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Abstract

The latest advances in cancer sequencing, and the availability of a wide range of methods
to infer the evolutionary history of tumors, have made it important to evaluate, reconcile and
cluster different tumor phylogenies.

Recently, several notions of distance or similarities have been proposed in the literature, but
none of them has emerged as the golden standard. Moreover, none of the known similarity
measures is able to manage mutations occurring multiple times in the tree, a circumstance often
occurring in real cases.

To overcome these limitations, in this paper we propose MP3, the first similarity measure
for tumor phylogenies able to effectively manage cases where multiple mutations can occur at
the same time and mutations can occur multiple times. Moreover, a comparison of MP3 with
other measures shows that it is able to classify correctly similar and dissimilar trees, both on
simulated and on real data.


https://doi.org/10.1101/2020.04.14.040550
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.040550. The copyright holder for this preprint (which was not peer-reviewed) is the
author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

1 Introduction

Recent methods to accurately infer the clonal evolution and progression of cancer have made it
possible to develop targeted therapies for treating the disease. As discussed in several studies [11 2],
understanding the history of accumulation and the prevalence of somatic mutations during cancer
progression is a fundamental step to devise these treatment strategies.

Given the importance of the task, a multitude of methods for cancer phylogeny reconstruction
have been developed over the years. The increasing number of tools created has been encouraged
by the diversity of data available; for instance, we are witnessing a shift from bulk sequencing
data [3], 4, 5, [6l, [7] towards single-cell data [8], 9] 10, 11] and hybrid approaches [12] [13].

Having many different tools accomplishing the same task requires solid methods to compare
their results. In contrast with classical phylogenetic trees, whose leaves, and only leaves, are labeled
(with the species they represent), the trees that model tumor phylogenies are fully-labeled, i.e., they
also have labels (corresponding to the mutations) on the internal nodes. While there is a wide range
of measures to compare leaf-labeled trees in the literature, ad-hoc methods for tumor phylogenies
are starting to appear in the last few years [14. [15] [16], (17, [18]; in particular, a detailed study of some
notions of distance [14] has introduced two new measures complementing some more established
definitions used in various cancer inference studies [19, 9]. Those new measures are more nuanced,
in order to capture some aspects of the mutation inheritance process, while still being very efficient
to compute. A common trait of all the latter distances is their reliance on the analysis of pairs of
nodes.

On the other hand, some of the most widely used distances on classical phylogenies are based
on rooted triples |20} 21l 22] (for rooted phylogenies) or quartets [23] (for unrooted phylogenies)
of labeled leaves. Although such metrics have major limitations for our purposes, as they do not
apply directly to fully-labeled trees, they also have some desirable properties that we would like to
transfer in our setting. Specifically, this kind of metric captures well the differences in the topology
of the trees; a feature that, to the best of our knowledge, lacks in most of the existing methods for
tumor phylogenies. Therefore we expect a triplet-based measures to provide additional insights on
the different evolutionary histories, when applied to cancer progression.

In this paper, we generalize the notion of rooted triples similarity for classical phylogenies to
tumor phylogenies. Moreover, we further extend this to multi-labeled trees (that is, where each
node is labeled by a set of labels) and poly-occurring labels (that is, each label can be assigned to
more than one node). The latter feature is needed since recent studies [24, 25] suggest widespread
recurrence and loss of mutations, and more and more methods designed to infer tumor phylogenies
considering such a possibility are starting to appear [I1], 19, 0]. In a phylogenetic tree a mutation
loss is represented by a special character in the label, such as a minus sign: the design of our
measure allows to handle such evolutionary events effectively, as they uniquely correspond to their
label like any other kind of mutation.

