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Abstract9

We study a document retrieval problem in the new framework when D documents are organized in10

category trees with a pre-defined number h of categories. This situation occurs e.g. with taxomonic11

trees in biology or subject classification systems for scientific literature. Given a string pattern p12

and a category (level in the category tree), we wish to efficiently retrieve the t categorical units13

containing this pattern and belonging to the category. We propose several efficient solutions for this14

problem. One of them uses n(log σ(1 + o(1)) + logD +O(h)) +O(∆) bits of space and O(|p|+ t)15

query time, where n is the total length of the documents, σ the size of the alphabet used in16

the documents and ∆ is the total number of nodes in the category tree. Another solution uses17

n(log σ(1 + o(1)) +O(logD)) +O(∆) +O(D logn) bits of space and O(|p|+ t logD) query time. We18

finally propose other solutions which are more space-efficient at the expense of a slight increase in19

query time.20
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1 Introduction26

Data is often structured using category hierarchies represented by trees. In many applications,27

such hierarchies play a crucial guiding role: for example, the International Classification of28

Diseases (ICD) provides a hierarchical classification of all human disesases and constitues a29

common reference for diagnostic. In this paper, we are interested in sequence data, such as30

biological sequences or text documents, that are linked to a given hierarchy. More precisely,31

in our framework sequences are associated to leaves of a hierarchy, and tree nodes are mapped32

to several fixed levels, called ranks.33

This situation is common and occurs in several important applications. One is biology34

where species are classified according to the famous Linnaean taxonomy including eight35

common taxonomic ranks: species, genus, family, order, class, phylum, kingdom, domain.36

Then, given a set of sequences (DNA, RNA or protein) belonging to known species, one can37

associate them to the corresponding leaves of the taxonomic tree. Such a structure is used,38

for example, for phylogeny-based metagenomic classification where one considers the tree of39

known genomic sequences as a reference for classifying sequences of a metagnomic sample,40

see e.g. [21]. A classification procedure may involve queries asking for the taxonomic units41

(i.e. internal nodes of the tree) of a certain rank whose sequences contain a given pattern, or42

similar type of queries.43
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Another example is provided by text documents such as scientific papers. The latter44

are usually annotated by subjects belonging to a fixed hierarchical nomenclature, such as45

ACM Computing Classification System (CCS) or Mathematics Subject Classification (MSC).46

Those subject hierarchies have a predefined number of levels: four levels for CCS and three47

for MSC. Given a corpus of scientific papers, one could ask about subject categories at a48

certain level whose documents contain a given pattern. This is a natural information retrieval49

scenario.50

Here we study this problem from the stringology perspective (see e.g. [12, 7]). Assume51

we are given a set of D documents of total length n over an alphabet of size σ, organized in52

a tree of height h. The tree has D leaves, each associated with a distinct document, and all53

the leaves are all at level h of the tree. The total number of nodes in the tree is denoted by ∆54

The tree specifies a hierarchy of categories: each level of the tree corresponds to a category,55

and each internal node corresponds to a categorical unit.56

The basic type of query we study in this paper is the following.57

Given a pattern p, and a tree level (category) i ∈ [1..h], return all nodes (categorical58

units) d1, · · · , dt at level i that have at least one leaf (document) in their subtree that59

contains pattern p.60

Other types of queries include asking for all internal nodes with at least T > 1 leaves61

(documents) that contain p.62

In this work, we propose several algorithms for this problem. Our first solution (Section 3)63

is based on the approach of Muthukrishnan [14] to the document retrieval problem. By64

combining several algorithmic tools - efficient text index, colored range reporting queries, and65

level ancestor queries - we obtain a solution with n(log σ(1 + o(1)) + logD +O(h)) +O(∆)66

bits of space and O(|p| + t) query time, where t is the output size, i.e. the number of67

retrieved categorical units. To improve the space bound, in particular to get rid of the68

