT) [6] is one of the most favored options both for30

(a) compressing and (b) indexing data sets. On the one hand, compression programs like31

bzip2 apply the BWT to achieve high compression rates. For that, they leverage the effect32

that the BWT built on repetitive data tends to have long character runs, which can be33

compressed by run-length compression, i.e., representing a substring of ` a’s by the tuple34

(a, `). On the other hand, self-indexing data structures like the FM-index [11] enhance the35

BWT to a full-text self-index. A combined approach of both compression and indexing is36

the run-length compressed FM-index [20], representing a BWT with rBWT character runs,37

i.e., maximal repetitions of a character, run-length compressed in O(rBWT lgn) bits. This38

representation can be computed directly in run-length compressed space by Policriti and39

Prezza [27]. The BWT and its run-length compressed representation have been intensively40

studied during the past decades (e.g., [1, 12, 14] and the references therein). Contrary to that,41

a variant, called the bijective BWT (BBWT) [15], is far from being well-studied despite its42

mathematically appealing characteristics. As a matter of fact, we are only aware of one index43

data structure based on the BBWT [2] and of two non-trivial construction algorithms [3, 5]44

of the (uncompressed) BBWT, both with the need of additional data structures. This gives45

rise to the following questions:46

Is there a connection between the BBWT and the BWT?47

Can we compute the run-length compressed BBWT in run-length compressed space48

directly?49

For the former question, we shed more light on the connection between the BWT and the50

BBWT by quadratic time in-place conversion algorithms in Sect. 6 constructing the BWT51

from the BBWT, or vice versa. We can also perform these conversions in the run-length52

compressed setting in space linear to the number of the character runs (cf. Sect. 5), solving53

the latter question.54

2 Related Work55

Given a text T of length n, the BWT of T is the string obtained by assigning BWT[i] to56

the character preceding the i-th lexicographically smallest suffix of T (or the last character57

of T if this suffix is the text itself). By this definition, we can construct the BWT with58

any suffix array [21] construction algorithm. However, storing the suffix array inherently59

needs n lgn bits of space. Crochemore et al. [9] tackled this space problem with an in-place60

algorithm constructing the BWT in O(n2) online on the reversed text by simulating queries61

on a dynamic wavelet tree [16] that would be built on the (growing) BWT. They also gave62

an algorithm for restoring the text in-place in O(n2+ε) time.63

In the run-length compressed setting, Policriti and Prezza [27] can compute the run-length64

compressed BWT having rBWT character runs in O(n lg rBWT) time while using O(rBWT lgn)65

bits of space. They additionally presented an adaption of the wavelet tree on run-length66

compressed texts, yielding a representation using O(rBWT lgn) bits of space with O(lg rBWT)67

query and update time. Finally, practical improvements of the run-length compressed BWT68

construction were considered by Ohno et al. [26].69

The BBWT is the string obtained by assigning BBWT[i] to the last character of the i-th70

smallest string in the list of all conjugates of all Lyndon factors sorted with respect to the71

≺ω order. Bannai et al. [3] recently revealed an indirect connection between the bijective72

BWT and suffix sorting by presenting an O(n) time BBWT construction algorithm based on73

SAIS [25]. With dynamic data structures like a dynamic wavelet tree [24], Bonomo et al. [5]74

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:3

could give an algorithm computing the BBWT in O(n lgn/ lg lgn) time. Both construction75

algorithms need however data structures taking O(n lgn) bits of space. However, the latter76

can work in-place by simulating the LF mapping on the BBWT (cf. Sect. 4), which we focus77

on in Sect. 6.1.78

3 Preliminaries79

Our computational model is the word RAM model with word size Ω(lgn). Accessing a word80

costs O(1) time. An algorithm is called in-place if it uses, besides a rewriteable input, only81

O(lgn) bits of working space. We write [b(I)..e(I)] = I for an interval I of natural numbers.82

3.1 Strings83

Let Σ denote an integer alphabet of size σ with σ = nO(1). We call an element T ∈ Σ∗ a84

string. Its length is denoted by |T |. Given an integer j with 1 ≤ j ≤ |T |, we access the j-th85

character of T with T [j]. Concatenating a string T ∈ Σ∗ k times is abbreviated by T k. A86

string T is called primitive if there is no string S ∈ Σ+ with T = Sk for an integer k with87

k ≥ 2.88

When T is represented by the concatenation of X,Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y89

and Z are called a prefix, substring and suffix of T , respectively; the prefix X, substring Y ,90

or suffix Z is called proper if X 6= T , Y 6= T , or Z 6= T , respectively. For two integers i, j91

with 1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends92

at position j in T . If i > j, then T [i..j] is the empty string. In particular, the suffix starting93

at position j of T is called the j-th suffix of T , and denoted with T [j..]. An occurrence of94

a substring S in T is treated as a sub-interval of [1..|T |] such that S = T [b(S)..e(S)]. The95

longest common prefix (LCP) of two strings S and T is the longest string that is a prefix of96

both S and T .97

Orders on Strings We denote the lexicographic order with ≺lex . Given two string S and T ,98

then S ≺lex T if S is a prefix of T or there exists an integer ` with 1 ≤ ` ≤ min(|S|, |T |) such99

that S[1..`−1] = T [1..`−1] and S[`] < T [`]. Next we define the ≺ω order: We write S ≺ω T100

if the infinite concatenation Sω := SSS · · · is lexicographically smaller than Tω := TTT · · · .101