Through an extensive experimental analysis, we show that our novel measure is able to overcome
the limitations in the existing literature and to provide a better alternative to both the direct com-
parison of evolutionary histories and the application to established clustering techniques, following
the approach of [I4]. Such a performing measure can also be incorporated in recent works [26, 27]
designed to cluster and build consensus across multiple cancer progressions. An open source im-
plementation of MP3 is publicly available at https://github.com/AlgoLab/mp3treesim.


https://github.com/AlgoLab/mp3treesim
https://doi.org/10.1101/2020.04.14.040550
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.040550. The copyright holder for this preprint (which was not peer-reviewed) is the
author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure 1: Rooted triplet on labels (a,c,e). (Left) Tree T where the smallest subtree that contains
all three labels is highlighted. (Right) The minimal topology induced by (a, ¢, €).

2 Methods

A classical phylogenetic tree is a rooted, unordered, leaf-labeled tree. The set of all the labels
occurring in 7' is denoted by A(T'), and a function N(-) maps each element of A\(T") to a leaf of
T. We denote with LCA(u,v) the Lowest Common Ancestor of nodes u and v. Given three leaves
u,v,z € Vp, the minimal tree topology they induce on T', denoted as MTTp(u, v, z), is the smallest
subtree of T that includes the nodes V""" = {u, v, 2} ULCA(u, v) ULCA(v, ) ULCA(u, z), and where
all the nodes with degree 2 not in V"% are contracted.

The rooted triplet distance measures the dissimilarity between two leaf-labeled trees with iden-
tical labels. It is given by the number of rooted triplets that induce different minimal topologies
(Figure [1]) in the two trees over the total number of triplets [28]. As tumor progression trees are
fully-labeled, such metric cannot be directly applied: in this section we propose a novel similarity
measure, inspired by the triplet distance, specifically designed for these more general trees.

2.1 Extension to fully labeled trees and multi-labeled trees

A tree T on a set Vp of n nodes is fully-labeled by a set A(T) of labels if there is a bijection
N : A(T) — Vp. The definition of minimal topology of three leaves can be trivially extended to the
minimal topology of three nodes: we next show that there are only five possible configurations (see

Figure .
Lemma 1. Given nodes u,v,z € Vp, there exist only five possible configurations for MTTp(u, v, z).

Proof. We start by dividing two possible cases: (i) LCA(u,v) = LCA(v, z) = LCA(u, z), or (ii) just
two LCAs are the same, say LCA(v,z) = LCA(u, z). There are no other possibilities, as LCA(u,v) #
LCA(v, z) # LCA(u, z) is impossible: indeed, suppose without loss of generality that LCA(u,v) is
a descendant of LCA(u, z), LCA(u,v) # LCA(u, z): they cannot be unrelated, as by definition they
are both ancestors of u. LCA(u,z) is thus a common ancestor for v and z. Suppose towards a

2 By 5o A K

Figure 2: The five possible configurations for the minimal tree topology induced by three nodes.
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Figure 3: The four additional possible configurations for the minimal tree topology of multi-labeled
trees induced by three nodes.

contradiction that LCA(v, z) # LCA(u, z), thus it is a descendant of LCA(u, z) and an ancestor of
LCA(u,v). But then it is an ancestor of both v an z and it is lower than LCA(u, z), a contradiction.

Case (i) has two subcases: either LCA(u,v) € {u,v, 2z}, corresponding to the rightmost config-
uration in Figure [2| or LCA(u,v) ¢ {u,v, z}, corresponding to the second configuration from the
left. Case (ii) has three subcases: either both the distinct LCAs are in {u, v, z}, or none of the two
is, or finally one is in {u,v, 2} and the other is not. The first subcase corresponds to the leftmost
configuration in Figure[2] the second subcase to the fourth configuration from the left. For the third
subcase, either the external LCA is an ancestor of all of the three {u,v,z}, corresponding to the
third configuration, or it is an ancestor of two nodes and a descendant of the third one, say u. In the
latter case, though, the external node would be the only child of u, and thus would be contracted
by definition of MTT7(u, v, z), leading again to the rightmost configuration of Figure O

In the case of fully-labeled trees, the definition of LCA of two nodes and MTT of three nodes can
trivially be extended to the LCA of two labels and the MTT of three labels, as there is a one-to-one
correspondence between nodes and labels. From now on, for ease of presentation, given two nodes
u and v and their respective labels a and b, we will use LCA(u,v) and LCA(a,b) interchangeably.
When modeling tumor progression, though, to have a bijection between nodes and labels (i.e.,
mutations) is quite a strong assumption, as multiple mutations often appear at the same time
in the evolutionary history of cancer. We thus relax our assumptions and consider multi-labeled
instead of fully-labeled trees.