O(nh) term which can be as big as O(nD), we then develop a solution based on a wavelet69

tree built on top of the input category tree (Section 4). On this way, we first obtain a70

solution taking n(log σ + logD) + O(D logn) bits and O(|p|+ t · h logD) query time. We71

further improve it using the technique of heavy path decomposition, to obtain a solution72

in n(log σ(1 + o(1)) + logD) + O(∆) bits of space and O(|p|+ t logD) query time. In the73

final part of the paper (Section 5), we focus on solutions using succinct and compressed data74

structures, on top of the input data. That is, our main goal here is to replace the n logD75

bits by respectively n log σ or by nH0 + o(n log σ) in representing the document array. We76

obtain memory-time trade-offs showing how this goal can be achieved at the price of a slight77

increase of query time.78

We summarize our main results in the following table.79

algorithm space (bits) query time
based on colored n(log σ(1 + o(1)) + logD +O(h)) O(|p|+ t)

range queries (Sect. 3) +O(∆)
based on wavelet n(log σ(1 + o(1)) +O(logD)) O(|p|+ t logD)
tree (Sect. 4) +O(∆) +O(D logn)

compact space (Sect. 5) O(n log σ) O(|p|+ (t+ 1) · h logε n
logσ )

compressed space (Sect. 5) nHk + o(n log σ) +O(D logn) O(|p|+ t · h logn(log logn)2)

80

2 Preliminaries81

We first briefly present main algorithmic tools used by our algorithms.82
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2.1 Level ancestor queries on trees83

Consider a rooted tree. To each node in the tree we associate its level so that the level of the84

root is 1, and the level of a child node is 1 more than the level of its parent. The height of a85

tree is defined as the maximal level of any node in the tree. We denote by `α, the level of86

node α.87

We will use the implementation of level ancestor queries specified by the following lemma.88

I Lemma 1 ([17]). There exists a data structure that represents a tree with n nodes within89

space 2n+ o(n) and that allows answering the following queries in constant time:90

1. given a level ` and a node α at level at least `, return the ancestor node β of α at level `,91

2. given an integer i, return the node α where α is the leaf number i in left-to-right order.92

We denote by LAQ(α, i) the query which asks for the ancestor at level i of node α. We93

denote by leafselect(i) the query which returns the i-th leaf of the tree in left to right94

order.95

2.2 rank/select queries and wavelet trees96

rank and select queries on sequences constitute basic building blocks of many succinct data97

structures [11]. Given a string S[1..n] on an alphabet Σ, a query rankc(S, i), with c ∈ Σ and98

i ∈ [1..n], asks for the number of occurrences of c in S[1..i] and selectc(S, j) asks for the99

unique position i such that S[i] = c and rankc(S, i) = j.100

Consider first the important case of binary sequences (bitvectors). The following result is101

well-known, see [16].102

I Lemma 2. A bitvector B[1..n] can be represented using n + o(n) bits of space, so that103

queries rank and select are answered in constant time.104

In the case of non-binary alphabet, rank/select queries can be efficiently answered using105

wavelet trees. The wavelet tree has been formally introduced in [8], but a similar structure106

has been used earlier [3]. Suppose we are given a sequence S of length n over an alphabet Σ.107

The (binary) wavelet tree is a binary tree representation of S that is defined recursively as108

follows. Let Σ0 6= ∅ and Σ1 6= ∅ form a partition of Σ (that is, Σ = Σ0 ∪Σ1 and Σ0 ∩Σ1 = ∅).109

Then the root of the binary wavelet tree will contain a binary vector B, such that B[i] = 0110

iff S[i] ∈ Σ0. Let the sequence S0 (resp., S1) be formed by keeping only the elements of S111

that belong to Σ0 (resp., Σ1), in the same order. Then, the left (resp., right) child is defined112

recursively using S0 (resp., S1) and a binary partition of Σ0 (resp., Σ1). The recursion stops113

whenever we reach a leaf that corresponds to a singleton subset of Σ. Such nodes will form114

the leaves of the wavelet tree. We refer the reader to the survey [15] for more details about115

wavelet trees. We will make use of the following lemma:116

I Lemma 3 ([8]). The wavelet tree over alphabet [1..σ] can be represented using n(log σ +117

o(1)) +O(σ logn) bits of space, supporting rank and select queries in O(log σ) time.118