For instance, ab ≺lex aba but aba ≺ω ab.102

Rank and Select Queries Given a string T ∈ Σ∗, a character c ∈ Σ, and an integer j, the103

rank query T.rankc(j) counts the occurrences of c in T [1..j], and the select query T.selectc(j)104

gives the position of the j-th c in T . We stipulate that rankc(0) = selectc(0) = 0. A wavelet105

tree is a data structure supporting rank and select queries.106

3.2 Lyndon Words107

Given a string T = T [1..n], its i-th conjugate conji(T) is defined as T [i + 1..n]T [1..i] for108

an integer i with 0 ≤ i ≤ n − 1. We say that T and all of its conjugates belong to the109

conjugate class conj(T) := {conj0(T), . . . , conjn−1(T)}. If a conjugate class contains exactly110

one conjugate that is lexicographically smaller than all other conjugates, then this conjugate111

is called a Lyndon word [19]. Equivalently, a string T is said to be a Lyndon word if and112

only if T ≺lex S for every proper suffix S of T .113

The Lyndon factorization [8] of T ∈ Σ+ is the factorization of T into a sequence of114

lexicographically non-increasing Lyndon words T1 · · ·Tt, where (a) each Tx ∈ Σ+ is a Lyndon115

CVIT 2016

23:4 In-Place Bijective Burrows Wheeler Transformations

word, and (b) Tx �lex Tx+1 for each x ∈ [1..t). Each Lyndon word Tx is called a Lyndon116

factor.117

I Lemma 1 ([10, Algo. 2.1]). The Lyndon factorization of T can be computed in O(n) such118

that the Lyndon factors T1, . . . , Tt are output one by one in increasing order. For that it119

suffices to scan the text linearly from left to right while keeping a constant number of pointers120

to positions in the text that can move one position forward at one time.121

For what follows, we fix a string T [1..n] over an alphabet Σ with size σ. We use the122

string T := bacabbabb as our running example. Its Lyndon factors are T1 = b, T2 = ac,123

T3 = abb, and T4 = abb.124

3.3 Burrows-Wheeler Transforms125

We denote the bijective BWT of T by BBWT, where BBWT[i] is the last character of the126

i-th string in the list storing the conjugates of all Lyndon factors T1, . . . , Tt of T sorted with127

respect to the ≺ω order. A property of BBWT used in this paper as a starting point for128

decoding is the following:129

I Lemma 2 ([5, Lemma 15]). BBWT[1] = T [n].130

Proof. There is no conjugate of a Lyndon factor that is smaller than the smallest Lyndon131

factor Tt since Tt �lex Tx ≺lex Tx[j..] for every j ∈ [2..|Tx|] and every x ∈ [1..t]. Therefore,132

Tt is the smallest string among all conjugates of all Lyndon factors. Hence, BBWT[i] is the133

last character of Tt, which is T [n]. J134

The BWT of T , called in the following BWT, is the BBWT of $T for a delimiter $ 6∈ Σ135

smaller than all other characters in T . Originally, the BWT is defined as reading the last136

characters of all cyclic rotations of T (without $) sorted lexicographically. Here, we call the137

resulting string BWT◦. BWT◦ is equivalent to BWT if T contains a unique delimiter $ smaller138

than all other appearing characters. We further write BWTP (and analogously BBWTP139

or BWT◦P) to denote the BWT of P for a string P . In what follows, we review means to140

simulate a linear scan of the text in forward or backward manner by the BWT of T and then141

translate this result to BBWT.142

4 Backward and Forward Search143

Having the location of T [i] in BWT, we can compute T [i+ 1] (i.e., T [1] for i = 1) and T [i−1]144

(i.e., T [n] for i = 0) by rank and select queries. To move to T [i + 1], we can use the FL145

mapping:146

FL[i] := BWT.selectF[i](F.rankFi), (1)147

where F[i] is the i-th lexicographically smallest character in BWT. To move to T [i− 1], we148

can use the backward search step of the FM-index [11], which is also called LF mapping, and149

is defined as follows:150

LF[i] := F.selectBWT[i](BWT.rankBWTi) = C[BWT[i]] + BWT.rankBWTi, (2)151

where C[c] is the number of occurrences of those characters in BWT that are smaller than c152

(for each character c ∈ [1..σ]). We observe from the second equation of (2) that there is no153

need for F when having C. This is important, as we can compute C[i] in O(n) time only154

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:5

having BWT available. Hence, we can compute LF[i] in O(n) time in-place. However, the155

same trick does not work with FL[i] = BWT.selectF[i](i−C[F[i]]). To lookup F[i], we can use156

the selection algorithm of Chan et al. [7] using BWT and O(lgn) bits as working space (the157

algorithm restores BWT after execution) to compute an entry of F in O(n) time.158

