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Abstract25

A tandem repeat is an occurrence of two adjacent identical substrings. In this paper, we introduce26

the notion of a double string, which consists of two parallel strings, and we study the problem of27

locating all tandem repeats in a double string. Double strings are ubiquitous in nature, as molecules28

such as DNA and RNA come in pairs. However, the problem introduced here has applications29

beyond actual double strings, as we illustrate by solving two different problems with the algorithm30

of the double string tandem repeats problem. The first problem is that of finding all corner-sharing31

tandems in a 2-dimensional text, defined by Apostolico and Brimkov. The second problem is that of32

finding all scaled tandem repeats in a 1d text, where a scaled tandem repeat is defined as a string33

UU ′ such that U ′ is discrete scale of U . In addition to the algorithms for exact tandem repeats, we34

also present algorithms that solve the problem in the inexact sense, allowing up to k mismatches.35

We believe that this framework will open a new perspective for other problems in the future.36
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23:2 Double String Tandem Repeats

1 Introduction46

A tandem repeat, or square, is a string which consists of two consecutive identical occurrences47

of a substring or root, e.g. abab. Finding all tandem repeats in a given string is a well-studied48

problem with many applications in diverse areas such as biological sequence analysis and49

data compression. A maximal run in a string S is a substring of S that is periodic and50

cannot be extended at all to the right or left, e.g. ababa is a maximal run in the string51

abaababac. A maximal run in a string represents contiguous tandem repeats, all with periods52

conjugates of each other, and as such, maximal runs have been used to succinctly encode all53

tandem repeats. For example, the maximal run ababa represents consecutive tandem repeats54

with roots ab and ba.55

In this paper, we consider the problem of finding tandem repeats in input that consists56

of two parallel strings. We define a double string, and introduce the corresponding notions57

of tandem repeat and run in a double string. Double strings are ubiquitous in nature, as58

molecules such as DNA and RNA come in pairs.1 Hence, the problem considered is interesting59

from both a theoretical and practical perspective. However, the strength of this paper’s60

contribution lies in its applicability to unrelated variants of the tandem repeats problem. We61

show how the solution to the double string tandem repeats problem can be used to solve two62

different problems. The first is finding 2D corner-sharing tandems, and the second is finding63

all scaled tandem repeats. We are confident that more applications of double string pattern64

matching will be discovered in the future.65

In Section 2 we present precise definitions and examples of tandem repeats and runs in66

a double string, and then prove upper and lower bounds on the number of occurrences of67

such runs. In Section 3 we present a O(n logn) time algorithm for locating all double string68

tandem repeats. We then extend this algorithm to deal with double string tandem repeats69

while allowing k mismatches. In Section 4 we provide a reduction of the 2-dimensional (2D)70

corner-sharing tandem problem to the double string tandem repeats problem. We thus obtain71

a more efficient algorithm for locating all corner-sharing tandems in a 2D text, both with72

and without mismatches. Finally, in Section 5 we solve the scaled tandem repeats problem by73

reducing it to a tandem repeats problem on double strings.74

2 Definition and Characterization of Double String TR’s75

We use S[i] to denote the ith character of a string S, and S[i . . . j] to denote the substring of76

S from S[i] through S[j].77

I Definition 1. A double string of length n consists of two parallel sequences over a given78

alphabet, each of length n, indexed by 1 . . . n. We call the two strings S1 and S2.79

Example 1: a double string of length 5, with S1 = aabca and S2 = ccbba.80

1 2 3 4 5
a a b c a
c c b b a

81

I Definition 2. A double string tandem repeat (2-str TR) is a substring of S1 and a82

substring of S2 that are identical and consecutive. As in one string, we call the repeating83

1 In DNA and RNA there are specific relationships between corresponding bases, while our definition of a
double string does not imply any such relationship.
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substring the root or period of the 2-str TR. Specifically, a 2-str TR with length 2p beginning84

at location i in S1, implies that the substring S1[i . . . i+ p− 1] is identical to the substring85

S2[i+ p . . . i+ 2p− 1]. A 2-str TR beginning at location j in S2 implies that S2[j . . . j+ p− 1]86

is identical to the substring S1[j + p . . . j + 2p− 1].87

Example 2: A double string tandem repeat with root abc begins at location 2 in S1.88