The definition of binary wavelet tree can be readily generalized to the non-binary case.119

As in the binary case, to any node α labeled by an interval Σα is (implicitly) associated the120

sequence Sα which is the subsequence of S[1..n] consisting of all characters belonging to Σα.121

If a node α of a wavelet tree has d children, then the alphabet interval Σα ⊆ [1..σ] assigned122

to α is partitioned into d disjoint subintervals instead of two, and α stores a sequence Cα123

over alphabet [1..d] of length |Sα| such that Cα[i] = j iff Sα[j] ∈ Σαj .124

CVIT 2016
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2.3 Text indexes125

We assume some familiarity with main text indexing structures: suffix trees, suffix arrays126

and BWT-indexes. Here we only recall some basic facts about them.127

Given a text T over an alphabet Σ = [1..σ], a suffix tree [20] is a data structure that128

stores in its leaves the set of suffixes of a text. The suffix array allows to answer to the basic129

string pattern matching query: given a pattern p, return the set of suffixes of T that have p130

as a prefix. More precisely, given a pattern p that occurs in p, the suffix tree will return the131

interval [i, j], where i (j) is the smallest (largest) such suffix in lexicographic order.132

The suffix array SA[1..n+ 1] is simply the array obtained by sorting all the suffixes of T$133

in lexicographic order, and setting SA[i] = j iff only if the suffix T [j..n]$ has lexicographic134

rank i among all suffixes of T$.135

The suffix tree occupies O(n logn) bits of space and a matching query needs access to136

the original text T in addition to the suffix tree. The query time is O(|p| log σ). The suffix137

array [13] is an alternative to the suffix tree which occupies the same O(n logn) bits of space,138

but has lower constant factors in space and supports matching queries in O(|p|+ logn) time.139

The BWT-index (FM-index) is a space-efficient alternative to suffix arrays and suffix140

trees which uses O(n log σ) bits of space only. It was originally proposed in [4] and has seen141

many improvements. We will make use of the following alphabet-independent version:142

I Lemma 4 ([1]). Given a text T of length n over alphabet [1..σ], we can build a BWT-index143

which occupies n log σ(1 + o(1)) bits of space and supports computing the range of suffixes144

prefixed by a pattern p in time O(|p|).145

Note that computing the range of suffixes answers also whether the pattern occurs in the146

text at all, and if so, reports the number of its occurrences (the size of the range). For this147

reason, the query presented in the lemma above is usually refered to as a count query. Text148

indexes like suffix tree, suffix array and BWT-index are usually extended so that they become149

able to report the location of each occurrence of the pattern in addition to the number of150

occurrences. These text indexes can be trivially extended to support the same type of queries151

on a collection of documents instead of a single document. More precisely, given a collection152

of texts T1, T2, . . . , TD over the same alphabet Σ, the same queries can be supported by153

constructing an index of string T1$T$ . . . TD$.154

2.4 Colored range reporting and document retrieval155

Muthukrishnan [14] was the first to study the problem of efficiently retrieving documents156

containing a given string pattern. Through the use of a text index, he reduced the problem157

to the one of color range reporting, i.e. reporting all distinct values (“colors”) occuring in158

a given interval of an array. His data structure relies on the use of range minimum query159

data structures – a data structure that can find in constant time the smallest element in160

an sub-range of on array. His algorithm was subsequently improved in in terms of space161

(Theorem 4 in [18]). We will use the following result on color range reporting which can be162

obtained by using the optimal range-minimum query data structure [5] in the method of [18]:163