In summary, we can compute both FL[i] and LF[i] in-place in O(n) time. The algorithm159

of Crochemore et al. [9, Thm. 2] restoring the text from BWT in-place in O(n2+ε) time uses160

the result of Munro and Raman [23] computing F[i] in O(n1+ε) time for a constant ε > 0 in161

the comparison model. As noted by Chan et al. [7, Sect. 1], this time bound can be improved162

to O(n2) time in the RAM model.163

If we allow more space, it is still advantageous to favor storing C instead of F if σ = o(n) as164

storing F and C in their plain forms take n lg σ bits and σ lgn bits, respectively. To compute165

FL[i], we can also compute FL without F by endowing C with a predecessor data structure.166

When working with the run-length compressed BWT, we want however a data structure167

that works in the run-length compressed space while supporting queries and updates more168

efficiently than the in-place approach:169

4.1 Run-length Compressed Wavelet Trees170

Given a run-length compressed string T with r character runs, there is an O(r lgn) bits rep-171

resentation of T that supports access, rank, select, insertions, and deletions in O(lg r/ lg lg r)172

time. This data structure needs O(lg r) time for any of those operations, and is described by173

Policriti and Prezza [27, Lemma 1]. It consists of (1) a dynamic wavelet tree maintaining174

the starting characters of each character run and (2) a dynamic Fenwick tree maintaining175

the lengths of the runs. It can be accelerated to O(lg r/ lg lg r) time by using the following176

representations:177

1. The dynamic wavelet tree of Navarro and Nekrich [24] on a text of length r uses O(r lg r)178

bits, and supports both updates and queries in O(lg r/ lg lg r) time.179

2. The dynamic Fenwick tree of Bille et al [4, Thm. 2] on r (lgn)-bit numbers uses O(r lgn)180

bits, and supports both updates and queries in constant time time if updates are restricted181

to be in-/decremental.182

The obtained time complexity of this data structure directly improves the construction of183

RLBWT:184

I Corollary 3 ([27, Thm. 2]). We can construct the RLBWT in O(rBWT lgn) bits of space185

online on the reversed text in O(n lg r/ lg lg r) time.186

We can define LF and FL similarly for BBWT with the following peculiarity:187

4.2 Search with the Bijective BWT188

The major difference to the BWT is that the BBWT can contain multiple cycles, meaning189

that LF (or FL) recursively applied to a BBWT position would result in searching circular190

(more precisely, the search keeps within the same Lyndon factor). This fact was exploited for191

circular pattern matching [18], but is not of interest here. Instead, we follow the analysis192

of the so-called rewindings [2, Sect. 3]: Remembering that we store the last character of all193

conjugates of all Lyndon factors in BBWT, we observe that the entries in BBWT representing194

the Lyndon factors (i.e., the last characters of the Lyndon factors) are in sorted order (starting195

with Tt[|Tt|] and ending with T1[|T1|]). That is because the lexicographic order and the ≺ω196

order are the same for Lyndon words [5, Thm. 8]. Applying the backward search step at197

such an entry results in a rewinding, i.e., we move from the beginning of a Lyndon factor Tx198

CVIT 2016

23:6 In-Place Bijective Burrows Wheeler Transformations

(represented by Tx[|Tx|] in BBWT), to the end of Tx (represented by Tx[1] in BBWT) by199

applying the LF mapping. We use this property with Lemma 2 in the following for reading200

the Lyndon factors from T individually in the order Tt, . . . , T1.201

5 Run-Length Compressed Conversions202

In this section, we consider BWT and BBWT represented in the run-length compressed203

wavelet tree representation of Sect. 4.1 taking respectively O(rBWT lgn) and O(rBBWT lgn)204

bits of space, where rBWT and rBBWT are the number of character runs in BWT and BBWT,205

respectively. The run-length compressed wavelet trees support a backward search step in206

O(lg r/ lg lg r) time with r := max(rBWT, rBBWT). Our goal of this section is to convert207

RLBBWT to RLBWT in O(n lg r/ lg lg r) time using O(r lgn) bits as working space, or vice208

versa.209

5.1 From RLBBWT to RLBWT210

We aim for directly outputting the characters of T in reversed order since we can then use211

the algorithm of Cor. 3 building RLBWT online on the reversed text. We start with the212

first entry of BBWT (corresponding to the last Lyndon factor Tt, i.e., storing Tt[|Tt|] = T [n]213

according to Lemma 2) and do a backward search until we come back at this first entry (i.e.,214

we have visited all characters of Tt). During that search, we copy the read characters to215

RLBWT and mark in an array R of length rBBWT at entry i how often we visited the i-th216

character run of RLBBWT. Finally, we remove the read cycle of RLBBWT by decreasing217

the run lengths of RLBBWT by the numbers stored in R. By doing so, we remove the last218

Lyndon factor Tt from RLBBWT and consequently know that the currently first entry of219

BBWT must correspond to Tt−1. This means that we can apply the algorithm recursively on220

the remaining RLBBWT to extract and delete the Lyndon factors in reversed order while221

building RLBWT in the meantime.222

5.2 From RLBWT to RLBBWT223

To build BBWT, we need to be aware of the Lyndon factors of T , which we compute with224