A rooted, unordered tree T' is multi-labeled if there exists a surjective function N : A(T") — Vp
that labels each node of T' with a set of labels from A(T'): note that, in this model, each label is
assigned to one and only one node of T. We extend the definition of lowest common ancestor of
two labels for a multi-labeled tree as follows: if a € A(T') and b € A(T) label the same node wu,
then LCA(a,b) = w; if they label two distinct nodes u,v, then LCA(a,b) = LCA(u,v). This allows
us to straightforwardly extend the definition of minimal tree topology of three labels for multi-
labeled trees. There are only four possible additional configurations for the minimal tree topology
of multi-labeled trees, shown in Figure [3} a proof can be found in the Supplementary Materials.

Lemma 2. Given T multi-labeled and a,b,c € X\(T), there exist nine configurations for MTTr(a, b, ¢).

2.2 Extension to poly-occurring labels

We further extend our model of tumor phylogeny by allowing the same label of A(T') to be assigned
to multiple nodes of 7. An element of A\(T") that labels more than one node of T is said to be
a poly-occurring label. To the best of our knowledge, none of the existing tools is able to handle
poly-occurring labels: indeed, although some of them accept input trees with poly-occurring labels,
they simply disregard the multiple occurrences of a same label.

Since it is often the case where the inferred evolutionary history involves the appearance of
the same mutation in multiple events, a meaningful comparison between tumor phylogenies cannot
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overlook such a phenomenon. To consider poly-occurring labels in our similarity measure, we extend
the definition of minimal tree topology. First, note that if a label occur multiple times in the tree,
then N maps each label to one or more nodes in V. Then, we define the minimal tree topology of
poly-occurring labels a, b, ¢, denoted by M, as follows, where LI indicates the multiset union:

Mr(a,b,c) = |_| MTT7(u, v, 2)
u€N(a),veN(b),zEN(c)

In other words, the minimal tree topology of three labels is the multiset of all the minimal tree
topologies of the nodes where a, b, and ¢ appear. We remark that in this setting My is a multiset
of configurations, thus the same configuration may appear multiple times in Mp.

2.3 Similarity measure between trees

We are now able to define a similarity measure between fully-labeled trees with poly-occurring
labels. Let S be a multiset and let |S| be its cardinality. We define the number of shared configu-
rations of labels a, b, ¢ between two trees T} and Ts as N(a, b, c¢) = Mp, (a, b, ¢) MMy, (a, b, ¢)], i.e. the
cardinality of the multiset intersection, and the maximum number of configurations of the triplet
in the trees as D(a,b, c) = max{|Mp, (a,b, )|, |Mp,(a,b,c)|}.

Based on these two values we define multiple variations of the Multi Poly-occurring labels
triplet-based (MP3) similarity measure that we will later combine into a single score. We define
MP3n as the similarity computed between triplets of labels shared by the two trees:

>, N(ab,c)
(a,b,c)el

> D(a,b,c)

(a,be)el

MP3n =

(1)

where [ is the set of triples in A(T7) N A(T%). Due to the nature of only considering the subset of
labels that appears in both trees, MP3n is a conservative measure, therefore we present a variation
that consider all possible configurations in both trees, thus having a wider view:

>, N(a,bc)
(a,b,e)ed

> D(a,b,c)

(a,b,c)ed

MPSU -

(2)

where J is the set of triples in A(771) U A(T32). Differently from MP3~, MP3_ weighs also the the
labels that appear only in one of the trees. Note that, for every pair of trees, MP3, < MP3n, as the
numerator remains identical in both, while the denominator of MP3_, has all the elements in MP3n
with the addition of the values of D for the triples present only in one of the input trees.