1 2 3 4 5 6 7 8
a a b c a a b b
c c b b a b c d

89

For the remainder of the paper, we assume that the 2-str TR begins in S1; all lemmas90

and algorithms apply with minor modifications to indices for those beginning in S2.91

I Definition 3. A 2-str run (i, j, p) in a double string (S1, S2) of length n, 1 ≤ i ≤ j ≤92

n− 2p+ 1, 1 ≤ p ≤ n/2, is a sequence of one or more 2-str TR’s with period size p beginning93

at each location i ≤ ` ≤ j in S1. The run is said to be maximal if it cannot be extended to94

the left or right, i.e. both (i− 1, j, p) and (i, j + 1, p) are not 2-str runs.95

Example 3: A maximal run with period size 3 occurs at locations 1 . . . 6 in S1 and 4 . . . 9 in S2. It
can be represented by the triple (1, 4, 3), since 1 is the start of the leftmost tandem, 4 is the start of
the rightmost tandem, and 3 is the period size.

1 2 3 4 5 6 7 8 9
a b c x y z z z z
a a a a b c x y z

Although all of the consecutive 2-str TR’s in a 2-str run have the same period size, the96

actual characters in the periods can be different for different tandems in the same run (as is97

evident in Example 3 which shows 2-str TRs with roots abc, bcx, cxy, xyz). Thus, transitivity98

in equality of location i with location i− p and i+ p, for period p, which holds trivially for a99

run in a string, does not hold for a 2-str run. Nevertheless, 2-str runs can still be used as an100

efficient encoding of consecutive 2-str TR’s, and as we show in the next subsection, there101

cannot be too many of them.102

2.1 The number of maximal 2-str runs in a double string103

I Lemma 4. Two distinct maximal 2-str runs in a double string, with the same period size,104

cannot overlap within S1 or S2.105

Proof. Let p be the period size of two distinct maximal 2-str runs in a given double string, and106

let j be the rightmost location of the 2-str run that has the leftmost starting location. Due to107

the maximality, there must be a mismatch following the first run, thus S1[j+1] 6= S2[j+p+1],108

and location j + 1 cannot be included in any 2-str run with period p due to the mismatch.109

Therefore, the second 2-str run must start to the right of location j + 1 in S1 and hence110

cannot overlap. J111

Note that in one string, two maximal runs with the same period size may overlap, as long112

as the overlap is shorter than the period size, for e.g. abcabcxbcx.113

I Lemma 5. There can be O(n logn) maximal 2-str runs in a double string of length n.114

Proof. For a given period p there are no more than n/p maximal 2-str runs since they cannot115

overlap by Lemma 4. Since p can be 1 . . . n/2, this yields Σn/2
p n/p, a harmonic series which116

is bound by O(n logn). J117

CVIT 2016
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I Lemma 6. There can be Ω(n) maximal 2-str runs in a double string of length n.118

Proof. If we take any S1 that contains O(n) runs (e.g. Fibonacci string [9]), and then set119

S1 = S2, we will get a double string with O(n) 2-str runs, since the first period of each run120

in S1 will pair up with the second period in S2. J121

Remarks: We point out that the gap of logn between the upper and lower bound remains122

an open problem. Further, we note that the definitions of 2-str TR and run ignore the123

concept of primitivity, and we include reasoning for this in the appendix. Thus, for example,124

the double string S1 = S2 = an contains bn
2 c 2-str runs, one for each period size.125

3 The Algorithm126

A common idea used in algorithms that find tandem repeats in a string, is to search for all127

tandem repeats that cross a given point (see for e.g. [11, 15]). Instead of fixing the starting128

point of a tandem, and searching for xx, the algorithm fixes certain points that the set of129

contiguous tandems must cross, and searches for all tandems that cross that point. We use130

this idea, searching for each period size separately, and reporting consecutive tandem repeats131

as a single run. We follow the framework of the Main-Lorentz algorithm [16] (see pseudocode132

in Algorithm 1). Given an input double string (S1, S2) of length n, in the first iteration,133

all runs that cross the center of the string are found. In the following iteration, (S1, S2) is134

split into two halves, and each one is searched individually. (To simplify the presentation135

we assume that n is a power of 2.) As implemented in Algorithm 1, this continues for logn136

iterations.137

The runs that cross the center are classified into two groups. A right run has more than138

half of its characters to the right of the center of the string, and a left run has the majority139

of its characters to the left of the center. Algorithm 2, together with Figure 1, describes the140

procedure that finds all right runs; by symmetry, all left runs can be found.141

The novel idea of Algorithm 2 is that computing the longest common extensions using142

two different strings yields the desired results. The forward comparisons are done with a143

substring of S1 against a substring S2, and the same for the reverse comparisons. These144

extensions define which runs occur in the double string crossing the midpoint. The standard145