Lemma 1 by simulating a forward scan on T with FL on BWT. To this end, we store the225

entries of the C array in a Fusion tree [13] using O(σ lgn) bits and supporting predecessor226

search in O(lg σ/ lg lg σ) = O(lg r/ lg lg r) time.1 This time complexity also covers a forward227

search step in RLBWT by simulating F with the Fusion tree on C. Hence, this fusion tree228

allows us to apply Lemma 1 computing the Lyndon factorization of T since this algorithm229

only needs forward access, where the position i with BWT[i] = $ is our starting point, as230

FL[i] returns the first character of T . Whenever we detect a Lyndon factor Tx (starting with231

x = 1), we copy this factor to our dynamic RLBBWT. For that, we always maintain the first232

and the last position of Tx in memory. Having the last position of Tx, we use the backward233

search on RLBWT until returning at the first position of Tx to read the characters of Tx in234

reversed order. Then we continue with the algorithm of Lemma 1 at the position after Tx235

1 We assume that the alphabet Σ is effective, i.e., that each character of Σ appears at least once in T .
Otherwise, assume that T uses σ′ characters. Then we build the static dictionary of Hagerup [17] in
O(σ′ lg σ′) time, supporting access to a character in O(lg lg σ′) = O(lg lg r) time, assigning each of the
σ′ characters an integer from [1..σ′]. We further map RLBWT to the alphabet [1..σ′], which can be
done in O(r) time by using O(r lgn) space for a linear-time integer sorting algorithm.

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:7

To
From

T BWT BBWT BWT◦

T \ [9, Fig. 3] Sect. 6.3 Sect. 6.2
BWT [9, Fig. 2] \ Sect. 6.3

BBWT Sect. 6.1 Sect. 6.4 \
BWT◦ Sect. 6.1 \

Table 1 Overview of in-place conversions in focus of Sect. 6 working in quadratic time.

(for recursing on Tx+1). Inserting a Lyndon factor into RLBBWT works exactly as sketched236

by Bonomo et al. [5, Thm. 17] or in Algo. 1 in the appendix.237

5.3 From Run-Length Compressed Text to RLBWT238

Finally, we want to study how much space is needed to compute RLBWT in rBWT lg σ bits239

(without a wavelet tree) having the text also run-length compressed. For that, we use the240

algorithm of Crochemore et al. [9, Fig. 2] to compute the RLBWT in-place in O(n2) online on241

the reversed text. Given that rT is the number of character runs in the run-length compressed242

text T , we can compute RLBWT with max(3rT /2, rBWT) +O(1) words of working space and243

O(n2) time: Suppose b := T [i] = · · · = T [k] is a character run. Then adding this character244

run to RLBWT induces at most three character runs in BWT. That is because (1) the context245

of T [k] (i.e., the suffix T [k + 1..] succeeding T [k]) starting with T [k + 1] · · · can be arbitrary,246

but (2) the context of T [j] starts always with one or multiple b’s, for j ∈ [i..k). Finally, (3)247

the character T [i− 1] whose context has a common prefix with T [j] for j ∈ [i..k) can create248

another character run in BBWT. Hence, adding a character run of T to BWT can cause at249

most three new character runs in BWT. After parsing half of the text, we need 3rT /2 +O(1)250

words of working space.251

6 In-Place Conversions252

We now study various in-place conversions that work in quadratic time by accessing LF or253

FL in O(n) time having only stored BWT, BBWT, or BWT◦. We note that the conversions254

from the text also work in the comparison model, while restore the text or converting two255

different transformations have a multiplicative O(nε) time penalty as the fastest option to256

access F in the comparison model uses O(n1+ε) time for a constant ε > 0 [23]. We start with257

the conversion between BWT◦ and the text T (Sects. 6.1 and 6.2), where we show (a) that258

we can construct BWT◦ in the same manner as Bonomo et al. [5] construct BBWT, and (b)259

that the latter construction works also in-place. Next, we show in Sect. 6.3 how to restore260

the text form BBWT, which allows us to also convert BBWT to BWT with the algorithm of261

Crochemore et al. [9, Fig. 2]. Finally, we show a conversion from BWT to BBWT in Sect. 6.4.262

An overview is given in Table 1.263

6.1 Computing BWT◦
264

We can compute BWT◦ from T with the algorithm of Bonomo et al. [5] computing the265

extended BWT [22]. The extended BWT is the BWT defined on a set of primitive strings.266

It coincides with BBWT if this set of primitive strings is the set of Lyndon factors of T [5,267

Thm. 14]. We briefly describe their algorithm for computing the BBWT (cf. Fig. 1 and268

Algo. 1 in the appendix): For each Lyndon factor Tx (starting with x = 1), prepend Tx[|Tx|]269

to BBWT. To insert the remaining characters of the factor Tx, let p← 1 be the position of270