I Lemma 5. Given an array A[1..n] ∈ [1..σ]n, we can build a static (read-only) data structure164

that occupies 2n+ o(n) bits that allows reporting all d distinct values occurring in a query165

interval A[i..j] in time O(d). The query will make read-only access to the data structure,166

read-only random access to the array A (access to elements) and read-write access to a167

bitvector B of size σ bits. The bitvector needs to be initalized to zero before the first query168

and is reset to zero at the end of each query.169
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In combination with text indexing, colored range reporting allows supporting document170

retrieval queries. More precisely, define the document array as follows: given a collection171

of D documents T1, T2 . . . TD of total length n, lexicographically sort all the suffixes of the172

text T ∗ = T1$T2$ . . . TD$, and set A[i] = j iff the suffix of T ∗ of lexicographic rank i starts173

inside Tj (if the suffix starts with $, then set A[i] = 0). Document array A can be easily174

obtained from a text index of T ∗ = T1$T2$ . . . TD$. It is then immediate that using these175

data structures, Lemma 5 leads to solving the document retrieval problem in time O(|p|+ d),176

where d is the number of resulting documents.177

3 Solution based on Muthukrishnan’s data structure178

Our first solution will be a combination of tools presented in the previous section. We first179

build a text index for the concatenation of documents T1$T2 . . . TD$. More specifically, we180

build an instance of the text index of Lemma 4 which occupies n log σ(1 + o(1)) bits and181

allows to locate the interval of all suffixes of the documents that start with p in time O(|p|).182

We also build the document array A[1..n], of size n logD, indexed by the document suffixes183

sorted in lexicographic order and storing the documents each of the suffixes belongs to.184

We further store h instances C1, . . . Ch of the data structure of Lemma 5, one instance185

per level of the tree, defined as follows. Consider d (virtual) arrays Ai[1..n], one per level186

i ∈ [1..h] of the tree, such that Ai[j] stores the ancestor at level i of document A[j]. Then,187

each Ci is the data structure of Lemma 5 for supporting range reporting queries on array188

Ai. Thus, Ci allows to return, for any interval [r..`], all distinct elements in Ai[r..`] in189

constant time per element provided that a random-access to each element in Ai is supported190

in constant time.191

Note that according to Lemma 5, a query will need to use D bits of working space2 since192

it will need to each use a temporary bitvector B of size Di ≤ D where Di is the number of193

nodes at level i of the tree3. By Lemma 5, each Ci occupies only 2n+ o(n). Finally, in order194

to simulate constant-time random access to entries of arrays Ai, 1 ≤ i ≤ h, we build a data195

structure for constant-time level ancestor queries on the category tree (Lemma 1). Notice196

that we can access cell Ai[j] using the formula Ai[j] = LAQ(leafselect(A[j]), i) The data197

structure will occupy 2∆ + o(∆) bits of space, where ∆ is the total number of nodes in the198

tree.199

To answer a query consisting of a pattern p and level i we proceed as follows. We first200

compute, in time O(|p|), the interval [r..`] of suffixes using the BWT-index (Lemma 4).201

The documents containing p are then those contained in A[r..`]. We then have to output202

all distinct ancestors of at level i of documents A[r..`], i.e. all distinct elements of Ai[r..`].203

This is done in constant time per reported element using Ci, as follows from Lemma 5 and204

constant-time access to elements of Ai using LAQ and leafselect queries.205

The document array occupies n logD bits of space. The text index built on top of the206

n log σ(1 + o(1)) bits. Each of the h instances of the data structure of Lemma 5 will occupy207

2n+ o(n) bits of space each for a total space of 2nh+ o(hn) bits of space. Each query The208

data structure built on top of the category tree occupies 2∆ + o(∆) bits of space.209

We thus have proved the following theorem:210

2 We define the working space as a writable space that is only used during queries and is restored to its
initial state at the end of the query

3 We can use the same bitvector B (Lemma5) of size D for all h levels: for a query on level i, the first Di
bits of B are initally set to zero and are reset to zero at the end of the query

CVIT 2016
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I Theorem 6. Given a collection of D documents of total length n over alphabet [1..σ] so that211

the documents are organized in a hierarchy of documents represented by a tree of total size ∆212

and of height h, we can build a data structure of size n(log σ(1 +o(1)) + logD+O(h)) +O(∆)213

bits of space that, given a pattern p, can find all t categories of documents at level i that have214

at least one document that contains the pattern in total time O(|p|+ t).215

This data structure will be good enough whenever h is small, for example, when h = logD,216

which holds for example when each internal node in the tree has at least two children.217