KMP algorithm [10] is used to compute all of the forward and reverse extensions in linear146

time. The input pattern to KMP for the forward extensions is the string S1[ n
2 . . . n] and the147

text is S2[ n
2 + 1 . . . n]. Conversely the reverses of S1[1 . . . n

2 − 1] and S2[1 . . . n] are used as148

input to KMP for the reverse extensions.149

Algorithm 1 Find Runs in a Double String
Input: double string (S1, S2) of length n
Output: all runs that occur in the double string

for i = log2 n downto 1 do . for logn iterations of ML framework
for ` = 0 to n/2i − 1 do . for each piece of the input of width 2i

FindRightRuns((S1, S2) , `2i + 1, (`+ 1)2i)
FindLeftRuns((S1, S2) , `2i + 1, (`+ 1)2i)

end for
end for

I Lemma 7. Algorithm 1 finds all 2-str runs in a double string (S1, S2) in O(n logn) time.150
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Algorithm 2 FindRightRuns
Input: double string (S1, S2), beg, end (beginning and end indexes of substring to search)
Output: all right runs that occur in the double string that cross the midpoint.
n = end− beg + 1
mid = (beg + end)/2
for p = 1 to n/2 do . find runs with period p

δ1 = length of longest common prefix of S1[mid . . . n] and S2[mid+ p . . . n]
. Forward Extension

δ2 = length of longest common suffix of S1[1 . . .mid− 1] and S2[1 . . .mid+ p− 1]
. Reverse Extension

if δ1 + δ2 ≥ p then
report run (mid− δ2,mid+ δ1 − 1, p)

end if
end for

𝑛

2
 

𝑛 

𝑛

2
+  𝑝 

𝑆1 

𝑆2 

𝛿1 
𝛿2 

𝛿1 
𝛿2 

Figure 1 Computing right runs: The figure shows the first iteration, where beg = 1 and end = |S1|.
δ1 is the length of the forward extension that results from matching S1[ n

2 . . . n] to S2[ n
2 + p . . . n]. δ2

is the length of the reverse extension of S1[1 . . . n
2 − 1] and S2[1 . . . n

2 + p− 1]. If δ1 + δ2 ≥ p, then
there are tandem repeats with period size p beginning from location S1[ n

2 − δ2 . . .
n
2 + δ1 − 1]. These

are reported by the algorithm as a single run.

Proof. Every run within (S1, S2) crosses the center of a substring of S1 at some point in the151

algorithm. As proof of this, consider a run that does not cross the center of S1, and hence is152

not found in the first iteration. The run will be divided among different substrings at some153

point since in the final iteration the input strings are of length 1. In the step prior to its154

division, a given run must cross the center since the center becomes the splitting point of the155

following iteration. In each iteration, only one 2-str run of a given period can cross the center,156

since no two runs of the same period size can overlap by Lemma 4. Since the algorithm157

checks each possible period size, all 2-str runs will be found by the algorithm. Since there158

are O(logn) iterations, and each iteration takes O(n) time, the total time complexity of159

Algorithm 1 is O(n logn). J160

3.1 Tandem Repeats in a Double String with k-mismatches161

The Hamming distance between two strings is defined as the number of mismatching characters162

between the two strings. Allowing a Hamming distance up to k between the two occurrences163

of the root results in a k-mismatch 2-str TR. The concept of a k-mismatch run applies as well,164

where a run includes consecutive k-mismatch tandem repeats (i.e. each repeat in the run has165

at most k mismatches, and overall the number of mismatches in the run is not relevant).166

Example 6: A double string tandem repeat with k = 1 mismatch begins at location 2 in S1.167