CVIT 2016

23:8 In-Place Bijective Burrows Wheeler Transformations

the currently inserted character. Then perform, for each j = |Tx| − 1 down to 1, a backward271

search p ← LF[p] + 1, and insert Tx[j] at BBWT[p]. To see why this computes BBWT, we272

note that the last character of the most recently inserted Lyndon factor Tx is always the273

first character in BBWTT1···Tx according to Lemma 2. By recursively inserting the preceding274

character at the place returned by a backward search step, we precisely insert this character275

at the position where we would expect it (another backward search step from the same276

position p would then return the inserted character). Using only n backward search steps277

and n insertions, this algorithm works in-place in O(n2) time by simulating LF as described278

in Sect. 4.279

Consequently, we can build BWT◦ if T is a Lyndon word since in this case BWT◦ and280

BBWT coincide. It is easy to generalize this to work for a general string T . First, if T is281

primitive, then we can compute its so-called Lyndon conjugate conjj(T) in O(n) time with282

the following two lemmata:283

I Lemma 4 ([10, Prop. 1.3]). Given two Lyndon words S and T , ST is a Lyndon word if284

S ≺lex T .285

I Lemma 5. Given a primitive string T , we can find its Lyndon conjugate conjj(T) in O(n)286

time with O(lgn) bits of space, where a conjugate is called Lyndon if it is a Lyndon word.287

The Lyndon word of a primitive string is uniquely defined.288

Proof. We use Lemma 1 to detect the last Lyndon factor Tt of the Lyndon factoriza-289

tion T1 · · ·Tt of T with O(lgn) bits of working space. According to Lemma 4, TtT1 is a290

Lyndon word since Tt ≺lex T1, and so is TtT1 · · ·Tt−1. Hence, we have found T ’s Lyndon291

conjugate. J292

Since BWT◦ is identical to BBWTconjj(T), we are done by running the algorithm of Bonomo293

et al. [5] on conjj(T). Finally, if T is not primitive, then there is a primitive string P such294

that T = P k for an integer k ≥ 2. We can compute BWT◦P with the above considerations.295

For obtaining BWT◦, we only need to make each character in BWT◦P to a character run of296

length k, i.e., if BWTP [i] = c, we append ck to BWT◦ for increasing i ∈ [1..|P |]. Checking297

whether T is primitive can be done in O(n2) time by checking for each pair of positions their298

longest common prefix. We summarized these steps in the pseudo code of Algo. 2 in the299

appendix.300

6.2 Restoring T from BWT◦
301

To revert BWT◦, we use the techniques of Crochemore et al. [9, Fig. 3] restoring T from302

BWT in-place. For BWT◦ we additionally need a pointer p storing the first symbol of the303

text (since there is no unique delimiter such as $ in general). Given that p points to BWT◦[i],304

we move p to BWT[FL[i]] and subsequently move BWT◦[i] to the left of T . The algorithm305

works exactly as [9, Fig. 3] if we do an additional backward search at p for inserting $. After306

recursing n times, we have converted BWT◦ to T . More involving is restoring T from BBWT307

or converting BBWT to BWT, which we tackle next.308

6.3 Computing BWT or T from BBWT309

Similarly to Sect. 5.1, we read the Lyndon factors from BBWT in the order Tt, . . . , T1, and310

move each read Lyndon factor directly to BWT such that while reading the last Lyndon311

factor Tx for an x ∈ [1..t] from BBWTT1···Tx , we move the characters of Tx to BWTTx+1···Tt ,312

producing BBWTT1···Tx−1 and BWTTx···Tt
. This allows us to recurse by reading always the313

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:9

c
b
a
a
b
b
a
b
b

a
b
c

b
c
b
a
a
b
a
b
b

a
b
b
c

b
c
b
b
a
a
a
b
b

a
b
b
b
c

b
c
b
a
b
a
a
b
b

a
a
b
b
b
c

𝐹 𝐹 𝐹 𝐹 𝐵𝐵𝑊𝑇(bacabb)

1
2
3
4
5
6
7
8
9

Figure 1 Computing BBWT from our running example T = bacabbabb in four steps (visualized
by four columns), cf. Sect. 6.1. In each column, the characters from the top to the red line form
the currently built BBWT. The characters below that up to the blue line are under consideration
of being merged into BBWT. The blue line is always before the beginning of the next yet unread
Lyndon factor. First column: We have already computed the BBWT of T1T2 = bac, which is cba.
In the following we want to add the next Lyndon factor T3 = abb to it. For that, we prepend its last
character to the currently constructed BBWT. Second column: We move the last character above
the blue line to the position LF[p] + 1 with p = 1, and update p← LF[p] + 1. We recurse in the third
column, and have produced the BBWT of T1T2T3 in the forth column.

last Lyndon factor Tx stored in BBWTT1···Tx
, whose position we know thanks to Lemma 2.314

In detail, we start at BBWT[1] and perform backward search steps until we return back to315

this position. The number of steps tells us how long Tx is. Next, we want to remove the316

entry in BBWT corresponding to conj|Tx|−j(Tx) for increasing j ∈ [1..|Tx| − 1] and append it317

to an increasing text buffer stored in the space of BBWT. For that, we apply the algorithm318

of Sect. 6.2 with the pointer p = FL[1], which now extracts only Tx from BBWT due to the319

rewinding (cf. Sect. 4.2). Subsequently, we run the in-place BWT construction algorithm of320