Although MP3n and MP3, are closely related, they provide two different views of a tumor phy-
logeny. Indeed, on one hand MP3n measures how similar the shared history of two tumor phylogenies
is, i.e. it provides an idea of how well the two progressions can be reduced to the same subsequence
of common mutations. On the other hand, MP3_, measures how similar the whole history of the two
evolutions are, i.e. it considers the impact of mutations acquired only in one progression.

Since the previous measures capture different aspects of the progressions, we want to combine
them into a single, usable and powerful similarity measure that couples the strengths of both.
The most intuitive method is to simply use a mean. We opted for the geometric mean: MP35 =

\/MP3 - MP3y,.
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This function is not completely satisfactory, as a uniform function of [I] and [2] is not able to
comprehensively capture the nuances in the input trees. Therefore we developed a weighted mean
with an intentional bias towards MP3n to catch inner similarities in different trees. Such combination
then tends to be closer to MP3~ when the trees are similar while moving towards MP3, as the trees
are less similar:

MP3, = MP3,, + ¢(MP3n) - min{MP3~ — MP3_, MP3,},

where o(z) = (1 + e“(x_%))_l is the classic sigmoid function centered in 1/2 and p is used to adjust
the slopeness of the curve; we set u = 10 in our experimentation. In addition the sigmoid polarizes
the values close to 1/2, thus helping decide whether they are closer to 1 or 0, therefore moving the
final score closer to MP3~ or MP3.

While all four measures are available in our implementation, we decided to use MP3, as default
measure and is denoted simply as MP3. An experimental comparison of all four measures is shown
in the Supplementary Materials.

3 Results

3.1 Simulated Data

To perform our experiments we follow an approach similar to the one performed in [14]. We start
from a base tree on which we apply a series of perturbations selected from: label swapping, label
removal, label duplication, node swapping and node removal. Both the perturbations and the
nodes and labels on which they are applied are chosen at random: our procedure allows to select
a user-specified total number of actions and a probability vector that will be used to select the
perturbations from the previous list.

For the measure comparison experiments, we generated 30 perturbations from each of the 5 base
trees, for a total of 150 trees. For the clustering evaluation, 3 base trees are entirely different from
each other, and another 2 are perturbations of two of the others, to simulate similar sub-families of
the same tumor type: we perform a total of 10 perturbations on such 5 trees. More details on the
perturbation parameters will be described in each section, while the entire configuration is available
and reproducible at https://github.com/AlgoLab/mp3treesim_supp.

3.2 Measures comparison

We compared MP3 against all the different versions of DISC and CASet from [I4] and MLTD [15].
While MP3 and MLTD provide similarity scores, DISC and CASet compute a dissimilarity score,
that we convert into a similarity measure by simply subtracting their value from 1.

3.2.1 Effect of changes in the tree topology

A key feature a measure on tumor phylogenies should have is to discern changes at different tree
depths; indeed, a change close to the root should be more impactful than a change towards the
leaves. Such a behavior is fundamental, as driver mutations are often acquired early in the evolu-
tionary history, while less important passenger mutations usually happen at later stages: to mistake
the two types of mutations should therefore have a high impact on a good similarity measure.

To estimate this effect on all the measures, we start from a linear base tree (T in Figure
(Left)); we then raise its only leaf one level at the time and compute its similarity to the base tree,
expecting a drop in similarity as the leaf raises to the root, similarly to experiment proposed in [14].
Figure (Left) clearly displays such effect for MP3, showing that it has the highest similarity decrease
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Figure 4: (Left) Effect of a node (highlighted in red) that ascends from leaf to child of the root,
Ty is the base tree to which the others are compared. (Right) Effect of label duplication on the
similarity scores. Similarities are the average of 15 trees generated from the same base with the
specified maximum number of duplications. MLTD was excluded since it failed to run on instances
with poly-occurring labels.

among all measures; DISC and CASet also have similar trends, but to a lower extent. Since the
set of labels is the same for all trees, there is no difference between union and intersection versions
of DISC and CASet. Contrarily, as already observed in [14], MLTD plateaus after the first change.