CVIT 2016



23:6 Double String Tandem Repeats

1 2 3 4 5 6 7 8
a a b c a a b b
c c b b b b c d

168

Just as we were able to directly extend the Main and Lorentz idea in the previous169

section, we are able to extend the algorithm of [12] which solves the tandem repeats with170

k-mismatches problem in 1 string. First, instead of using KMP to find the longest common171

extenstions, the algorithm uses the “kangaroo method” that relies on suffix trees and Lowest172

Common Ancestor (LCA) queries to give the position of the first mismatch between strings173

[6].174

Hence, suffix trees in both the forward and reverse direction must be constructed for each175

S1 and S2, and preprocessed for LCA to allow constant time Longest Common Prefix (LCP)176

queries [8, 13].177

As in the previous algorithm, there are O(logn) iterations and in each iteration, the178

repeats that cross the center are found by using the forward and reverse extensions. However,179

in this case the comparisons are done allowing up to k errors in each direction. Specifically,180

each possible period p is searched for separately. For a given p, each LCP query returns a181

position of mismatch, and when the k + 1st mismatch is encountered, we stop. Finally, the182

algorithm considers each pair, (k′, k − k′) for 0 ≤ k′ ≤ k. For each pair, we check whether a183

2-str TR exists when allowing k′ mismatches in the reverse extension and k − k′ mismatches184

in the forward extension.185

Time Complexity: The number of iterations is slightly smaller than in the previous186

algorithm, since for substrings with length ≤ k, our algorithm should not be run, but a187

simple O(k) time method should be used. In each iteration, there are O(k) LCP queries188

done for each possible period size. In addition, before reporting in a particular period, we189

consider O(k) pairs, allowing a number of mismatches to the left and right. Hence, each190

iteration takes O(nk) time, and the overall runtime is O(nk logn/k).191

4 Application 1 - Corner Sharing Tandems192

I Definition 8. A 2D corner-sharing tandem ( cs-tandem) in a 2D array, is a configuration193

consisting of two occurrences of the same subarray that share one corner (see Figure 2).194

In [2], Apostolico and Brimkov mention that all primitive corner-sharing tandems can195

be found in O(n4) time using similar techniques to their algorithm that they presented for196

side-sharing tandems. In this section, we reduce the problem of finding all corner-sharing197

tandems in a 2D array to the problem of finding tandems in a double string. We thus obtain198

a O(n3 logn) time algorithm for this problem. Although the actual output may be of size199

O(n4) cs-tandems, we can reasonably represent the set of cs-tandems with the set of maximal200

cs-runs, which has size at most O(n3 logn). For the special case of tandems that are square201

(i.e. of size p × p), the algorithm acheives O(n2 logn). Finally, the algorithm that allows202

mismatches in a 2-str TR is also extended to 2D cs-tandems with mismatches, as described203

in Section 4.3.204

I Definition 9. A 2D corner-sharing horizontal run (cs-run) is a sequence of one or more205

corner sharing tandems with the same period size occurring consecutively.206

I Lemma 10. There can be O(n3 logn) and Ω(n3) maximal cs-runs in a 2D array of size207

n2.208

Proof. The proof has been omitted due to lack of space.209
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Figure 2 The two configurations of a 2D cs-tandem.

4.1 Reduction210

The technique of naming in 1d is that of consistently replacing identical substrings with211

an integer called the name. We use the following 2D naming technique to reduce the 2D212

corner sharing tandem problem to the 2-str tandem problem. Given an input 2D text T ,213

we construct n/2 2D texts by naming all subcolumns of T . We create a new text called Th214

for each 1 ≤ h ≤ n/2, such that Th[r, c] is the name of the height h substring in column c215

beginning at row r.216

Each two rows, i and i+ h, in each text of names Th, 1 ≤ h ≤ n/2, is input as a double217

string to the algorithm that finds tandem repeats in a double string. Since we have a text218

of names for each height, every corner sharing tandem of height h′, will appear as a 2-str219

tandem in the text of names for Th′ . See Figure 3 for an example.220

The time complexity for the reduction is O(n3) since we construct O(n) texts, each in221

time linear to the size of T , as the naming can be done during construction of a suffix tree of222

all columns [17]. Algorithm 3 presents pseudocode for the corner-sharing tandem problem.223