Crochemore et al. [9, Fig. 2] on the text buffer. We continue with the remaining BBWT, and321

merge the text buffer with the already computed BWT. We can do so since the used BWT322

construction algorithm works online on the reversed text. If we want to convert BBWT to T ,323

we do not have to convert the text buffer to BWT, but instead prepend the contents of the324

text buffer to the already restored part of the text.325

6.4 Computing BBWT from BWT326

Like in Sect. 5.2, we process the Lyndon factors of T individually to compute BBWT by327

scanning BWT in text order to simulate Lemma 1. Suppose that we have detected the first328

Lyndon factor T1. Let f denote its last character. Further let if and i$ be the position of329

the last character of T1 and the last character of T , respectively, such that BWT[if] = f330

and BWT[i$] = $ (cf. Fig. 2). Let p := LF[if] such that F[p] = f and BWT[p] = T1[|T1| − 1]331

if |T1| > 1 or BWT[p] = $ otherwise. Since T1 and T2 are Lyndon factors, T1 �lex T2.332

Consequently, the suffix T [b(T2)..] (the context of BWT[if]) is lexicographically smaller than333

the suffix T [b(T1)..] (the context of BWT[i$]), i.e., if < i$.334

Our aim is to change BWT such that a forward or backward search within the characters335

belonging to T1 always results in a cycle. Informally, we want to cut out T1 from BWT,336

which additionally allows us to recursively continue with the FL mapping to find the end of337

the next Lyndon factor T2.2 For that, we exchange BWT[i$] with BWT[if] (cf. Fig. 3). Then338

2 As a matter of fact, if we now want to restore the text with the modified BWT by LF, we would only
produce T2 · · ·Tt.

CVIT 2016

23:10 In-Place Bijective Burrows Wheeler Transformations

𝐵𝑊𝑇𝐹

f

$

𝐵𝑊𝑇𝐹

$

f

f
f

f
f
f
f

𝐿𝐹 𝐹𝐿
#f’s

2

3

4

f 5

3

1
2

4

f

f5

1

f
f
f
f

3

1
2

4
f5

f 1

f
f

2

3

f 5

4

i_f

i_$

p

Figure 2 Setting of Sect. 6.4
with focus on forming a cycle for
a Lyndon factor ending with f in
BWT. Left: We exchange BWT[if]
with BWT[i$] with the aim to form
a cycle. Right: To obtain this cycle
we additionally need to swap at the
top of the green rectangle as many
entries as there are f’s in the red
rectangle BWT[if + 1..i$ − 1]. The
green rectangle starts with LF[if]
(evaluated before the exchange) and
ends with the largest position i with
F[i] = f.

b
b
c
b
b
b
$
a
a
a

$
a
a
a
b
b
b
b
b
c

b
b
c
$
b
b
b
a
a
a

$
a
a
a
b
b
b
b
b
c

b
b
c
$
b
b
a
a
b
a

$
a
a
a
b
b
b
b
b
c

𝐹 𝐹 𝐹𝐵𝑊𝑇
1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

Figure 3 Computing BWT from BBWT (cf. Sect. 6.4) of our running example T = bacabbabb$.
At the left, we find the first Lyndon factor T1 = b of T by forward search steps with FL. There
are two b’s that are between the exchanged b at BWT[4] and $. Therefore, we need to swap two
elements below of LF[4] = 7, as shown at the middle. This gives a cycle in the right figure. We can
recurse, as the LF mapping of $ now yields the second character of T .

the character T [e(T1) + 1] (i.e., the first character of T2) becomes the next character of $ in339

terms of the forward search (BWT[FL[if]] = T [b(T2)]), while a backwards search on the first340

character of T1 yields T1’s last character (LF returns i$, but now BWT[i$] = T1[|T1|] = f).341

This is sufficient as long as BWT[i] 6= f for every i ∈ (if..i$]. Otherwise, it can happen342

that we change the mapping from the i-th f of F to the i-th f of BWT (or vice versa)343

unintentionally. In such a case, we swap some entries in BWT within the f interval of F.344

In detail, we conduct the exchange (BWT[i$] with BWT[if]), but continue with swapping345

BWT[i] and BWT[i+ 1] unless BWT[FL[i]] becomes that f that corresponds to T1[|T1|] for346

increasing i starting with i = p until F[i] 6= f. This may not be sufficient if the characters347

we swap are identical (cf. Fig. 4). In such a case, we recurse on LF[p] to swap non-identical348

characters, see also Algo. 3 in the appendix.349

Instead of checking whether we have created a cycle after each swap, we want to compute350

the exact number of swaps needed for this task. For that we note that exchanging BWT[i$]351

with BWT[if] changes the values of BWT.rankf(j) for every j ∈ [if..i$] by one. In particular,352

BWT.selectf changes for those f’s in BWT that are between if and i$. Hence, the number353

of swaps m is the number of all positions k ∈ [if + 1..i$ − 1] with BWT[k] = f. The swaps354

are performed at BWT[p..] since there starts the first F entry whose mapping has changed.355