Another interesting aspect to investigate is how the presence of poly-occurring labels influences
the similarity scores, as the more sophisticated the inference tools get, the more is common to
have tumor phylogenies with multiple acquisitions or losses of the same mutation. To evaluate
this aspect we started from a multi-labeled base tree with all labels occurring only once. We then
created 15 perturbed trees for 5 different configurations. In the first one (on the abscissa 0 in
Figure {4| (Right)) we allowed one operation excluding label duplication; for the others we allowed
a total of 1, 3, 5 and 7 operations with much higher chance of selecting a label duplication. Since
perturbations occur randomly, we are only sure that at most the specified number of duplication
occurred, and not necessarily to the same label.

Figure 4| (Right) shows that CASetn, CASet, DISCH and DISCy have similar trends in this
setting, MP3 being the only one that differs. In particular, the other measures assign an higher
similarity score to the second configuration than to the first one, despite they are both obtained
with one perturbing operation, allowing label duplication only in the second one. MP3 is the only
measure that positively displays a monotonic decrease in similarity as the number of poly-occurring
labels increases, being markedly steeper than the others. We believe that a larger steepness will be
more informative than a plateauing curve, since while being true that after many of poly-occurrences
no more information is gained, all the duplications will inevitably add more and more noise to the
tree. Since MLTD assumes that every label appears only once, it failed to run on this experiment
and was therefore excluded.

3.2.2 Results on simulated data

To analyze the differences between all measures we designed two experimental settings: from 5
different base trees (available in the Supplementary Materials) we generated 30 perturbations for
each class and computed similarities scores between all the 150 resulting trees. In the first config-
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Figure 5: Results for the first experimental configuration: (Left) Heatmaps displaying the scores
between all-pairs 150 simulate trees. (Top-Right) Distribution of the similarities between the trees
in the same class (Intra-similarity) and in different classes (Inter-similarity). (Bottom-Right) Sil-
houette score computed using a hierarchical linkage clustering with cuts from 2 to 15.

uration we allowed a total of 3 operations excluding label duplications, while in the second one we
allowed them. All the parameters and the different probabilities used for applying perturbations
are available at our supplementary repository https://github.com/AlgoLab/mp3treesim_supp.
Results for the first configuration are shown in Figure [5t The heatmaps (Left) show that MP3
discerns the best between the trees in the same class (main diagonal) and the others: the results
of DISCy, are really close to ours, but there is a more noticeable noise outside the main diagonal.
DISCn and CASety present even more noise than the others, but are still mostly able to distinguish
the different classes; CASetn seems to struggle the most on this setting, while MLTD displays high
values of similarities for every couple of trees, but it is still able to differentiate between the bases.
The boxplots in Figure 5| ( Top-Right) show the same result quantitatively: the crucial feature is
to correctly distinguish the different classes. The values represent the distribution of the similarities
between the trees in the same class (Intra-similarity) and in different classes (Inter-similarity). MP3
differentiates better between intra and inter similarity, exhibiting the most compact distribution
for the inter-similarities scores, while being a little more dispersed on the intra-similarity due to the
action of the sigmoid, that pulls apart the values around 1/2. Similarly to the previous case, DISCy,
CASety and MLTD show similar trends, while CASetn displays the most overlapping distributions.
Lastly, in Figure |5| (Bottom-Right), we computed a silhouette score from the data using a
hierarchical linkage clustering with cuts from 2 to 15 to simulate a clustering scenario. Once again,
MP3 performs the best expressing the maximum value for 5 cuts, being the 5 classes. DISCp, DISCy
also show the largest value at the same cut. MLTD was excluded from the plot since it scored values
close to —1 for every cut, thus causing the figure to be hard to interpret.
In the second experimental setting we introduced poly-occurring labels to the simulation. Fig-
ure [6] exhibits results very similar to the previous ones. The main difference is that in the silhouette
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Figure 6: Results for the second experimental configuration: (Left) Heatmaps displaying the scores
between all the 150 simulate trees. (Top-Right) Distribution of the similarities between the trees
in the same class (Intra-similarity) and in different classes (Inter-similarity). (Bottom-Right) Sil-
houette score computed using a hierarchical linkage clustering with cuts from 2 to 15.

score (Bottom-Right) MP3, while still having its maximum value in correspondence of 5 cuts, is
slightly lower than the other measures. On this experiment MLTD, not allowing poly-occurring
labels, failed to compute the score in most of the instances, shown in grey in the heatmaps (Left);
it was excluded from the other plots given the high amount of failed runs.