4 Wavelet-tree-based solution218

If each node of our tree is branching, i.e. has two or more children, then h = O(logD) and219

the solution of Secton 3 takes O(n(log σ + logD)) bits of space. (Recall that all leaves of220

our tree occur at level h) However, this may not be the case as the tree may have many221

non-branching (unary) nodes. In the extreme case, we may have h = Ω(D) and the space of222

Theorem 6 will become Ω(nD) which can be too large if D is large. In this section, we deal223

with this issue and present solutions based wavelet trees.224

As in Secton 3, we assume that we first located an interval [`..r] in the document array225

A that corresponds to the occurrences of the query pattern p. The goal is then to return all226

internal nodes at level i containing documents from A[`..r] in their subtree. In Section 4.1,227

we present the first ”warm-up” solution that we subsequently improve in Section 4.2.228

4.1 Basic wavelet-tree-based solution229

We build our wavelet tree on top of the input tree representing the hierarchy of the documents.230

Therefore, our initial wavelet tree is generally non-binary and non-balanced. As does the231

input tree, our wavelet tree has height h and O(∆) nodes in total. To save space, we will232

eliminate unary nodes from the wavelet tree (such a node α stores the trivial sequence233

Cα = 1|Sα|) and only encode O(D) branching nodes. For each branching node α we store its234

depth denoted δα. Besides the wavelet tree, we will need a data structure for level ancestor235

queries and that occupies O(∆) bits of space and answers queries in constant time.236

Our alphabet Σ will be defined to be the set of documents [1..D]. The alphabet interval237

Σα assigned to a node α will be the indices of documents occurring in the subtree rooted at238

α. The string S for which the tree is built will be the document array A[1..n].239

Our wavelet tree may have nodes with more than two children and we implement them240

by local binarization. If a node has d children, we will encode it using an binary wavelet241

tree of log d levels, called a local wavelet tree. In total, the wavelet tree occupies n(h logD)242

bits, since the tree contains h levels and each of the n elements of the document array will243

contribute at most logD bits to each level.244

The query is answered as follows. Recall that our query is defined by a pattern p and a245

level i in the input tree. Once we computed the document array interval corresponding to p,246

say A[`..r], we use our wavelet tree to identify the desired nodes at level i. Starting from the247

root, we traverse the tree top-down through all the nodes α whose assigned sub-alphabet248

Σα ⊆ [1..D] intersects with elements of A[`..r]. This is done by recomputing the current249

interval for each traversed node. An invariant of this computation is that querying a node α250

with an interval [i..j] ensures that all elements of A[`..r] ∩ Σα are within Sα[i..j]. Interval251

computation is done using rank/select, we refer to [6] where this computation is described252

in detail.253
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The query time for each traversed wavelet tree node is O(logD) (because of a local254

wavelet tree). Notice that we stop recursing over a node α as soon as δα ≥ i and report its255

ancestor at level i using the level ancestor data structure.256

In total, traversing the wavelet tree top-down will have to traverse at most h levels,257

possibly traversing at each level a local wavelet tree in time O(logD). Thus, the total258

worst-case query time will be O(h logD) per reported node (since each of them will incur259

the traversal of h levels with query time O(logD) per level). We thus proved the following260

theorem.261

I Theorem 7. Given a collection of D documents of total length n over alphabet [1..σ] and262

so that the documents are organized in a hierarchy of documents represented by a tree of263

height h, we can build a data structure of size n(log σ + h logD) +O(D logn) +O(∆) bits of264

space that can, given a pattern p, find all t categories of documents at level i that have at265

least one document that contains the pattern in total time O(|p|+ t · h logD).266