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:11

d
d
d
a
$
a
e
e
c
b

$
a
a
b
c
d
d
d
e
e

d
$
d
a
d
a
e
e
c
b

$
a
a
b
c
d
d
d
e
e

d
$
d
a
d
a
e
e
b
c

$
a
a
b
c
d
d
d
e
e✓

𝐹 𝐹 𝐹𝐵𝑊𝑇
1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

Figure 4 Special case for computing BWT from BBWT (cf. Sect. 6.4) with the different example
string T := cedabedad$ having T1 = ced as its first Lyndon factor. Left: We find the first Lyndon
factor T1 = ced of T by forward search steps with FL. Its last character is stored at BWT[3]. Middle:
By exchanging $ with the last character of T1 in BWT, the LF mapping for the third d in F becomes
invalid. However, there is only a character run of T1[|T1|− 1] = e in BWT of the T1[|T1|] = d interval
in F starting with p = 7. So we recurse on LF[p] to find characters different from T1[|T1| − 2] = c to
swap in the respective T1[|T1| − 1] = e interval. Right: We have created a cycle with the characters
of the first Lyndon factor. A forward search step at $ gives the first character of the next Lyndon
factor.

However, if BWT[p..] starts with a character run of T [e(T1)− 1] (or of T [b(T1)] if |T1| = 1)3,356

swapping the identical characters does not change BWT, and therefore has no effect of357

changing LF. Instead, we search the end of this run within the interval in which F is f (the358

f interval of F) to swap elements below this run with elements starting with this run. If359

the number of effective swaps (i.e., a swap not exchanging two identical characters) is less360

than m, we recurse on the T1[|T1| − 1] interval of F starting at LF[p] (using the LF value361

before the swapping).362

To see why this restores the LF mapping for the remaining part of the text T2 · · ·Tt,363

we examine a substring x1x2f ∈ Σ3 that is represented in BWT (before changing it) with364

BWT[p+1] = x2,BWT[LF[p+1]] = x1,BWT[FL[p+1]] = f, and i0 := FL[p+1] ∈ [if+1..i$−1].365

Then FL[p] becomes i0 after exchanging BWT[i$] with BWT[if]. If we swap BWT[p] with366

BWT[p+ 1], then LF[p] is still i0, but BWT[LF[p]] becomes x1 such that BWT still represents367

this substring x1x2f (we only swap entries in the f interval of F such that BWT[FL[p]] is368

still f). With the same argument, we can generalize this proof from p+ 1 to p+ j within the369

f interval of F or for the swaps in the recursive call in the case that the number of effective370

swaps in the f interval of F is too small.371

7 Open Problems372

Crochemore et al. [9, Sect. 4] proposed a space and time trade-off algorithm based on their373

in-place techniques computing or reverting BWT. We are positive that it should be possible374

to adapt their techniques for computing or reverting BBWT or BWT◦.375

At https://github.com/daikihashimoto/BWT_to_BBWT, we have some preliminary im-376

plementations available giving empirical evidence of our conversions.377

3 That is because in this case p = i$, and hence, BWT[p] was $ but is now f = T1[1].

CVIT 2016

https://github.com/daikihashimoto/BWT_to_BBWT

23:12 In-Place Bijective Burrows Wheeler Transformations

References378

1 D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform:: Data379

Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.380

2 H. Bannai, J. Kärkkäinen, D. Köppl, and M. Piatkowski. Indexing the bijective BWT.381

In Proc. CPM, volume 128 of LIPIcs, pages 17:1–17:14, 2019.382

3 H. Bannai, J. Kärkkäinen, D. Köppl, and M. Piatkowski. Indexing the bijective BWT.383

ArXiv 1911.06985, 2019.384

4 P. Bille, A. R. Christiansen, P. H. Cording, I. L. Gørtz, F. R. Skjoldjensen, H. W.385

Vildhøj, and S. Vind. Dynamic relative compression, dynamic partial sums, and substring386

concatenation. Algorithmica, 80(11):3207–3224, 2018.387

5 S. Bonomo, S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. Sorting conjugates388

and suffixes of words in a multiset. Int. J. Found. Comput. Sci., 25(8):1161, 2014.389

6 M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm.390

Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.391

7 T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the “restore” model.392

ACM Trans. Algorithms, 14(2):11:1–11:18, 2018.393

8 K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus, IV. The quotient394

groups of the lower central series. Annals of Mathematics, pages 81–95, 1958.395

9 M. Crochemore, R. Grossi, J. Kärkkäinen, and G. M. Landau. Computing the Burrows-396

Wheeler transform in place and in small space. J. Discrete Algorithms, 32:44–52, 2015.397