Algorithm 1 is called O(n) times for each of the O(n) texts, and each running of Algorithm 1224

takes O(n logn) time. Overall, the 2D corner-sharing tandem problem is solved in O(n3 logn)225

time.226

Algorithm 3 Corner Sharing Tandems Algorithm in 2D Text
Input: 2D text T of size n× n
Output: all corner-sharing tandems in T

Preprocessing: Construct n/2 texts of names, Th, 1 ≤ h ≤ n/2

Text Scanning:
for h = 1 to n/2 do . for each height h

for r = 1 to n− 2h+ 1 do . for each row r in Th

call Algorithm 1 with rows r and r + h in Th as S1, S2 respectively.
end for

end for

4.2 Corner-Sharing Square Tandems227

If the problem of finding all corner-sharing tandems is limited to those tandems whose roots228

are of size p × p, we can improve our algorithm to run in O(n2 logn) time. We will have229

to show two things: 1: a transformation of the input 2D text into input to the double230

string problem in less time. 2. The search phase of the algorithm can be improved. The231

CVIT 2016



23:8 Double String Tandem Repeats

transformation can be done using the techniques of [7] for finding 2D palindromes, while the232

search phase can be shown to be faster using a counting trick. Details are omitted due to233

lack of space.234

a b c d e a x x x x

a b c d e a x x x x

c c c c c c x x x x

y y y y a b c d e a

y y y y a b c d e a

y y y y c c c c c c

1 2 3 4 5 1 6 6 6 6

7 7 7 7 1 2 3 4 5 1

Figure 3 Input text T is shown on the left, containing a run with period size 3× 4, beginning at
its upper left corner. The two corresponding rows in T3 can be viewed as a double string, and the
2-str run with period 4 found with substring “123451” in S1 directly corresponds to the cs-run in T .

4.3 Corner Sharing Tandems with k-mismatches235

A 2D corner sharing tandem that allows up to k mismatches between copies is called a k-236

mismatch cs-tandem. A k-mismatch cs-run can be defined analogously as a set of contiguous237

k-mismatch cs-tandems, such that each individual cs-tandem contains at most k mismatches.238

The algorithm described in Section 3.1 searches for tandem repeats in a double string allowing239

k mismatches. The reduction of Section 4.1 can be used in a similar manner to reduce240

the k-mismatch cs-tandem problem to the k-mismatch double string problem. However,241

each mismatch between names in the 2D text may consist of one or more mismatches in242

the column, and will therefore need further investigation. Hence, we will need to process243

the mismatching columns when attempting to discover the actual tandems. Details will be244

included in the full version of the paper.245

5 Application 2 - Scaled Tandem Repeats246

5.1 Definitions and Properties247

Denote the string aa . . . a, where a repeated r times, by ar. Let S = ar1
1 a

r2
2 . . . a

rj

j be a string248

for which ai 6= ai+1. Let e ∈ N , we say that S[e] is an e-scaling of S if S[e] = ar1·e
1 ar2·e

2 . . . a
rj ·e
j .249

I Definition 11. A scaled tandem repeat is a string UU ′ where U ′ is an e-scaling of U for250

some integer e, i.e. U ′ = U [e]. We call the period of a scaled tandem repeat the length of the251

first copy, i.e. |U |.252

We say that a scaled tandem repeat is sharp if the the last letter of U is not equal to the253

first letter of U ′. Similarly, we say that scaled tandem repeat UU ′ occurring within text T is254

a sharp occurrence, if the character in T prior to U differs from the first character of U , and255

the following character in T differs from the last character of U ′. Using the techniques of [1]256

it is possible to show that any solution to the problem of finding sharp occurrences of sharp257

scaled tandem repeats yields a solution to the general scaled tandem problem with the same258

complexity. Thus, we solve the following problem.259

260
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Problem Definition: Given a 1-dimensional text T = t1 . . . tn, find all sharp occurrencces261

of sharp scaled tandem repeats (SSTR) that are substrings of T .262

263

We assume that the number of distinct characters in a sharp tandem repeat is at least264

two, otherwise it would not be sharp. We also assume that the scaled tandem repeats we are265

seeking are of scale e > 1, since for e = 1 this is the known case of regular tandem repeats.266