4.2 Solutions based on heavy path decomposition267

We now describe a more sophisticated solution based on the heavy path decomposition [19] of268

the wavelet tree from the previous section. Here we present a high-level description of our269

algorithms, full details will be given in the extended version of the paper.270

There are several variants of the definition of heavy path decomposition, with slight271

differences between the variants. In what follows we will use the following variant. With272

each node α of a given tree T , we associate a weight w(α) equal to the number of leaves in273

the subtree rooted at α. The heavy child β of α is the child of α with the greatest weight,274

with ties resolved arbitrarily. The other children of α are called light. The edge between α275

and its heavy child is called a heavy edge, whereas all the other edges from α to its children276

are called light edges.277

The heavy path decomposition of a tree T is a decomposition of T into paths defined278

recursively as follows. We first compute the heavy path (i.e. a path consisting of heavy edges)279

from the root of T to a leaf, and then recursively apply the decomposition to all subtrees280

rooted at all light children of the heavy path nodes. An interesting property of the heavy281

path decomposition is that the number of light edges on any root-to-leaf path is at most282

logD, where D is the number of leaves in the tree.283

4.2.1 First solution based on heavy path decomposition284

Our first solution will be neither space- nor time-optimal. For each heavy path for which the285

number of light children of nodes of the path is `α, the alphabet will be of size `α. We can286

order the nodes (light children) by increasing depths. The sequence Sα that is associated with287

a heavy path α1, . . . αk that starts at node α = α1, will be of length nα over alphabet [1..`α],288

where nα is the number of occurrences of leaves (documents) in the subtree rooted at α in289

the document array A. That is, the sequence will be a subsequence of A[1..n], where only the290

documents that belong to the leaves under α are kept, and the encoding of each element in291

the subsequence will be the index of the children of the heavy path under which the document292

appears. Let the depths of the nodes in the heavy path be denoted by d1 < . . . < dk. We293

additionally store a bitvector Bα marking the node depths of the different nodes. That is,294

we initialize the bitvector Bα by all zeros and then set Bα[di] = 1 for every i ∈ [1..k].295

A query for depth d will now proceed as follows. We traverse the tree top-down. At each296

step297

CVIT 2016
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1. we first use the bitvector that marks the node depths to determine a subrange [1..r] of the298

alphabet that will be used for the query (the light-nodes included in the range will have299

depths at most d, whereas the nodes in the range [r + 1..h] will have depth more than d).300

2. we traverse the wavelet tree of the current-heavy-path. Such a query will spend time301

O(t log `α) for a heavy-path with `α light-children, in which t distinct light-children302

appear in the sequence.303

It is easy to see that the total space will be O(n log2 D) bits, since the alphabet size is304

O(log `α) for each node α with nα and each element of A will incur at most logD elements305

in the Wavelet-trees stored in the heavy-paths of the tree. The query time can be similarly306

bounded to be O(log2 D) by reported document by a similar argument (we traverse logD307

heavy-paths and each traversal costs logD time).308

We thus obtain the following result.309

I Theorem 8. Given a collection of D documents of total length n over alphabet [1..σ] and310

so that the documents are organized in a hierarchy of documents represented by a tree of311

total size ∆, we can build a data structure of size O(n log2 D + ∆) bits of space that can find312

given a pattern p find all t categories of documents at level i that have at least one document313

containing the pattern in total time O(|p|+ t log2 D).314

4.2.2 Second solution based on heavy path decomposition315

Our second solution based on heavy-path decomposition will rely on a more fine-grained316

encoding. We will make use of Huffman-shaped wavelet tree for each heavy path, such that317

the the wavelet tree node corresponding to a light node of relative weight w (the weight light318

node divided by weight of the root of heavy path) will be encoded using log(1/w) + O(1)319

bits and the correponding wavelet tree leaf will be at depth log(1/w) +O(1). It is now easy320

to see that the encoding of each element of A will incur O(logD) bits and moreover the321

cost of a query can be upper-bounded by just O(logD). Both bounds rely on a telescoping322

argument. We thus have proved the following theorem:323

I Theorem 9. Given a collection of D documents of total length n over alphabet [1..σ] and324

so that the documents are organized in a hierarchy of documents represented by a tree of total325

size ∆, we can build a data structure of size n(log σ(1+o(1))+O(logD))+O(∆)+O(D logn)326

bits of space that can find given a pattern p find all t categories of documents at level i that327

have at least one document that contains the pattern in total time O(|p|+ t logD).328