3.3 Application to clustering of trees

A very important application of a tree similarity measure is clustering, e.g., to classify cancer type of
patients by the similarity of their inferred phylogenies. This is of crucial interest for the development
of precision therapies based on the topological structure and the evolution of mutations. Since to
curate such classifications manually would be unfeasible as the size and the number of mutations
increases, a good measure to use in conjunction with a clustering method is necessary.

To evaluate a similar scenario we started from 3 different bases, then perturbing two of such
trees chosen at random; these new trees are then considered as additional base trees. Given this
5 bases we created a total of 10 perturbed trees from each class. The goal was to simulate an
experiment with three separate classes, with two of them further split in two subclasses, to obtain
subtypes of the same cancer families. The five resulting bases are available in the Supplementary
Materials and the parameters used for the simulations are in our supplementary repository.

Results for the clustering experiment are reported in Figure E (a) shows the clustermaps com-
puted using hierarchical linkage clustering. MP3, DISCH and DISC, correctly cluster the three main
families as well as the two sub-families, while both versions of CASet struggle the most in this ex-
periment. Figure (b) displays the distribution of intra- and inter-similarity between the five bases;
MP3 has the most compact inter-similarity distribution and is the only method that completely sep-
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Figure 7: Results for the clustering experiment: (a) Clustermaps of the 50 simulated trees computed
using hierarchical linkage clustering. (b) Distribution of the similarities between the trees in the
same class (Intra-similarity) and in different classes (Inter-similarity) for the 5 classes. The high
number of outliers for all methods is due to the high similarity of the two subclasses. (¢) Silhouette
score computed using a hierarchical linkage clustering with cuts from 2 to 15. (d) Distribution
of the similarities between the trees in the same class (Intra-similarity) and in different classes
(Inter-similarity) for the three main classes, remapping the subclasses to the original corresponding
base. MLTD was excluded from this experiment because it failed to run on most instances due to
the presence of poly-occurring labels.

arates intra- and inter-distributions. The high number of outliers for all methods is due to the high
similarity of the two subclasses. To confirm this hypothesis we computed the same distributions
only for the three main classes, remapping the subclasses to the original corresponding base class in
(d), where we note that the number of outliers is significantly reduced. Finally, Figure|7| (¢) shows
the silhouette scores for the dataset; all measures express a higher score with 3 cuts, suggesting
that the two subclasses are very similar to the two main bases they are derived from. The scores
are very similar for all measures, with DISCy having a higher value with 3 cuts and MP3 having
a slightly higher with 5 clusters. CASetn is the only method that have a much higher score in 5,
however, as shown in (a), the five clusters it reports are not the correct ones. MLTD was excluded
from this experiment because it failed to run on most instances due to poly-occurring labels.

3.4 Application to real dataset

To further evaluate our similarity measure, we applied it to two publicly available real datasets:
breast cancer xenoengraftment in immunodeficient mice [29] and ultra-deep-sequencing of clear cell
renal cell carcinoma [30]. Both datasets were previously considered for analyses by the two cancer
phylogeny reconstruction methods LICHeE [31] and MIPUP [32]. Data from [29] was also used
in [14] for evaluation. An interesting feature of the data in [30] is that most samples in the study
present poly-occurring labels, suggesting recurrent mutations at different evolutionary stages. We
recall that DISC and CASet compute dissimilarity scores, that we convert into a similarity measure
subtracting their value from 1. All the analyzed trees are available in the Supplementary Materials.