Define T ′ as the run-length encoding (RLE) of the given text T , where each sequence of267

characters is replaced with a character and exponent. T ′char is the string of characters of the268

RLE of T , and T ′exp is the string of exponents of T ′. In a similar manner to [5] we define269

the quotient array SQ[1..n− 1] of array of numbers S[1..n] as follows: SQ[i] = S[i+ 1]/S[i].270

I Lemma 12. No more than O(n logn) SSTR can occur in a string T of length n.271

Proof. Every SSTR in T must correspond to a tandem repeat in T ′char. By the Three272

Squares Lemma [4], each location in T ′char can have at most O(logn) tandem repeats. We273

conclude that there are O(n logn) SSTR’s in T . J274

The naive algorithm for the problem would consider every substring of the input text T275

and check whether it is an SSTR resulting in time O(n3). Known methods of using suffix276

trees and LCA’s on the character and quotient arrays of the string (see e.g. [14]) , allow277

checking in constant time, for every substring U of T , whether the subsequent substring of278

T is a scaled copy of U . Thus the time complexity of straight-forward improvements for279

finding all scaled tandem repeats would be O(n2).280

In the next subsection we solve the SSTR problem in a more efficient way by reducing281

the problem into a tandem problem on double strings. To this end, we first generalize the282

definition of a run as a concatenated string of repeats, so that the problem can fit into the283

framework described in Sections 2 and 3.284

I Definition 13. Let T be a string, 1 ≤ i < j ≤ n. We say that there is a scaled run from285

T [i] to T [j] if there are k, `; i < k ≤ ` < j, for which ∃e, T [k . . . j] = T [i . . . `][e]. e is called286

the scale of the run. The period of the run is the period of the leftmost scaled tandem repeat287

in the run. A scaled run with scale e is maximal if it cannot be extended by one character288

either to the right or the left, i.e. there are no scaled runs from T [i] to T [j + 1], from T [i− 1]289

to T [j], nor from T [i− 1] to T [j + 1] with scale e.290

Figure 4 An example of a scaled run.

5.1.1 The Compact Region Idea for Scaling291

In [3], Butman, Eres and Landau showed a linear-sized data structure of compact regions of292

text T that enables efficient work on scaled matching problems. The idea is to construct n/2293

collections of strings T1, ..., Tn/2, where the sum of the lengths of the substrings in all Ti’s is294

O(n). We will then seek dual tandems of each such substring S in the Ti’s and a substring295

of T whose length is O(|S|).296

We provide below the definition of the compact regions data structure, which is based297

upon the following observation.298

CVIT 2016



23:10 Double String Tandem Repeats

B Observation 1. If a substring S scaled to e occurs sharply in σi
ji · · ·σk

jk then ji, . . . , jk299

are multiples of e.300

Following the above observation, the compact regions structure computes for each scale e301

a compact text Te in the following two steps:302

Step 1: Locate all the regions in T where the symbols appear in scale e. Add the symbol $303

as a separator between the regions.304

Step 2: Expand these regions to include the symbols on their boundaries. In order to simplify305

the computation of Stage 2, a symbol tjrj of T is replaced in Te by tj
b

rj
e c. Butman et306

al. [3] showed that the total length of all regions in O(n), and that the compact regions data307

structure can be constructed in linear time.308

5.2 The Reduction309

The reduction is based on the following lemma.310

I Lemma 14. Let T be a text and assume that there is a scaled tandem to scale e > 1311

starting in index i of T , where the length of the period is p. Then the scaled part of the312

tandem is represented by a substring of a single compact region in Te. In fact, the substring313

in Te is precisely the period.314

Proof: Since the scale of the period is e, then e divides the exponent of every symbol315

in the scaled part of the tandem. We write in Te the scales divided by e therefore what is316

written in Te is precisely the period. J317

Assume that a compact region C in Te starts at location i of the RLE T ′ of T . Lemma 14318

assures us that any scaled tandem whose scaled repetition occurs in C cannot start in any319

index smaller than i−|C| and cannot end in any index larger than i+ |C|. Let X be the string320

composed of |C| occurrences of σ1, where σ is a symbol not in the alphabet. Let C ′ = XC.321

Then every double string tandem between the strings T ′[i−|C|..i+ |C|] and C ′ is an e-scaled322

tandem in T . The figure below illustrates this. Both abaabb and abaabbccaabbaaaabbbbcccc323

are 2-scale tandems. They both appear as double string tandems between the appropriate324

substring of T ′ and C ′.