10 J. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–381, 1983.398

11 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.399

FOCS, pages 390–398, 2000.400

12 P. Ferragina, G. Manzini, and S. M. Muthukrishnan. The Burrows-Wheeler Transform:401

Ten Years Later. DIMACS, 2004.402

13 M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with403

fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.404

14 T. Gagie, G. Manzini, G. Navarro, and J. Stoye. 25 Years of the Burrows-Wheeler405

Transform (Dagstuhl Seminar 19241). Dagstuhl Reports, 9(6):55–68, 2019.406

15 J. Y. Gil and D. A. Scott. A bijective string sorting transform. ArXiv 1201.3077, 2012.407

16 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In408

Proc. SODA, pages 841–850, 2003.409

17 T. Hagerup. Fast deterministic construction of static dictionaries. In Proc. SODA, pages410

414–418, 1999.411

18 W. Hon, T. Ku, C. Lu, R. Shah, and S. V. Thankachan. Efficient algorithm for circular412

Burrows-Wheeler transform. In Proc. CPM, volume 7354 of LNCS, pages 257–268, 2012.413

19 R. C. Lyndon. On Burnside’s problem. Transactions of the American Mathematical414

Society, 77(2):202–215, 1954.415

20 V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nord.416

J. Comput., 12(1):40–66, 2005.417

21 U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.418

SIAM J. Comput., 22(5):935–948, 1993.419

22 S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Burrows-Wheeler420

transform. Theor. Comput. Sci., 387(3):298–312, 2007.421

23 J. I. Munro and V. Raman. Selection from read-only memory and sorting with minimum422

data movement. Theor. Comput. Sci., 165(2):311–323, 1996.423

24 G. Navarro and Y. Nekrich. Optimal dynamic sequence representations. SIAM J. Comput.,424

43(5):1781–1806, 2014.425

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:13

25 G. Nong, S. Zhang, and W. H. Chan. Two efficient algorithms for linear time suffix array426

construction. IEEE Trans. Computers, 60(10):1471–1484, 2011.427

26 T. Ohno, Y. Takabatake, T. I, and H. Sakamoto. A faster implementation of online428

run-length Burrows-Wheeler transform. In Proc. IWOCA, volume 10765 of LNCS, pages429

409–419, 2017.430

27 A. Policriti and N. Prezza. LZ77 computation based on the run-length encoded BWT.431

Algorithmica, 80(7):1986–2011, 2018.432

CVIT 2016

23:14 In-Place Bijective Burrows Wheeler Transformations

A Pseudo Codes433

Algorithm 1 Computing BBWT from T [5, Algo. 13], cf. Sect. 6.1

1 foreach Lyndon factor Fx with x = 1 up to t do
2 prepend Tx[|Tx|] to BBWT
3 p← 1 . insert position in BBWT
4 foreach i = |Tx| − 1 down to 1 do
5 p← LF[p] + 1
6 insert Tx[i] at BBWT[p]

Algorithm 2 Computing BWT◦ in-place, cf. Sect. 6.1

1 assume that T is a Lyndon word
2 n← |T |
3 c← T [n]
4 T [n]← T [n− 1]
5 T [n− 1]← c

6 lastpos ← n

7 lastchar ← T [n]
8 for i = n− 1 to 1 do
9 count ← 0; rank ← 0

10 for j = i to n do
11 if T [j] < lastchar then
12 count ← count + 1

13 for j = i to lastpos do
14 if T [j] = lastchar then
15 rank ← rank + 1

16 lastpos ← i+ count + rank
17 lastchar ← T [i− 1]
18 for j = i− 1 to lastpos do
19 T [j]← T [j + 1]

20 return T . now storing BWT◦

D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara 23:15

Algorithm 3 Computing BBWT from BWT in-place, cf. Sect. 6.4

1 x← 1
2 while LF[i$] 6= $ where i$ is the position of $ in BWT do
3 i$ ← position of $ in BWT, if ← LF[i$]
4 while if does not correspond to Tx[|Tx|] do . use Lemma 1
5 if ← if + 1
6 p← position in BWT such that FL[p] = if
7 invariants:

BWT[i$] = Tx[|Tx|],BWT[FL[i$]] = Tx[1],F[p] = Tx[|Tx|],BWT[p] = Tx[|Tx| − 1]
8 exchange BWT[if] with BWT[i$]
9 m← |{i ∈ [if + 1..i$ − 1] with BWT[i] = Tx[|Tx|]}|

10 depth← 0
11 p′ ← LF[p] . save LF[p] as it may change while m > 0 do
12 dst← p, src← p+ 1
13 while BWT[src] = Tx[|Tx| − depth− 1] do src← src + 1
14 while F[src] = Tx[|Tx| − depth] do
15 swap BWT[src] with BWT[dst]
16 increment src and dst, decrement m
17 increment depth, p← p′, p′ ← LF[p′]
18 x← x+ 1 . done with T1 · · ·Tx−1

19 invariant: x = t

CVIT 2016

	Introduction
	Related Work
	Preliminaries
	Strings
	Lyndon Words
	Burrows-Wheeler Transforms

	Backward and Forward Search
	Run-length Compressed Wavelet Trees
	Search with the Bijective BWT

	Run-Length Compressed Conversions
	From RLBBWT to RLBWT
	From RLBWT to RLBBWT
	From Run-Length Compressed Text to RLBWT

	In-Place Conversions
	Computing BWT
	Restoring T from BWT
	Computing BWT or T from BBWT
	Computing BBWT from BWT

	Open Problems
	Pseudo Codes