To evaluate the effectiveness of the measures in real scenarios, we selected the manually curated
trees, published in the corresponding original sequencing studies, for case SA501 from [29] and for
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patient RMH002 from [30]. We then computed similarities between these reference trees and the
ones inferred by LICHeE and MIPUP, as reported in [32].

The reference RMHO002 is very similar to the evolutions inferred by LICHeE and MIPUP, thus
most of the measures agree on a high similarity score, as reported in Figure [§| (Left), with the
exception of CASety. The scores computed by MP3 are higher than the others, possibly because it
is the only method to correctly identify and process poly-occurring labels in the reference trees, due
to the discovered recurring mutations. Differently from the previous analysis, the measures disagree
considerably for SA501, as depicted in in Figure [§| (Center). Indeed, MP3 reports a similarity value
close to 0, suggesting that the considered trees are quite different, whereas the other measures
report a higher similarity, especially DISC scoring up to 60% similarity.

To thoroughly investigate this behavior, we defined some naive approaches used as a proxy to
analyze some basic aspects of the trees, such as the count of pairs of labels appearing in the same
node in both trees. Even with such a naive measure, the reference tree for SA501 from [29] and the
trees inferred by MIPUP and LICHeE disagree considerably. The base tree contains only 50 labels,
whereas the trees inferred by LICHeE and MIPUP contain 95 and 158 labels, respectively; of these,
the reference shares a total of 24 label with LICHeE and 37 with MIPUP. Most importantly, only
54 out of 1759 pairs of labels appear in the same node both in the reference and LICHeE and 124
out of 8424 in MIPUP. Such evaluations, albeit very simplistic, suggest that the trees are indeed
dissimilar and thus a lower score, as provided by MP3, is more reasonable than a high value of
similarity.

To better understand this phenomenon, we created the edge case of a single-node tree with all
the 158 labels from MIPUP, and compared it against the reference SA501. The resulting values
in Figure [§] (Right) show a high similarity score for DISC with values up to 69%, with CASet and
MLTD being less influenced by this aspect with scores up to 11% and 20%. On the other hand,
MP3 clearly defines the trees as extremely dissimilar, with a score of 0.4%. Such results for trees
that are clearly extremely different show a strong bias for DISC towards high similarity values.

LICHeE MIPUP LICHeE MIPUP Edge case
MP3 0.997 0.897 MP3 0.017 0.004 MP3 0.0004
CASetn 0.805 0.779 CASetn 0.139 0.111 CASetn 0.0927
DISCnh 0.930 0.876 DISCn 0.627 0.624 DISCnh 0.5571
CASety 0.569 0.551 CASety 0.260 0.113 CASety 0.1120
DISCy 0.764 0.725 DISCy 0.405 0.610 DISCy 0.6933
MLTD 0.842 0.807 MLTD 0.182 0.205 MLTD 0.2046

Figure 8: (Left) Similarities between the manually curated tree reported in [30] for patient RMHO002
and the trees inferred by LICHeE and MIPUP. (Center) Similarities between the manually curated
tree reported in [29] for sample SA501 and the trees inferred by LICHeE and MIPUP. (Right)
Similarities between the manually curated tree reported in [29] for sample SA501 and the edge case
with all mutations appearing in a single node.

4 Discussion

We identified two major limitations in the existing methods to compare tumor phylogenies: first,
they are not sensitive enough to detect even major differences in the topology of the trees, as we
demonstrated with ad-hoc experiments. Second, they are not able to meaningfully compare trees
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where the same label is assigned to more than one node.

We addressed the latter by representing tumor phylogenies as multi-labeled trees with poly-
occurring labels. Such model is best suited to cancer progression than the ones previously adopted,
as it allows the same mutation to appear in multiple evolutionary events, a circumstance often
occurring in real applications. Being inspired by the triplet distance for classical phylogenies, our
new similarity measure correctly detects differences in the topology of the trees.

Our experiments show that our method performs very well both on synthetic and real data
and, unlike the other existing tools, it is able to detect differences regarding poly-occurring labels
and it suitably distinguish trees with different topologies. Moreover, when applied to hierarchical
clustering, it outperforms every other method.
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