Figure 5 2-scale tandems as double tandems.

325

Time: The compact regions data structure is created in time O(n). For every region C326

the double string tandem repeats are found in time O(|C| log |C|). Since
∑
∀C |C| = O(n)327

the total time is O(n logn).328
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a primitive root encodes the information about all tandem repeats that span its substring, for378

e.g. ababababababa encodes consecutive tandems with periods 2, 4, and 6. We can encode this379

output as a triple (i, j, p), where i is the start location of the leftmost tandem, j is the start380

of the rightmost tandem, and p is the smallest period (in the above example it is (1, 10, 2)).381

This encoding is commonly used in algorithms that report all tandem repeats in a string.382

On the other hand, the concept of primitivity in a 2-str TR is more subtle. We cannot383

say that we are only interested in TR’s with primitive roots, as we will miss some TR’s in384

the double string (see Example 4). Furthermore, a non-primitive TR may be a substring of385

a longer run as in Example 5. This non-primitivity certainly should not disqualify the run.386

Example 4: The 2-str TR beginning at location 1, of length 8, has non-primitive root abab. This
is not implied by the 2-str TR at location 3 with primitive root ab.

1 2 3 4 5 6 7 8 9 10
a b a b c c c c c c
c c c c a b a b a b

Example 5: The TR at location 1 has primitive root xbab, the TR’s at locations 2, 3, and 4 have
non-primitive roots baba, abab. There is also a 2-str run of period 2 beginning at location 4, which
in a sense encodes the TR of period 4 beginning at location 4.

1 2 3 4 5 6 7 8 9 10 11
x b a b a b a b a b c
c c c c x b a b a b a

We conclude that since some non-primitive TR’s must be reported, an algorithm that387

locates all 2-str TR’s must search for these TR’s. Hence, our algorithm finds and reports all388

2-str TR’s, including those that have non-primitive roots. If necessary, those that are not389

interesting can be filtered out by finding all 1d runs in each string, and merging this with390

the output of our algorithm, since every 2-str TR that has a non-primitive root will be part391

of a run in each individual string of the double string.392

B Example of a text T and the compact regions data structure393
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𝑇 = 𝑎2𝑏5𝑎8𝑐6𝑏4𝑎8𝑏9𝑎3𝑐7𝑏2𝑎4𝑐8𝑎9𝑏1𝑎3𝑏6𝑐9𝑏9

𝑇2 = 𝑎1𝑏2$𝑏2𝑎4𝑐3𝑏2𝑎4𝑏4$𝑏4𝑎1$𝑎1𝑐3$𝑐3𝑏1𝑎2𝑐4𝑎4$𝑎4$𝑎1$𝑎1𝑏3𝑐4$𝑐4𝑏4$𝑏4

𝑇3 = $𝑏1$𝑏1𝑎2$𝑎2𝑐3𝑏1$𝑏1𝑎2$𝑎2𝑏3𝑎1𝑐2$𝑐2$𝑎1$𝑎1𝑐2$𝑐2𝑎3$𝑎1𝑏2𝑐3𝑏3

𝑇4 = $𝑏1$𝑏1𝑎2𝑐1$𝑐1𝑏1𝑎2𝑏2$𝑏2$𝑐1$𝑐1$𝑎1𝑐2𝑎2$𝑎2$𝑏1$𝑏1𝑐2$𝑐2𝑏2$𝑏2

𝑇5 = $𝑏1𝑎1$𝑎1𝑐1$𝑐1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑏1$𝑏1𝑐1$𝑐1𝑏1$𝑏1

𝑇6 = $𝑎1$𝑎1𝑐1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑏1𝑐1$𝑐1𝑏1$𝑏1

𝑇7 = $𝑎1$𝑎1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑐1$𝑐1𝑏1$𝑏1

𝑇8 = $𝑎1$𝑎1𝑏1$𝑏1$𝑐1𝑎1$𝑎1$𝑐1$𝑐1𝑏1$𝑏1

𝑇9 = $𝑏1$𝑎1$𝑐1𝑏1

Figure 6 compact regions data structure example.
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