5 Compact and compressed data structures for categorical data329

queries330

In this section we explore more space-effcient versions of the problem. More in detail, we are331

interested in studying the problem under succinct and compressed-space constraints. Namely,332

our aim is to use O(n log σ) bits for the succinct case and nH0 + o(n log σ) + O(D logn)333

bits of space for the compressed case. We can improve the solutuion described in Section 3.334

More precisely we avoid the storage of the document array and simulate direct access to the335

document array using the compressed suffix array representation [9]. As a consequence we336

can achive time O(logε n) to get the given document index A[i] for any i ∈ [1..n]. This will337

reduce the space to represent the document array from O(n logD) to O(n log σ) bits. Now338

the space used by the range-minimum query data structures will become the bottleneck. To339

reduce the space usage we will make use of sparsification. More precisely we will divide the340
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document array into blocks and sample just the values of the A array that are the smallest in341

each block. The space becomes O(n/α) bits where α is the sparsification factor. For details342

on how the sparsification is used to simulate the reporting of distinct documents that appear343

in interval A[i..j], we refer the reader to [2, 10]. Here we just mention that the time per344

reported document becomes O(α logε n) and entails O(α) accesses to the docoyment array,345

each of which requires O(logε n) time. We thus have proved the following result:346

I Theorem 10. Given a parameter α and collection of D documents of total length n347

over alphabet [1..σ] and so that the documents are organized in a hierarchy of documents348

represented by a tree of height h, we can build a data structure of size O(n log σ) +O(nh/α)349

bits of space that can, given a pattern p, find all t categories of documents at level i that have350

at least one document that contains the pattern in total time O(|p|+ t · α logε n).351

By setting α = h
logσ we get space O(n log σ) bits and query time O(|p|+ (t+ 1) · h logε n

logσ ).352

We thus have got the following corollary:353

I Corollary 11. Given a parameter α and collection of D documents of total length n354

over alphabet [1..σ] and so that the documents are organized in a hierarchy of documents355

represented by a tree of height h, we can build a data structure of size O(n log σ) bits of space356

that can, given a pattern p, find all t categories of documents at level i that have at least one357

document that contains the pattern in total time O(|p|+ (t+ 1) · h logε n
logσ ).358

Whenever h = logD (e.g. every internal node is branching), the query time simplifies to359

O(|p|+ (t+ 1) · logσD · logε n) ∈ O(|p|+ (t+ 1) log1+ε n). We can also get compressed space.360

Namely, we can use a compressed suffix array [8] with query time logn log logn and space361

nHk + o(n) to represent the document array. We will combine the compressed suffix array362

with the alphabet-independent variant of BWT-index presented in [1]. We then get an index363

that uses space nHk + o(n log σ) with query time O(|p|) to find the suffix array interval of a364

pattern and O(logn log logn) time to access an element of the suffix array. Notice that we365

can translate access to the suffix array element to an access to a document array element366

using O(D logn) bits of space. Summing up we get the following theorem:367

I Theorem 12. Given a parameter α and collection of D documents of total length n368

over alphabet [1..σ] and so that the documents are organized in a hierarchy of documents369

represented by a tree of height h, we can build a data structure of size nHk + o(n log σ) +370

O(D logn) + O(nh/α) bits of space that can, given a pattern p, find all t categories of371

documents at level i that have at least one document that contains the pattern in total time372

O(|p|+ t · α logn log logn).373

By setting α = h · log logn, we get space nHk + o(n log σ) +O(D logn) bits and query time374

O(|p|+ t · h logn(log logn)2). The latter becomes O(|p|+ t logD logn(log logn)2) whenever375

h = O(logD).376

6 Conclusions377

In this paper, we proposed several solutions for the problem of categorical retrieval. Possible378

extensions of our work include the case when the document hierarchy is a DAG rather than379

a tree. This situation occurs, for example, with phylogenetic networks. The solution in380

Section 3 could easily be extended to DAG structured categories if there was an efficient381

support for level ancestor queries on DAGs. Other possible extensions includes top-k queries382

in which categories are either ordered by a static order or by the total frequency of the383

pattern in the documents that belong to the reported categories.384
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